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Abstract

We consideroptimization of computationalgrids for petroleumreserwir flow
simulations. In this contet grid quality is determinedoy two independenerror
sources Onthe onehandthereis alossof precisioncausedy upscaling of geo-
logical datafrom thefine geologicalgrid to the coarsecomputationagrid, andon
theotherhandtherearenumerical errorsinducedby a non-regularcomputational
grid. In this papemwe discusggriddingmethodsaddressingheseproblemswithin
therestrictionsof industry-standaréiow simulators.

Grid problems in reservoir simulations

The ability to predictthe performancef a petroleunreserwir is of immensam-
portancdor thepetroleumndustry For obviousreason®newouldliketo beable
to know asmuchaspossibleaboutproductionratesandtotal productionresulting
from differentproductionstrategyies. To this end,numericalresenoir simulation
hasgainedwide acceptancasan importantdecision-makingool. By reseroir
simulationwe meanthe procesf inferring the behaiour of arealreserwir from
the performanceof a mathematical model of that physicalsystem. For our pur-
posesthe modelis a setof partial differentialequationswith an appropriateset
of boundaryconditions which describeghe significantphysicalprocessegaking
placein thesystem.The processesf interestin petroleunreserwirs arebasically
fluid flow andchemicamasgransfer Themodelequationsnusttake into account
gravitational, capillary, andviscousforces,aswell asa reserwir descriptionwith
respecto permeabilityheterogeneitandoverallgeometry

This paperis concernedvith the problemof generatinggood computational
gridsfor reserwir simulations Herewe facethe particularproblemsconnectedo
heterogeneityandupscaling.



The problem of upscaling

Oneof the inputsto a full field numericalreserwir performancesimulatoris a
reservir description.Thisis amodeldescribinga possiblehree-dimensionahap
of thegeologyof thefield. Suchgeologicaimodelsareoftengeneratedby geosta-
tistical methods Thegeologyis modelledusingstochastisimulationconditioned
onwell obsenationsandotheravailabledata. Thereserwir descriptionis usually
generatedn afine scale,in partreflectingthe scaleof theinputinformationsuch
ascoredata. This is donein the belief thatthe geologicalmodel shouldcapture
asmuchaspossibleof the heterogeneitiefor accuratepredictionsof fluid flow.
However, to enablea manageableomputationthereserwir performanceimula-
tor hasto work on a muchcoarseigrid. As aresult,onemustbring thefine scale
permeabilitydataover to a coarserepresentationThis involvesan upscalingor
averagingprocess.This is very problematic sincepermeabilityis a non-additve
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Figurel: Reserwir dividedinto four disjunctsectiondy impermeabldarriers.

It is intuitively clearthatin problemsinvolving flow in porousmedia,aver-
agingcould leadto severeerrors. An exampleis depictedin Figure1: Imagine
aresenoir dividedinto four disjunctregionsby impermeablevalls (Fig. 1a). A
simpleaveragingprocessnto a coarsergrid would leadto a smeared-oupicture
wherethe no-flow barriershave becomdow-permeabldayers(Fig. 1b). Thus,in
this casethe coarsamodelis qualitatvely differentfrom thefine scalemodel.

The challengeis to upscalewith a minimal lossof precisionin the predicted
reservir performance Severalideashave beenconcevedto solwe this problem,
rangingfrom the direct pressuresolver methodof WarrenandPrice[1] to renor
malizationgroup techniqued2]. Differentmethodsyield differentresults,and
while onemethodis goodfor onetype of problemsanothemethodcanbe better
for another

However, by recognizingthat upscalinginvolvesboth the choiceof a coarse



grid and finding the upscaledvaluesof the geologicalparametre®n this grid,
onereadily seesthatupscalingcanbe simplifieda lot if the coarsegrid is asho-
mogeneouss possiblebeforeaveraging. Needlesgo say in the limit of perfect
homogeneitytheresultof averagingis unique!

Numerical errors

Griddingfor petroleurrsimulatorshasbeerrelatively conserative with mostcom-
mercialsimulatorsbeeingrestrictedto structuredgridswith limited local grid re-
finementand coarsening.Within this frameavork we considertwo distinct algo-
rithmsfor grid adaptionnamely grid adaptiorthrough

1. node-maement
2. localrefinemenbr coarsening

For both thesetechniquesgrids aligning to the geologicalstructuresvould gen-
erally produceratherdistortedgrids leadingto numericalerrorsin the equation
solversof the simulator Thecompleity of multiphaselow simulationimply that
the point at which numericalerrorsoutweighsthe advantageof adaptionto the
geologycanonly be determinedy numericalexperiments.

The numericalerrorsof a solutionof a setof differentialequationson a grid
arecausedy the truncationerrorsdueto the discretization.A non-uniformgrid
produceadditionaltermsin thetruncationerror. The numericalerrorandits prop-
agationdependon the differential equationsand the discretizationmethod. In
elliptic dominatedequationdik e the pressureazquation the local numericalerror
is closelyrelatedto the local truncationerror. This is not the casein hyperbolic
and parabolicproblems,like the saturationequation,wherethe numericalerror
propagategsasiebetweerregions. Yet, independentf the equatiortype, it is im-
portantto reducehelocaltruncationerrorasthisis thesourceof numericalerrors.
Thetruncationerroris given by higherorderderivativesmultiplied by powversof
thelocal grid length. Thusone canreducethe local truncationerrorsby usinga
finergrid, butin orderto getfull effectof asmalllocal grid length,it is necessary
to have somedistanceto largerblocks. Particularly, this is the caseif the grid is
non-structuredavith non-neighbouconnection$3].

Non-orthogonalitywill usuallyimply thatcrosstermsshouldbe addedin the
finite differenceequationsThe exactform of thesetermscanbefoundby replac-
ing partialderivativeswith covariant derivativesderivedfrom the metrictensorof
thecurvilinearcoordinatesystenmrepresentetdy the non-regulargrid. Neglecting
thesetermesinducedby a non-trivial metric (this is in factdonein mary finite
differencesimulators)may leadto errorsthat are independenbf the grid spac-
ing. However, evenwhenthe metric propertiesaretakeninto account,one must
be careful. Unlessthe metric propertiesare evaluatednumericallyand with the



samediscretizationformulaeas usedin the differential equations an additional
anddominantermoccursin thetruncationerror(seeRef.[4, p. 62]).

Elastic gridding

Elastic gridding is a variant of variationalgrid optimizationbasedon a length
functional(seee.qg.,Ref. [5]) with a non-Euclideammetrictensor In theincarna-
tion of Garciaetal. [6] thegrid is consideredo bea systenmof springsconnecting
neighbouringgrid verticesalongthe grid lines. The problemof grid optimization
is therebyreducedto a problemof elasticityandthe problemof translatinggrid
optimizationcriteriainto criteriafor assigningspringconstantso grid lines.
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Figure2: Elasticgrid

After having assignedialuesto the springconstant®f theelasticgrid, thegrid
vertex positionscanbe found by solving the equilibrium equation(Hooke’s law)
for theelasticsystem If we haveasystenof N verticesof which A/ aremoveable
in oneor moredirections thenthetotal elasticenegy E of thespringsystemis

E=3 Y Kyl#i) - #G) ®
J=1 iEN;
whereV; is the setof neighbourdo vertex j and K;; is the springconstanof a
springconnectingrertex i andj. Thevectorsz(i) andZ(j) arethepositionvectors
of thetwo grid vertices.
Thecorresponding// equilibriumvectorequationsre
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Thus,we have M vectorequationdor M vectorunknavns. This linear system
canbesolvedatoncefor all grid vertices.



Sincethe elasticsystemis attachedo the boundary it cannotcollapse,but
for non-cowvex domainsthe methodmeetswith the problemof folding. Thisis
thevery reasonwhy the lengthfunctionalis not often consideredisa standalone
grid generatof5]. We arecurrentlytestingwaysto solve thegrid folding problem
by refining the grid or by adding higherorder and non-neighouringcouplings.
However, for corvex domains the elasticmethodis very flexible androbust. By
lettingthe springconstant®efunctionsof somelocal measur®f inhomogeneities
(asdid Garciaet al. [6]), it is possibleto make the grid adaptto the geological
structures. This can be implementedby letting K;; be a linear function of the
varianceof sampledraluesn thegrid blocksadjacento agivenspring.In thiscase
K;; = K;;(¥), wherek runsover all verticesof the adjacenblocks. SinceK;;
is determinedrom sampledvaluesof the neighbouringdlocks,Eq. (2) becomes
very complicatechon-linearequation.lt canbe solvediteratively, but to corverge
one needsto put on somedampingmechanisnto stop the oscillationsthat are
inherentto ary elasticmembraneTwo dampingtechniquedave beentried. One
is the additive assignmenof springconstantproposedy Garciaetal. [6] where
K(n + 1) = K(n) + AK with thelatterterm beinga function of the variance.
In the othermethodK (n + 1) = 1 + AK, but the nodesare moved only in
thedirectionof the solutionandfor eachiterationthereis a reductionof the step
fraction. We have foundthatthe lastmethodgivesa somevhatsmoothemgrid.
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Figure3: Fine-scaleggeologicaimodel
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Figure4: Coarseegulargrid
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Figure5: Geology-adaptedrid



For simpleproblemsn two dimensionsthegrid adaptwell to geologicaktruc-
tures.Considerfor instancethe two-dimensionafield in Fig. 3. This modelcon-
sistof only two materials:onelow-permeablamediumshaovn asa black region
and a high-permeablenediumshavn asthe white stuff. Upscalingwith arith-
metic averagedeadsto the resultof Fig. 4. Clearly, a significantblurring has
occured Runninganelasticgrid optimizationprogramJeadsto thegrid of Fig. 5.
Measuredy its ability to representhefine-scalegeologicalstructure(Fig. 3), the
grid optimizedby meansof elasticgridding is a bettergrid thanthe regular grid.
However, oneseeghatboth orthogonalityandgrid smoothneshassuffered. To a
certaindegreethesemeasuresanbeimprovedby introduingappropriateliagonal
couplings(to controldeviationsfrom orthogonality)andnon-neighboucouplings
(to controlsmoothness).

Dim. | springs | neighb. cells | degr. of freedom
per cell | per spring per cell
1 1 1 2
2 4 2 8
3 12 4 24

Tablel: Dimension-dependemntlations

Unfortunately in threedimensionsawith realisticreseroir geologicaldataas
input, the methodfailed. Work is undervayto fully understanavhy this happens.
It is clear however, thatthe relation betweenspringsand cellsis far lessdirect
in threedimensionghanin oneor two. The geometricakelationsfor (logically
Cartesianglasticgridslistedin Tablel hintsatthis fact.

Contrast seeking gridding

Industry standardoil reserwir simulatorscan handlelocal refinementor coars-
eningwithin a structuredgrid. Onecouldthereforecreatea grid thatalignswell
with geologicaktructuredy puttinggrid cell boundariesithigh-contrassurfaces.
Thisideawasputforwardby Li, Cullick, andLake [7]. In theirschemepnestarts
outwith acoarsegrid. Within eachcoarsegrid cell amoving window searchegor
high contrastgthe moving window moveswith a steplengthgivenby alocal fine
grid), anddividesthe coarsecell if thevariancewithin thewindow is largerthana
cutoff value. The cutoff variances adjustedteratively until a predefinechumber
of grid cells hasbeenobtained.The grid cell sizesarelimited belov by the size
of thefine cellsandabove by the sizeof the coarsecells. This guaranteethatthe
sizesof thegrid cellsdo notbecomeoo non-uniform.

We have testeda variantof this methodin which one startsfrom a fine grid
anda coarsegrid. Within eachcoarsecell, all neighbouringfine cells with per
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Figure6: Locally coarsenedrid

meability contrastdelow a certainlimiting valuearememed(in orderto comply
with limitations of the simulatorsit is checled thatthe resultingcell is logically

Cartesian)For eachgroupof memgedcells,the upscalegermeabilityis computed
usingsimplemeanvalues,but sinceeachcoarsenedroupcover nearlyhomoge-
neousregions,the meanvalueis a goodrepresentationFigure 6 shavs theresult
of startingwith afine grid with the sameresolutionasthe geologicalgrid anda 10

by 10 coarsegrid anda limiting contrastof zero. Theresultinggrid has229 grid

cellsandresohesevery detail of the geologicalgrid.

Thismethodworksaswell in threedimensionasin two. Dueto therestriction
thatthecoarsenedell groupsshouldbelogically Cartesianthereis atendenyg for
astrongercoarseningn thedirectionthatis coarsenedirst (in Fig. 6 thegrid cells
tendto align with the z-direction). This canbe utilized to make the grid align
to the directionsof flowlines. One could thereforeimaginethat a simulationis
carriedout onthe coarsesgrid first, thusestablishinghe maindirectionsof flow,
beforechoosinghelocal orderof coarsening.

Sofarourexperiencas thatfor petroleunflow simulationsthegainof having
a computationalgrid that is well adaptedto the geology outweighsthe loss of
numericalaccuray by the non-uniformityof thegrid.



Conclusion

We have presentednddiscussedwo methodgor optimizationof petroleunflow
simulatorgrids. Elasticgriddingis verysimple,andin principlethemethodshould
bewell suitedfor weighingbetweemmutuallyconflictingoptimizationcriteriawith
highly non-linearand discontinouscostfunctions. However, for realisticthree-
dimensionalproblems the methoddoesnot seemto work. We think thatthis is
dueto thefactthatgrid line springshave a muchlessdirectcontrolovergrid cell
volumesin threedimensionghanin oneor two. In addition,the methodfacesthe
usualproblemsof grid folding in non-corvex domainsWorkis in progresso solve
thefolding problemby meansof higherorderandnon-neighbouringouplingsin
theelasticityequations.

Theothermethodwe consideredalls within the classof contrastseekinggrid
optimization. Sincethe simulatorusesa geologicalmodelasthe arenafor fluid
flow, we know in adwancethe exact positionsof all permeabilitycontrasts.One
couldarguethatthis informationshouldbe useddirectly. By startingwith a fine
grid and coarsenin homogeneousegionswe keepas much of the information
abouthigh-contrassurfacesas possible. The restrictionof a maximally coarse
grid senesasabackbonef structureto avoid thegrid to becomeoo non-uniform.
Thecontrastseekingmethodseemdo work verywell in all dimensions.
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