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Abstract

A new method is proposed to estimate the nonlinear functions in an additive re-
gression model. Usually, these functions are estimated by penalized least squares,
penalizing the curvatures of the functions. The new method penalizes the slopes
as well, which is the type of penalization used in ridge regression for linear mod-
els. Tuning (or smoothing) parameters are estimated by permuted leave-k-out
cross-validation. The prediction performance of various methods is compared by
a simulation experiment: penalizing both slope and curvature is either better
than or as good as penalizing curvature only.
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1 Introduction

We want to predict the outcome of a response variable y from the values of a
p-dimensional predictor variable x = (z,...,,), where the relationship can be
assumed to follow on average the additive model

E(ylx) = p(x) =B+ si(z1) + -+ sp(p)- (1)

Here f3 is an intercept, and s1(z1), - - - , Sp(2,) are unknown, but smooth functions
of the predictor variables. Inference is based on a training set of n observations
{yi,x;}7, and all predictor variables are scaled to [0,1]. It can be modelled by
splines, and estimation is usually done by minimizing the penalized least squares
criterion

Z{y, A1 4 A Z / ()(2)}dx A0, (2)

where [i and 5; denote current estimates and fs';' denotes the second derivative of
the estimated function 5;. The optimal estimates according to the minimization
of (2) or similar criterions will be denoted /i, §; etcetera.

The curvatures of the functions are controlled by the tuning parameter A\. An
“optimal” value of A can be chosen for instance by cross-validation. Since A is
common to all functions, the predictor variables should be on a common scale,
for instance between 0 and 1. Increasing the value of A gives smoother functions
and a smaller effective number of parameters, but worse fit to the data. When
A goes to infinity, the §-functions become linear, and the solution of (2) is then
equivalent to the ordinary least squares (OLS) estimates of the linear model

px) = Bo+Pi-zi+-+ By zp, (3)

where the (3;’s are regression coefficients.

It is well known that biased estimation methods can give considerably better
predictions than OLS when there are few data, or when the predictor variables
are highly collinear (see for instance Frank and Friedman, 1993). Biased estima-
tion methods shrink the regression coefficients towards zero and yield estimates
between those of the OLS and the pure intercept model estimated by the response
mean (B, = § and Bj = 0 for j > 0). One of the most popular of these methods is
ridge regression (Hoerl and Kennard, 1970). It can be formulated as a penalized
regression problem where the regression coeflicients are estimated by minimizing
the penalized least squares criterion

Z{yz A(x:) Y+ Zﬁfa v 2 0. (4)



To get the predictor variables on a comparable scale, they are usually scaled to
have the same variance. Alternatively, the predictor variables are transformed to
cover the range from 0 to 1. Then, since s;(z) = §; - © and s;(z) = ; under the
linear model (3), the criterion (4) becomes

Z{y, A%} + - Z / {5)(x))dz, (5)

where the first derivatives are penalized instead of the second derivatives as in
(2). The degree of

shrinking is controlled by the tuning parameter v. When v = 0, the method is
equivalent to OLS with p + 1 effective parameters, and when 7 reaches infinity it
is equivalent to the pure intercept model with 1 effective parameter.

Controlling the effective number of parameters by penalization is central to both
the linear and nonlinear situations. I propose combining the two. Consider the
additive model (1), but estimate the model by minimizing the penalized least
squares criteria

Z{y, )} + - Z / (8,(2))2dz + A Z / E@Yde.  (6)

In this paper we investigate if the combined use of first and second order penaliz-
ation can give better predictions than using either of the two penalizations on its
own. It is difficult to find the solution that minimizes (6). Therefore, the actual
implementation of the double penalization is based on the alternative formula-
tion of generalized additive models by Marx and Eilers (1998) using penalized
B-splines, also called P-splines. The model (1) is first approximated by a linear,
but high-dimensional and thus still flexible model. Then the first and second
order differences of adjacent estimated coefficients are penalized, which approx-
imates the corresponding penalizations on the first and second order derivatives
in (6). More details are given in section 3. Since the new method uses double
penalization of both first and second order, I will call it DP12. Similarly, using
the second order penalization only is called P2.

It is essential to use a precise procedure to estimate the two tuning parameters.
I use a permuted leave-k-out cross-validation procedure (Shao, 1993), that has
better properties than the ordinary leave-one-out cross-validation.

A simulation experiment with 16 real data sets has been carried out. DP12
is better than P2 when there are few training data, whereas the two methods
have similar properties when there are many observations. DP12 also performs
well compared to ridge regression. In situations with few observations (10, say, or
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less), ridge regression may perform better than DP12. But when there are enough
data to estimate the two tuning parameters (v and \) well, DP12 substantially
outperforms ridge regression if the relationship between y and x is nonlinear.

The next section gives an example that motivates and illustrates the use of DP12.
The various regression methods and the cross-validation procedures are described
in more detail in section 3. The simulation experiment is described in section
4, and finally I give some conclusions and indicate some possible extensions in
section 5.

2 Illustrating example

The left-hand panel of Figure 1 is a scatter plot of the response variable ozone
versus the predictor variable temperature with 330 observations. The data set
was analyzed by Breiman and Friedman (1985) and by Hastie and Tibshirani
(1990). The nonlinear relationship is clear, and a nonlinear smooth function
seems appropriate. P2 and DP12 has been applied to these data, with tuning
parameters chosen by cross-validation, leading to 5.0 and 4.9 effective parameters
respectively (calculated as described in Appendix A). The plotted curve is that
of DP12, but the P2-curve is almost identical, which is typical when there are
many training data.
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Figure 1: Ozone vs. temperature with regression functions by ordinary P-splines
P2 and double P-splines DP12 (actually DP12seq21, see section 3.3).

Assume then that only 10 observations were available in the training data, as
in the right-hand panel (drawn randomly from the full data sample). In this
situation, a linear model seems appropriate. And indeed, the cross-validation
procedure chose A = oo for both P2 and DP12. Thus, here P2 is equivalent to



OLS with 2.0 effective parameters, whereas DP12 is equivalent to ridge regression
with 1.8 effective parameters. The DP12-curve is flatter than the P2-curve.

In the middle panel, there are 20 observations. Both estimated curves are nonlin-
ear, but the DP12-curve is again flatter than the P2-curve. The effective number
of parameters is now 4.8 (P2) and 3.9 (DP12).

The above example illustrates how the “optimal” values of the tuning parameters
~v and A depend on the sample size of the training data. In addition, the “op-
timal” tuning parameters will depend on characteristics of the true relationship
between y and x, such as the degree of nonlinearity and signal to noise ratio

Var{u(x)}/Var{y — p(x)}].

3 Methods

3.1 Ridge regression and ordinary least squares

Let now y be a n-dimensional vector of response observations, X a nx(p + 1)-
dimensional design matrix with 1’s in the first column and the predictor obser-
vations in the last p columns, and § the (p + 1)-dimensional vector of regression

coefficients. Further, let I° be a (p + 1)x(p + 1) diagonal matrix with 0 in the
first diagonal element and 1 in the others. Then, assuming the linear model (3),
the solution to the penalized least squares criteria (4) or (5) is given by the ridge
regression estimate

BER = (X'X +1I% X'y, (7)

where ' means transpose.

For practical purposes, the matrix (X'X + 1°) is considered as invertible if the
ratio of the largest to the smallest eigenvalue is less than 10'°. If not, « is
increased until this is fulfilled.

3.2 Penalized B-splines - P-splines

Marx and Eilers (1998) proposed a variant of generalized additive models (Hastie
and Tibshirani,1990) based on penalized B-splines. I give a short review below
for p predictors. Eilers and Marx (1996) give a detailed description in the case
with one predictor.

A B-spline of degree ¢ consists of (¢ + 1) polynomial pieces, each of degree g,
joined at ¢ inner knots. At the joining points, derivatives up to order (¢ — 1) are
continuous. The B-spline is positive on a domain spanned by (¢ + 2) knots, and
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elsewhere 0. The left-hand panel in Figure 2 shows a B-spline of degree ¢ = 3.
The right-hand panel of the figure shows a set of » = 13 equidistant B-splines
in the range from 0 to 1, constructed by dividing the interval from 0 to 1 into
(r—¢q) = 10 equal intervals. At any given value between 0 and 1, (¢+1) B-splines
are nonzero, and their sum is 1.
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Figure 2: Left panel: One B-spline basis function. Right panel: A set of B-spline
basis functions.

The value z; of a predictor variable is transformed into r new variables b;(z;),l =
1,...,r, where b;(x;) denotes the value at z; of the /th B-spline. The jth smooth
function s; in (1) is then assumed to be satisfactorily represented by the linear
combination

si(z;) = Y aubi(z;). (8)

This is repeated for all p s-functions, with the same number r of B-splines used
for each predictor variable. Then the full model becomes

px) = ao+ ) > aubils), (9)

j=1 i=1

now denoting the intercept by «y.

We now have a flexible functional form of p(x), but the model contains r - p + 1
free or effective parameters, and when r is large, there are possibly too many
which may lead to severe over fitting. To overcome this, Marx and Eilers (1998)
introduce difference penalties on adjacent estimated a-coefficients. The Oth order
difference of «; is the coefficient value itself, the first order difference is (o —



aji—1), and the second order difference is {(aji — oji—1) — (ji—1 — @ji—2)} =
(aji — 2aj;—1 + ai—2). Higher order differences may be used as well, but here I
will only consider differences up to order 2. The penalized fitting criterion is now

S = )y (10)

p T p T
e Z Z(dﬂ —Gji1)? + A Z Z(djl — 281 + Gj—2)’.

j=1 1=2 j=1 1=3

The penalizations on the first and second order differences approximate the cor-
responding penalizations on 5 and 37 in (6) (see Eilers and Marx 1996). Using the
same number 7 of B-splines for all predictors corresponds to scaling the predictor
variables to cover the same range as assumed in (6).

This approach is called penalized B-splines or P-splines by Marx and Eilers
(1998). They essentially consider penalizing with just one of the first or second
(or higher) order differences. If v = 0, (10) corresponds to P2, and thus gives
ordinary (generalized) additive models. If A = oo, (10) corresponds to (5), and
yields an alternative formulation of ridge regression. I denote this P1.

The vector & of coefficients that minimizes (10) is rather simple to compute, and
is given in Appendix A, which also includes a formula to compute the effective
number of parameters. Table 1 shows the effective number of parameters for
some special cases. In this paper, r = 13 for all methods.

v A Effective no. of parameters
0 0 r-p+1
0 oo p+1
0o 00 1

Table 1: Effective number of parameters.

3.3 Double penalized B-splines - DP-splines

Double penalized B-splines were used by Eilers and Marx (2003), when the pre-
dictor variables were spectroscopic measurements ordered by wavelength. In con-
trast to the additive model I have in mind, their regression model was still linear,
but the ordered regression coefficients varied smoothly from coefficient 1 to p. I
shall investigate if the use of double penalization in the additive model (1) can
give improved predictions. I will denote this method DP12, since it penalizes both
the first and second order differences. The tuning parameters will be estimated
by cross-validation, see next section. It is perhaps most natural to estimate both
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tuning parameters simultaneously (called DP12sim). Another possibility is to es-
timate the tuning parameters sequentially. If we regard DP12 as a refinement of
P2, we can first estimate A by P2, and then estimate «y for fixed A (DP12seq21).
This is the method used in Figure 1. Or, conversely, first estimate v by P1, and
then estimate \ for fixed v (DP12seq12). In a study of so called length-modified
ridge regression (Aldrin, 1997), sequential estimation of two tuning parameters
gave less prediction uncertainty than simultaneous estimation.

3.4 Predictions outside range of training data

Consider the challenging situation when predicting a new response for predictor
variables outside the range of the training data. Within this range, (¢ + 1)
B-splines are nonzero, but outside this range fewer than (¢ + 1) B-splines are
nonzero, and at a distance (2/(r — ¢)) outside the range, all B-splines are 0. In
other words, s;j(z;) is 0 if z; is far enough from the range of the training data.
This is an unwanted property that is not covered by Marx and Eilers (1998). To
overcome this, I define s;(z;) to be linear outside the assumed range [0, 1], with
first derivatives s;(x;) = s;(0) if z; < 0 and s;(z;) = s,;(1) if z; > 1.

Alternatively, extrapolation may also be handled by defining extra B-splines out-
side the range of the training data as in Currie, Durban and Eilers (2003), but I
will not use this approach in the present paper.

3.5 Estimating tuning parameters by permuted leave-k-
out cross-validation

Alternative methods for choosing tuning parameters includes Akaikes informa-
tion criterion, (ordinary) cross-validation or generalized cross-validation, see for
instance Eilers and Marx (1996) or Koenker and Mizera (2004), but here we
restrict ourselves to (ordinary) cross-validation. The most popular variant is
leave-one-out cross-validation, i.e. the tuning parameters are estimated by min-
imizing

Z{yz' — fu—iy(x:)}, (11)

where fi(_;) is the regression function estimated without the ith observation. In
linear models, this can equivalently be calculated as
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i.e. without any need to recalculate i n times. Here h; is the ith diagonal
element of the so called hat matrix H (see Appendix A). This expression is used
in Marx and Eilers (1998), since P-splines are linear in the B-basis. But (12)
does not cover extrapolation, i.e. x; lying outside the range of x(_;), as discussed
in section 3.4. If we assume that (11) is calculated with extrapolation performed
as described in the previous section, (12) will not be exactly equivalent to (11).

The so called V-fold cross-validation is a common alternative to leave-one-out
cross-validation. It saves computer time, and several authors (e.g. Breiman and
Spector 1992) have noted that it often yields better results than the leave-one-out
variant. The training data are divided into V groups with approximately n/V
observations in each group, and the response values in each group are predicted
by the model estimated from the remaining (V' — 1) groups. Denote the groups
by v,(v=1,...,V), and let the subscript (—v) symbolize estimates without the
vth group. The criterion to be minimized is then

DOy — e () (13)

v=1 i€v

In V-fold cross-validation about k ~ n/V observations are left out for prediction,
and the term leave-k-out may also be used to emphasize that more than one
observation may be left out. In the context of variable subset selection in a linear
model, Shao (1993) showed that when n — oo, the proportion to be left out
should go to 1, the opposite of what happens in leave-one-out cross-validation!
Thus V should decrease when n increases, whereas the number k of observations
to be left out should increase faster than n.

There is no unique way to divide the training data into V' groups. Assume that
one divides the data into V' groups by putting the first £ observations in the
first group, the next k observations in the second group etcetera. Then, if the
data were permuted, the group assignment would be different, and the cross-
validated sum of squares (13) would differ. An obvious extension of leave-k-out
cross-validation is then to perform this several times for various permutations
of the data, and taking the average over (13). In this way all response values
y; will be predicted by more than one estimated model, and the variance of the
optimization criterion will be reduced. I will call this permuted leave-k-out cross-
validation, see Shao (1993) and Pan (1999) who suggested a similar method called
bootstrap-smoothed cross-validation.



4 Simulation experiment

4.1 Data

The experiment is based on 16 real data sets. I consider these 16 data sets as
representative of a wide range of typical data sets and treat them as benchmarks
in a comparative simulation study. In some of these, the relationship between
the response and the predictor variables is nearly linear, whereas it is highly
nonlinear in others. The number of predictor variables varies between 1 and
13. The basic action in the simulation experiment is to draw a training data set
randomly from the full data set, and predict the remaining observations. The
number of observations in the training data is varied between 10 and 320.

The 16 basic data sets are listed in Table 2. They have been selected according
to the following criteria: They are real data sets with a continuous response,
at least one continuous predictor variable, and at least 45 observations. The
response variables are here consistently used on their original scale as they were
published, even if they may have been transformed in the original analysis. To
make the interpretation of the results easier, the data sets have been characterized
as either nearly linear or nonlinear, according to the presence of a clear nonlinear
relationship between the response and the predictor variables or not. If all the
nonlinear methods give better predictions than the best linear method when the
number of observations is at maximum, then the data set has been characterized
as nonlinear, the remaining data sets are characterized as nearly linear. This
division is rather rough, and for some of the data sets characterized as nearly
linear, some (but not all) of the nonlinear methods still perform better than the
linear methods when the number of observations is high. Within each group,
the data sets are further sorted according to the number of predictor variables.
Figure 3 shows scatter plots of the response versus each predictor in turn for each
data set.

4.2 Design of the simulation experiment

For each data set, the following experiment is carried out: A training set of n
observations is drawn without replacement from the original m observations. For
each method (see Table 3), the prediction model, including tuning parameters,
is estimated from the training data. Finally, the remaining m — n observations
are predicted, and the prediction error is calculated. This procedure is repeated,
and an average prediction error is calculated for each method. The number n
of observations in the training data varies through the values 10, 20, 40, 80, 160
and 320, but of course only as far as n < m. 100 repetitions are carried out if
n is 10 or 20, else otherwise the number of repetitions is 50. When the training
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Figure 3: Scatter plots of data sets, with responses on the y-axes and predictor
variables on the x-axes. The headings give name and number of data sets and
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No. Name Source Electronic source m p

1 cats Venables and Ripley (1999) S-plus MASS 144 2 nearly linear
2 whiteside  Venables and Ripley (1999) S-plus MASS 56 2 nearly linear
3 rock Venables and Ripley (1999) S-plus MASS 48 3 nearly linear
4 fuel Weisberg StatLib 48 4 nearly linear
5 landrent Weisberg (1985) StatLib 67 4 nearly linear
6 salary Weisberg (1985) StatLib 52 5 nearly linear
7 cpus Venables and Ripley (1999) S-plus MASS 52 7 nearly linear
8 birthwt Venables and Ripley (1999) S-plus MASS 189 8 nearly linear
9 pollution  McDonald and Schwing (1973) StatLib 60 15 nearly linear

10 wtloss Venables and Ripley (1999) S-plus MASS 52 1 nonlinear

11 motorcycle Hardle (1990) 133 1 nonlinear

12 ethanol S-plus S-plus 88 2 nonlinear

13 PMiy this paper, see Appendix B StatLib 500 7 nonlinear

14 NO, this paper, see Appendix B StatLib 500 7 nonlinear

15 ozone Breiman and Friedman (1985) BLSS 330 9 nonlinear

16 boston Breiman and Friedman (1985) StatLib 506 13 nonlinear

Table 2: Data sets. MASS is a library in S-plus. BLSS: Abraham and Rizzardi
(1988). StatLib: http://lib.stat.cmu.edu .

data are drawn randomly, it may happen that one or more predictor variables in
a training data set has no variation, i.e. all observations have the same value.

Then the training data set is rejected, and a new one is drawn.

Name Explanation

Mean Model with intercept only

OLS Ordinary least squares

RR Ridge regression, standardized by equal variance
P1 v estimated and A =0

P2 A estimated and v =0

DP12sim ~v and A estimated simultaneously

DP12seq21 ) estimated first by P2, then ~

DP12seql2 ~ estimated first by P1, then A

Table 3: Methods.

The tuning parameters are estimated by permuted leave-k-out cross-validation.
The tuning parameters are varied over the values 1074,1073,... ,10% and the
values that minimize (13) are chosen. The proportion of data to be left out (1/V)
varies from 1/5 for small n to 1/3 for large n. The number of permutations is
5 for small n and 3 for large n. The detailed values of V, k£ and number of
permutations are given in Table 4.
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n V k  Number of permutations
10 5 2 5
20 4 5 5
40 3 13 5
80 3 27 4

160 3 59 3
320 3 107 3

Table 4: Number of observations in training data (n), number of groups (V),
approximate number of observations left out (k) and number of permutations in
permuted leave-k-out cross-validation.

In addition, two other variants of cross-validation are tried out for some methods:
i) the approximate leave-one-out cross-validation based on (12), where extrapol-
ation is not being handled properly; ii) the leave-k-out cross-validation without
permutations.

The root mean squared error of predictions is chosen as the principal measure of
quality of predictions. For simulation number s,s =1,..., 5, let D, denote the
m —n observations to be predicted. Further, let M denote a specific method and
let ﬂé‘f Ds)(xi) denote the prediction by method M for the ith observation, based
on the training data without the observations in D;. The root mean squared
error of predictions is then calculated as

S

1
MSEM = [ |=
RMS S;m

1_ n Z{yl = il p,) (%) }2. (14)

i€Dg

In most comparisons, a reference method R will be chosen, and the RMSE log
ratio log(RMSEM /RMSE®) = log(RMSEM)—log(RM SE®) will be presented.
This quantity is positive if the reference method R is better than method M and
vice versa. A difference of 0.10, say, means that one method has an approximately
10% smaller RMSE than the other.

4.3 Results

The aim of this section is first to choose the best cross-validation procedure (leave-

one-out, leave-k-out or permuted leave-k-out), the best variant of ridge regression
(RR or P1) and the best variant of DP12 (DP12sim, DP12seq12 or DP12seq21).
Then, the selected methods will be compared.

Figure 4 show box plots of various RMSE log ratios. Each box plot is based on
the results from 65 combinations of data set and sample size n. The left-hand
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panel compares leave-one-out cross-validation to leave-k-out cross-validation by
log(RMSE'" °°/RMSE"*°). The box plots tend to lie above 0, which means
that leave-k-out cross-validation tends to be the best method of the two. This
is confirmed by the mean values, given at the top of the plot. The mean value
for RR is 0.01. For the nonlinear methods the difference is larger, up to 3%.
In the middle panel, leave-one-out is compared to permuted leave-k-out, and
the differences are up to 7% in favour of permuted leave-k-out. Finally, in the
right-hand panel, non-permuted leave-k-out is compared to permuted leave-k-out.
Here, permuted leave-k-out is the best one, up to 3% better than non-permuted
leave-k-out. From now on, I will consider only results using the permuted leave-
k-out cross-validation.

leave-one-out leave-one-out leave-k-out
- leave-k-out - permuted leave-k-out - permuted leave-k-out
0.01 0.03 0.02 0.02 0.06 0.05 0.005 0.03 0.03
o o o
i - —
0 | 0 | [¥7)
=] =) =]
o | = : — ° = ; : o — 7
i = — Cl = B QQL IS] = == ==
n [Te) wn
S S S
RR P2 DP12 RR P2 DP12 RR P2 DP12

Figure 4: Boxplots of RMSE log ratios for various methods and variants of cross-
Validation. Mean values are printed above each boxplot.

Consider then the two variants of ridge regression, as shown in Figure 5. As
expected, the difference is rather small, on average only 0.3%. Since P1 is slightly
better than RR, I used P1 in the rest of the paper.

Then the variants of DP12 is compared in Figure 6. We see that the sequential
DP12seql2, i.e. with y estimated first, performs rather poorly in some situations,
which happen to be when the response-predictor relationship is both highly non-
linear and non-monotone as in the motorcycle and ethanol data sets. Thus, this
variant is not a good choice as a general method. The simultaneous DP12sim can
both perform slightly better and slightly worse than DP12seq21, and is on average
only 1% worse. However, DP12sim is computationally slower than DP12seq21,
since in the estimation of tuning parameters it needs a simultaneous grid search
instead of two single searches. Therefore, DP12seq21 is chosen as the preferred
variant of DP12.

We are now ready to compare our main methods. The leftmost panel of Figure
7 shows box plots of the RMSE log ratios for the various methods compared to
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Figure 5: Box plots of RMSE log ratios for ordinary ridge regression (RR) com-
pared to P1 (reference). The mean value is printed above the box plot.
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Figure 6: Box plots of RMSE log ratios of various methods compared to
DP12seq21 (reference). Some values for the “Mean” and OLS methods lie above
the upper limit of the plot. Mean values are printed above each box plot.
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DP12seq21. First of all, no method is the best in all situations. However, note
that all box plots tend to lie above the zero line, which means that DP12seq21
is the best overall method. Further, the other methods are never very much
better than DP12seq21, whereas DP12seq21 sometimes clearly outperforms the
competitors. That DP12seq21 is better than “Mean” and OLS is not surprising.
Compared to P1, we see that DP12seq21 sometimes is clearly better. DP12seq21
can also often be clearly better than P2, which typical happens when there are
few observations (see Figure 8 below).

To investigate this further, the 65 combinations of data set and sample size n are
divided into two groups: The first group consists of those 32 combinations where
the best of the linear methods is better than the best of the nonlinear methods.
Most of these combinations are within the data sets that are characterized as
nearly linear, but some are within the nonlinear data sets with small n. The
second group consists of the remaining 33 combinations where the best of the
nonlinear methods is better than the best of the linear methods. The results are
shown in the middle and rightmost panels of Figure 7. Not surprisingly, most
of the combinations where DP12seq21 is clearly better than P2 are within the
group that are in favour of the linear methods. However, there are still some
combinations in the other group where DP12seq21 is considerably better than
P2, which means that there are situations where P12seq21 outperforms both P1
and P2.

OLS/P1 better than P2/DP2 P2/DP2 better than OLS/P1
0.55 0.31 0.15 0.09 0.36 0.14 -0.04 0.12 0.74 0.48 0.33 0.06
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1.0
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Mean oLs Pl P2 Mean oLs P1 P2 Mean oLs 2
compared to DP12seq21 compared to DP12seq21 compared to DP12seq21

Figure 7: Box plots of RMSE log ratios of various methods compared to
DP12seq21 (reference), for all combinations (leftmost panel), combinations in
favour of linear methods (middle panel) and combinations in favour of nonlinear
methods (rightmost panel). Some values for the “Mean” and OLS methods lie
above the upper limit of the plot. Mean values are printed above each box plot.

Figure 8 shows the RMSE log ratios in detail for selected methods, compared to
DP12seq21. If some values are outside the plot borders, they are set at the border.
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Figure 8: RMSE log ratios of various methods compared to DP12seq21 (ref-
erence). Values above upper border or below lower border are plotted at the
borders.
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For the nearly linear data sets (1 — 9), the tendency is that P1 is better than
DP12seq21 when there are few observations in the training data, and that the two
methods become almost equal when more data are available. For the nonlinear
data sets (10— 16) the picture is naturally more in favour of the nonlinear method
DP12seq21, and P1 is clearly outperformed when there are many data. The
comparison between P2 and DP12seq2l is very much in favour of the latter.
When there are few data available for estimation, DP12seq21 is

usually considerably better for both the nearly linear and the nonlinear data sets,
whereas the two methods become more similar when the number of observations
increases.

5 Discussion

The results of the previous section show that penalizing both slope and curvature
(DP12 or actually DP12seq21) is a very good strategy that outperforms in general
the ordinary approach in additive models where only curvature is penalized (P2).
The gain can be large when there are few data, whereas the potential loss seems
to be small for large training data sets. Compared to the linear ridge regres-
sion, DP12 can be worse in situations with few data. On the other hand, DP12
performs substantially better than ridge regression in situations with a nonlinear
response-predictor relationship and enough training data. Thus, DP12 seems to
be a good candidate as an overall prediction method. DP12 fits into the general
framework of Wahba (1990).

The permuted leave-k-out cross-validation procedure is more precise than the
usual leave-one-out and the non-permuted leave-k-out procedures.

DP12 will also be useful in situations where one is interested in the regression
curve u(x) rather than predicting new response values. The prediction error
y — f4(x) can be written as {y — p(x)} + {u(x) — i1(x)}, i.e. it includes the model
error [i(x) — u(x) as well as the unpredictable quantity y — u(x). Therefore, if one
method yields smaller prediction errors than another method, the improvement
in the model error will be even larger.

When the aim is to estimate the effect of each predictor variable on the response
one should be more careful, since the estimates will be biased towards 0, i.e. no
effect. However, sometimes the main focus is in estimating the effect of one or
a few predictor variables of interest, and controlling for the effect of the other
predictor variables. Then it may be useful to drop the penalization on the first
difference for that predictor variable(s) of interest, and keep penalization for the
others.

Finally, DP12 may certainly be applied to non-Gaussian responses as in general-
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ized additive models, by replacing the sum of squares by the log likelihood, in the
penalized fitting criterion as well as in the cross-validation. However, estimating
the tuning parameters may be more difficult for instance for binary responses,
if the number of observations is moderate. On the other hand, estimating the
s-functions may also be more difficult, thus increasing the need for penalizing
the first difference. The potential benefit of using DP12 in generalized additive
models has to be studied further.
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A Details on P-Splines

The vector & of coefficients that minimizes (10) is rather simple to compute.
First, the original design matrix X is transformed to a new nx(1 + r - p) design
matrix B = (1|B4|---|B,), where each B; is a nxr matrix with the values of
bi(z;) in the Ith column.

Then define the three matrices D¢, d = 0,1, 2 of dimension (r — d)xr: D° is the
identity matrix; D! has the value —1 in element (I,1), the value 1 in element (I, [+
1)forl=1,...,7—1, and is 0 elsewhere; D? is 1 in element (I,[), —2 in element
(I,14+1) and 1 in element (I,/+2) for l = 1,... ,7—1, and 0 elsewhere. Then the
three matrices P4, d = 0,1,2, are defined by blockdiag(0, D¥D4, ... DY D9),
where the D?D? is repeated p times.

Marx and Eilers (1998) notice that there is no unique solution to (10) because B
is singular, since the columns of each B; sum to 1. To overcome this, they add a
small penalization to the Oth order difference, i.e. the term ¢-3°%_ 77 | (a;)* is
added to (10), where ¢ is a small positive constant. The solution to this slightly
modified version of (10) is then

& = (B'B+JdP°++P'+)P?) " 'Bly. (15)

The role of § is only to ensure that the solution is unique, i.e. to ensure that
(B'B + 6P° + yP! + \P?) is invertible. This matrix is considered as invertible
if the ratio of the largest and smallest eigenvalue is less than 10°. If not, ¢ is
increased until this is fulfilled. The minimum value of § is 10™%.

The effective number of parameters in the model may be computed as the trace
of the so called hat matrix defined by

H = B(B'B+6P°++P!+\P?) !B (16)
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B Description of two air pollution data sets

Two data sets used in the simulation experiment are unpublished, but are avail-
able at StatLib (http://lib.stat.cmu/edu). They have been collected by The Nor-
wegian Public Roads Administration, and originate in a study where air pollution
at a road is related to traffic volume

and meteorological variables. The response variables consist of hourly values of
the logarithm of the concentration of PMj, (particles) in data set 13 and of NO,
in data set 14, measured at Alnabru in Oslo, Norway, between October 2001 and
August 2003. The predictor variables are the logarithm of the number of cars per
hour, temperature 2 meter above ground (degree C), wind speed (meters/second),
the temperature difference between 25 and 2 meters above ground (degree C),
wind direction (degrees between 0 and 360), hour of day and day number from
October 1. 2001. The observations in the two data sets are taken at different
time points, so their X-matrices are different.
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