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Abstract

We consideroptimizationof computationalgrids for petroleumreservoir flow
simulations.In this context grid quality is determinedby two independenterror
sources.On theonehandthereis a lossof precisioncausedby upscaling of geo-
logicaldatafrom thefinegeologicalgrid to thecoarsercomputationalgrid, andon
theotherhandtherearenumerical errors inducedby a non-regularcomputational
grid. In thispaperwediscussgriddingmethodsaddressingtheseproblemswithin
therestrictionsof industry-standardflow simulators.

Grid problems in reservoir simulations

Theability to predicttheperformanceof a petroleumreservoir is of immenseim-
portancefor thepetroleumindustry. For obviousreasonsonewould liketo beable
to know asmuchaspossibleaboutproductionratesandtotal productionresulting
from differentproductionstrategies. To this end,numericalreservoir simulation
hasgainedwide acceptanceasan importantdecision-makingtool. By reservoir
simulationwemeantheprocessof inferringthebehaviour of a realreservoir from
the performanceof a mathematical model of that physicalsystem. For our pur-
poses,the modelis a setof partial differentialequationswith an appropriateset
of boundaryconditions,which describesthesignificantphysicalprocessestaking
placein thesystem.Theprocessesof interestin petroleumreservoirsarebasically
fluid flow andchemicalmasstransfer. Themodelequationsmusttakeinto account
gravitational,capillary, andviscousforces,aswell asa reservoir descriptionwith
respectto permeabilityheterogeneityandoverallgeometry.

This paperis concernedwith the problemof generatinggoodcomputational
gridsfor reservoir simulations.Herewefacetheparticularproblemsconnectedto
heterogeneityandupscaling.



The problem of upscaling

Oneof the inputs to a full field numericalreservoir performancesimulatoris a
reservoir description.This is amodeldescribingapossiblethree-dimensionalmap
of thegeologyof thefield. Suchgeologicalmodelsareoftengeneratedby geosta-
tisticalmethods.Thegeologyis modelledusingstochasticsimulationconditioned
onwell observationsandotheravailabledata.Thereservoir descriptionis usually
generatedon a fine scale,in partreflectingthescaleof theinput informationsuch
ascoredata. This is donein the belief that the geologicalmodelshouldcapture
asmuchaspossibleof the heterogeneitiesfor accuratepredictionsof fluid flow.
However, to enableamanageablecomputation,thereservoir performancesimula-
tor hasto work on a muchcoarsergrid. As a result,onemustbring thefine scale
permeabilitydataover to a coarserrepresentation.This involvesanupscalingor
averagingprocess.This is very problematic,sincepermeabilityis a non-additive
property.

aFinegrid b Coarsegrid

Figure1: Reservoir dividedinto four disjunctsectionsby impermeablebarriers.

It is intuitively clear that in problemsinvolving flow in porousmedia,aver-
agingcould leadto severeerrors. An exampleis depictedin Figure1: Imagine
a reservoir divided into four disjunctregionsby impermeablewalls (Fig. 1a). A
simpleaveragingprocessinto a coarsergrid would leadto a smeared-outpicture
wheretheno-flow barriershave becomelow-permeablelayers(Fig. 1b). Thus,in
thiscase,thecoarsemodelis qualitatively differentfrom thefinescalemodel.

Thechallengeis to upscalewith a minimal lossof precisionin thepredicted
reservoir performance.Several ideashave beenconceivedto solve this problem,
rangingfrom thedirectpressuresolver methodof WarrenandPrice[1] to renor-
malizationgroup techniques[2]. Different methodsyield different results,and
while onemethodis goodfor onetypeof problemsanothermethodcanbebetter
for another.

However, by recognizingthat upscalinginvolvesboth the choiceof a coarse
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grid and finding the upscaledvaluesof the geologicalparametreson this grid,
onereadilyseesthatupscalingcanbesimplifieda lot if thecoarsegrid is asho-
mogeneousaspossiblebeforeaveraging.Needlessto say, in the limit of perfect
homogeneity, theresultof averagingis unique!

Numerical errors

Griddingfor petroleumsimulatorshasbeenrelativelyconservativewith mostcom-
mercialsimulatorsbeeingrestrictedto structuredgridswith limited local grid re-
finementandcoarsening.Within this framework we considertwo distinct algo-
rithmsfor grid adaption,namely, grid adaptionthrough

1. node-movement

2. local refinementor coarsening

For both thesetechniques,gridsaligningto thegeologicalstructureswould gen-
erally produceratherdistortedgrids leadingto numericalerrorsin the equation
solversof thesimulator. Thecomplexity of multiphaseflow simulationimply that
the point at which numericalerrorsoutweighsthe advantageof adaptionto the
geologycanonly bedeterminedby numericalexperiments.

Thenumericalerrorsof a solutionof a setof differentialequationson a grid
arecausedby the truncationerrorsdueto thediscretization.A non-uniformgrid
produceadditionaltermsin thetruncationerror. Thenumericalerrorandits prop-
agationdependon the differential equationsand the discretizationmethod. In
elliptic dominatedequationslike thepressureequation,the local numericalerror
is closelyrelatedto the local truncationerror. This is not thecasein hyperbolic
andparabolicproblems,like the saturationequation,wherethe numericalerror
propagateseasierbetweenregions.Yet, independentof theequationtype,it is im-
portantto reducethelocaltruncationerrorasthis is thesourceof numericalerrors.
Thetruncationerror is givenby higher-orderderivativesmultiplied by powersof
the local grid length. Thusonecanreducethe local truncationerrorsby usinga
finergrid, but in orderto getfull effect of a small localgrid length,it is necessary
to have somedistanceto largerblocks. Particularly, this is thecaseif thegrid is
non-structuredwith non-neighbourconnections[3].

Non-orthogonalitywill usuallyimply thatcrosstermsshouldbeaddedin the
finite differenceequations.Theexactform of thesetermscanbefoundby replac-
ing partialderivativeswith covariant derivativesderivedfrom themetrictensorof
thecurvilinearcoordinatesystemrepresentedby thenon-regulargrid. Neglecting
thesetermesinducedby a non-trivial metric (this is in fact donein many finite
differencesimulators)may lead to errorsthat are independentof the grid spac-
ing. However, evenwhenthemetricpropertiesaretaken into account,onemust
be careful. Unlessthe metric propertiesareevaluatednumericallyandwith the
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samediscretizationformulaeasusedin the differentialequations,an additional
anddominanttermoccursin thetruncationerror(seeRef. [4, p. 62]).

Elastic gridding

Elastic gridding is a variant of variationalgrid optimizationbasedon a length
functional(seee.g.,Ref. [5]) with a non-Euclideanmetric tensor. In the incarna-
tion of Garciaetal. [6] thegrid is consideredto beasystemof springsconnecting
neighbouringgrid verticesalongthegrid lines. Theproblemof grid optimization
is therebyreducedto a problemof elasticityandthe problemof translatinggrid
optimizationcriteriainto criteriafor assigningspringconstantsto grid lines.
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Figure2: Elasticgrid

After having assignedvaluesto thespringconstantsof theelasticgrid, thegrid
vertex positionscanbefoundby solvingtheequilibriumequation(Hooke’s law)
for theelasticsystem.If wehaveasystemof

4
vertices,of which 5 aremoveable

in oneor moredirections,thenthetotalelasticenergy 6 of thespringsystemis
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where_ = is thesetof neighboursto vertex X and I B`= is thespringconstantof a
springconnectingvertex S andX . Thevectors NPWQDSUT and NPRQYXZT arethepositionvectors
of thetwo grid vertices.

Thecorresponding5 equilibriumvectorequationsare

a 6a NPAQbSUT 7
;<

=cCFEedYBgf I BK=
Q NP B V NP = T 7ihkj (2)

Thus,we have 5 vectorequationsfor 5 vectorunknowns. This linear system
canbesolvedatoncefor all grid vertices.
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Sincethe elasticsystemis attachedto the boundary, it cannotcollapse,but
for non-convex domainsthe methodmeetswith the problemof folding. This is
thevery reasonwhy thelengthfunctionalis not oftenconsideredasa standalone
grid generator[5]. Wearecurrentlytestingwaysto solvethegrid folding problem
by refining the grid or by addinghigher-order and non-neighouringcouplings.
However, for convex domains,theelasticmethodis very flexible androbust. By
lettingthespringconstantsbefunctionsof somelocalmeasureof inhomogeneities
(asdid Garciaet al. [6]), it is possibleto make the grid adaptto the geological
structures.This can be implementedby letting I B`= be a linear function of the
varianceof sampledvaluesin thegridblocksadjacenttoagivenspring.In thiscase

I BK= 7 I BK= Q NPmlnT , where o runsover all verticesof theadjacentblocks. Since I B`=is determinedfrom sampledvaluesof theneighbouringblocks,Eq.(2) becomesa
verycomplicatednon-linearequation.It canbesolvediteratively, but to converge
one needsto put on somedampingmechanismto stop the oscillationsthat are
inherentto any elasticmembrane.Two dampingtechniqueshave beentried. One
is theadditiveassignmentof springconstantsproposedby Garciaet al. [6] where

I QDprq 9 T 7 I QDpsTtqvu I with the latter termbeinga functionof the variance.
In the other method I Qbpwq 9 T 7 9 qxu I , but the nodesare moved only in
thedirectionof thesolutionandfor eachiterationthereis a reductionof thestep
fraction.We havefoundthatthelastmethodgivesa somewhatsmoothergrid.

Figure3: Fine-scalegeologicalmodel
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Figure4: Coarseregulargrid

Figure5: Geology-adaptedgrid
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For simpleproblemsin two dimensions,thegrid adaptwell to geologicalstruc-
tures.Considerfor instance,thetwo-dimensionalfield in Fig. 3. Thismodelcon-
sist of only two materials:onelow-permeablemediumshown asa black region
anda high-permeablemediumshown as the white stuff. Upscalingwith arith-
metic averagesleadsto the result of Fig. 4. Clearly, a significantblurring has
occured.Runninganelasticgrid optimizationprogram,leadsto thegrid of Fig. 5.
Measuredby its ability to representthefine-scalegeologicalstructure(Fig. 3), the
grid optimizedby meansof elasticgridding is a bettergrid thantheregulargrid.
However, oneseesthatbothorthogonalityandgrid smoothnesshassuffered.To a
certaindegreethesemeasurescanbeimprovedby introduingappropriatediagonal
couplings(to controldeviationsfrom orthogonality)andnon-neighbourcouplings
(to controlsmoothness).

Dim. springs neighb. cells degr. of freedom
per cell per spring per cell

1 1 1 2
2 4 2 8
3 12 4 24

Table1: Dimension-dependentrelations

Unfortunately, in threedimensionswith realisticreservoir geologicaldataas
input, themethodfailed.Work is underwayto fully understandwhy this happens.
It is clear, however, that the relationbetweenspringsandcells is far lessdirect
in threedimensionsthanin oneor two. The geometricalrelationsfor (logically
Cartesian)elasticgridslistedin Table1 hintsat this fact.

Contrast seeking gridding

Industrystandardoil reservoir simulatorscan handlelocal refinementor coars-
eningwithin a structuredgrid. Onecould thereforecreatea grid thatalignswell
with geologicalstructuresby puttinggrid cell boundariesathigh-contrastsurfaces.
This ideawasput forwardby Li, Cullick, andLake [7]. In their schemeonestarts
outwith acoarsegrid. Within eachcoarsegrid cell amoving window searchesfor
highcontrasts(themoving window moveswith a steplengthgivenby a local fine
grid), anddividesthecoarsecell if thevariancewithin thewindow is largerthana
cutoff value.Thecutoff varianceis adjustediteratively until a predefinednumber
of grid cellshasbeenobtained.Thegrid cell sizesarelimited below by thesize
of thefine cellsandaboveby thesizeof thecoarsecells.This guaranteesthatthe
sizesof thegrid cellsdonotbecometoonon-uniform.

We have testeda variantof this methodin which onestartsfrom a fine grid
anda coarsegrid. Within eachcoarsecell, all neighbouringfine cells with per-
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Figure6: Locally coarsenedgrid

meabilitycontrastsbelow a certainlimiting valuearemerged(in orderto comply
with limitationsof the simulatorsit is checked that the resultingcell is logically
Cartesian).For eachgroupof mergedcells,theupscaledpermeabilityis computed
usingsimplemeanvalues,but sinceeachcoarsenedgroupcover nearlyhomoge-
neousregions,themeanvalueis a goodrepresentation.Figure6 shows theresult
of startingwith afinegrid with thesameresolutionasthegeologicalgrid anda

9 h
by

9 h coarsegrid anda limiting contrastof zero. Theresultinggrid has229grid
cellsandresolveseverydetailof thegeologicalgrid.

Thismethodworksaswell in threedimensionsasin two. Dueto therestriction
thatthecoarsenedcell groupsshouldbelogically Cartesian,thereis atendency for
astrongercoarseningin thedirectionthatis coarsenedfirst (in Fig. 6 thegrid cells
tend to align with the P -direction). This canbe utilized to make the grid align
to the directionsof flowlines. Onecould thereforeimaginethat a simulationis
carriedout on thecoarsestgrid first, thusestablishingthemaindirectionsof flow,
beforechoosingthelocal orderof coarsening.

Sofarourexperienceis thatfor petroleumflow simulations,thegainof having
a computationalgrid that is well adaptedto the geologyoutweighsthe loss of
numericalaccuracy by thenon-uniformityof thegrid.
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Conclusion

We havepresentedanddiscussedtwo methodsfor optimizationof petroleumflow
simulatorgrids.Elasticgriddingis verysimple,andin principlethemethodshould
bewell suitedfor weighingbetweenmutuallyconflictingoptimizationcriteriawith
highly non-linearanddiscontinouscost functions. However, for realistic three-
dimensionalproblems,the methoddoesnot seemto work. We think that this is
dueto thefactthatgrid line springshave a muchlessdirectcontrolovergrid cell
volumesin threedimensionsthanin oneor two. In addition,themethodfacesthe
usualproblemsof grid folding in non-convexdomains.Work is in progresstosolve
thefolding problemby meansof higher-orderandnon-neighbouringcouplingsin
theelasticityequations.

Theothermethodweconsideredfallswithin theclassof contrastseekinggrid
optimization. Sincethe simulatorusesa geologicalmodelasthe arenafor fluid
flow, we know in advancethe exact positionsof all permeabilitycontrasts.One
couldarguethat this informationshouldbeuseddirectly. By startingwith a fine
grid andcoarsenin homogeneousregionswe keepas much of the information
abouthigh-contrastsurfacesaspossible. The restrictionof a maximally coarse
grid servesasabackboneof structureto avoid thegrid to becometoonon-uniform.
Thecontrastseekingmethodseemsto work verywell in all dimensions.
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