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Abstract

The second order properties of a two—dimensional non—divergent
Gaussian random vector field are reviewed. The approach is based on
a random scalar stream function, thereby avoiding the consideration
of tensor properties common in the literature of turbulence theory.
Thus it may be well suited as an introduction to random vector fields
for researchers working with geostatistics and applied statistics.
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1 Introduction

This report was prepared as part of a case study within the project “Toolkits
in Industrial Mathematics”, funded by the Research Council of Norway. The
purpose of this report is to review the second—order properties of a two—
dimensional (2-D) non-divergent Gaussian random vector field. A non-
divergent vector field in two—dimensions (2-D) can be effectively described
in terms of an underlying scalar stream function. This makes the 2-D case
particularly easy to work with, thus making it a simple starting point for
understanding random vector fields.

The motivation for the present work was to find a realistic class of random ve-
locity fields to be used as input for a stochastic advection—diffusion equation.
Random velocity fields occur in applications such as statistical modeling of
wind velocity, ocean currents and flow in porous media. These velocity fields
are typically non—divergent, and in many important examples the velocity
field is approximately 2-D. The results presented here will also have rele-
vance to problems like spatial interpolation of velocity data and stochastic
simulation of non—-divergent velocity fields.

This report is written for readers not familiar with the general theory of
random vector fields, as presented in classical works of Kolmogorov (1941)
Yaglom (1962), Yaglom (1987) or with the statistical theory of turbulence
Batchelor (1953), Panchev (1971), Tatarskii (1971) and others. Some basic
concepts for Gaussian random scalar fields are reviewed in Section 2. The ap-
propriate relations for 2-D non—divergent random vector fields are developed
in Section 3. In Section 5, the main results are summed up. Extension to
random fields with homogeneous increments are discussed in Appendix A.1.
In Appendix A.2, it is proved that a non—divergent homogeneous random
vector field is uncorrelated with any homogeneous and isotropic scalar field.



2 Gaussian Random Scalar Fields

In this section concepts of homogeneity and isotropy for a random field will
be introduced. Also, the mean square (m.s.) derivative of a random field will
be defined and its relation to the covariance function will be explained.

Consider a spatial random field ¥(x), where @ = x¢ + yj is the location

within some geographic region. The notation for the first two moments of
the U—field is:

E{¥(z)} = u(x) (1)
Cov {U(z'), U(z")} = Fy(a, a"). 2)

Analogous to the definition of “stationarity” for a stochastic process, the
scalar field W is homogeneous if it has a constant mean p and the covariance
function only depends on the separating vector r = &' — x”:

E{¥(z)} = p,
Cov {¥(z'), ¥(z")} = Fyu(r).

A homogeneous scalar field ¥ is isotropic if the covariance function only
depends on the distance r = ||r|| between locations &’ and z":

Cov {¥(z"), ¥(z")} = Fu(r).

The mean square (m.s.) partial derivative of U(z) in direction ¢ is defined
by the m.s. limit
0V (x) Lim. Y(x+ hi)— ¥(x)

o = h—0 h y (3)

or, equivalently, by the “ordinary” limit

,lg% o 8‘1(;5::) B \II(a:+h';ZL) - U(x) 12 _ .

with a similar expression for the mean square (m.s.) partial derivative of
¥(x) in direction j.

By using the definitions (2) and (3), the covariances between the m.s.—
derivatives of ¥(x) can be expressed
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Cov { ox' ' Oz b= oz Oz
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Thus, the covariance between the m.s. derivatives can be expressed by the
ordinary derivatives of the covariance function Fy. If ¥(x) is homogeneous
these expressions can be simplified by using the chain rule for partial deriva-
tives. The result is

ov(x) 0¥(x") , = 0*Fy(r)

Covi 5w " 1 T " ae
oU(a!) OU(z") ,  O*Fy(r)

Cov { o oy } = or2 (4)
oU(x') OU(z") . 02Fy(r)

Covi e oy 1 = drg 0r,

where 7 = 7,2 + ryj. For a homogeneous field it is often convenient to
introduce polar coordinates

ry = 1 cosf

ry = T sinf

By using the chain rule for partial derivatives the following relationships can
be worked out:
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2F °F. 2F, 2F
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F, F,
_3 Y sinf + OFy cosf
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For a homogeneous and isotropic random field, the derivatives with respect
to 0 will be zero. The above results will be useful in the next section, where
the second order moment for a vector field derived from a homogeneous and
isotropic random field will be discussed. Analogous results for a situation

where the homogeneity and isotropy assumptions are relaxed are given in
Appendix A.1.



3 Non—-divergent Random Vector Fields

In this section, we will show how to derive a non—divergent gaussian random
vector field from a gaussian random scalar field.

Consider a homogeneous spatial random field ¥(x) as defined in Section 2,
and define a spatial random vector field V(x) = U(x) ¢ + V(x) j with
components

Then it is easily verified that this vector field has zero divergence:
V-V = 0.

Therefore ¥(x) can be thought of as a random stream function and V (x) as a
random velocity field of an incompressible fluid (see Tritton (1977)). Denote
the covariance functions for the vector components by Fy,(r) and Fy.(7),
and the cross—covariance by Fy (7). The goal is to express these covariances
in terms of the covariance function Fy(r) of the homogeneous and isotropic
stream function ¥(x). For a homogeneous stream function the relations (4)
give

_ 0PFy(r)
Foolr) = - or2
O?F,(r
Ftr) = —2080) ©
0?Fy(r)
Fyv = .
(r) Org Ory

These relationships can be reexpressed in polar coordinates. Denote by V,

and V, the components of V' parallel and perpendicular to r, respectively.
Then

Vi(x) = U(x) cos@+V(x) sinf
Vo(®) = —U(z) sinf + V(x) cosb.
Denote the longitudinal, transversal and cross—covariances for these compo-

nents by Fy,v,, Fy,v,, and Fy,y,, respectively. By using (5) these covariances
can be expressed

Four9) = 558 7o
9°F,
FVan (r,0) = — o2 (7)
10%F, 10F,
Fan(r0) = 550 "7 08
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The relations (7) are valid for a homogeneous W¥-field. So far, only the
homogeneity condition has been used. For a homogeneous and isotropic
random W—field the covariance is a function of r only, so the above expressions
simplify to

1dF,
Fy.v, (T) = T d:

d?F,
FVeVe (T) = - dT; (8)
Fyv,(r) = 0,

where d/dr denotes “ordinary” derivatives. Equations (8) are the general re-
lations for the covariances of the longitudinal and transversal components of
a 2-D non-divergent vector field. We see that the longitudinal and transver-
sal components of this vector field are uncorrelated. Next, we would like to
introduce isotropy in the expressions for the U and V' components of the
V—field. Combining equations (8) and (5) gives

*Fy ., 0?F, ) ’F, )
Fy,(r) = — or2 sin“ 6 + 2 ar.or, cosf sinf — 87‘3 cos” 0
Fyyv(r) = — or2 cos“ @ — 2 ar.or, cosf sinf — o2 sin”
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0 = —((9 _9 ) cos@ sinf + 0 (cos® f — sin® )
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We substitute Fyy, Fyv and Fyy from (6) and solve these three equations for
F,u, Fy and Fyy. The result is

FUU(T'a 9) = FVTVT (7') cos? 6 + FVaVe (T) sin’ 6
Fyy(r,0) = F, . (r) sin?60 + Fy,v, () cos? 0 (9)

Fyy(r,0) = (Fyv,(r) — Fyy,(r)) cosf sinf

rTvr

Unlike the covariance for a homogeneous and isotropic scalar field, the covari-
ances for the Vfield will depend on the direction # of the separating vector
r. The above formulae can be put into matrix form, denote the covariance
matrix of the V—field by Fy (r,6). Then the above results can be written

cos’f  cosf sinf )

Fy(r,0) = (Fyv(r) - Fryvg (7)) cosf sinf sin” §
+ Fy

ove (T) ( é (1) )



or more compactly

Fo(1,0) = (Fu, () = o (1)) —57v' + Fo(r) T, (10)

7 being the identity matrix. Equation (10) is the general form of the covari-
ance matrix of a homogeneous and isotropic random vector field in 2-D. An
alternative derivation based on tensor calculus is given in Batchelor (1953).

From (8) it is seen that the longitudinal and transversal covariances F,,,
and Fy,,, are related through the first order differential equation

d
FVaVe = dr (T FVTVT)’ (11)

which is a 2-D version of the so—called Karman formula (see Panchev (1971)
or Tatarskii (1971)). The isotropy condition (10) and the non-divergence
condition (11) can be combined into

d 1 d

Fy(r,0) = (Fy,v,(r) — dr (r Fww))ﬁr"", + ar (r Fv,v,) I, (12)

thereby expressing the covariance matrix of the V—field in terms of the lon-
gitudinal covariance only.

Substituting the longitudinal and transversal covariances from (8) in (9) gives

1dF. d?F,

FUU(T,H) = —; d’[‘q’ COSQH—F Sin29
1dF, d*F,

Foy(r,0) = % sin? g — 0 cos? 0 (13)
1dF, ’F

Fy (r,0) = —( dfy _d *) cosf sinf

r dr dr?

This can be written on matrix form

1dF d’F. 1 d’F.
Fy(r,0) = — <; dr\l’ — dTQ\I’) —rr’ — hd

72 dr?
Equation (12) or (14) can be taken as the definition of a (2-D) non—divergent
homogeneous and isotropic random vector field. For Fy, to exist (i.e. for V'
to be homogeneous and isotropic), it is enough that W(x) has homogeneous
and isotropic increments, see Appendix A.1.

T (14)

In conclusion, we have seen that a gaussian homogeneous and isotropic ran-
dom vector field is specified by specifying its mean (a constant vector) and,
either a differentiable covariance function for the longitudinal component, or
a twice differentiable variogram function for the stream function.
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4 Example

The above analysis provides an easy way of calculating the covariance ma-
trix for a non—divergent 2-D vector field given a twice differentiable homo-
geneous and isotropic scalar covariance function. As an example, consider a
homogeneous and isotropic stream function with “gaussian” type covariance
function: ,

Fo(r) = c,e? () = ¢ p(r),

for ¢, and a constants. The longitudinal and transversal covariance functions
are easily computed

1dF,
FVrV'r (T) = _; dT = G IO(T)
d’F, 7\ 2
FVng (’r) = - dT2 = CZ (1 - 6 (a) ) p(/r)’

with ¢, = 6/a? ¢,. The covariance functions F,,,, and Fy,, are shown in
Figure 1 for c, = 1, a = 1. It is seen that the transversal covariance is negative
at certain distances. This can be seen qualitatively from the expression for
Fy,y, by the following simple argument: Fy, y, is the negative curvature of
F,. All covariance functions Fy decaying smoothly to zero with increasing r
will necessarily have positive curvature for some r, thereby giving negative
Fy,y, for this r. Physically, the qualitative properties of Fy,,, and Fy , are
related to the tendency of non-divergent flow to form eddies.

Using (13), the covariances in a cartesian frame of reference are readily ob-

tained:
r 2
Foo = o (1 —6 <;> )p(r),

o\ 2
Fv = ¢ (1_6(3) )p("")a
r,T
F,, = ¢6 a;p(r).
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Figure 1: Longitudinal and transversal components of the “gaussian” type
covariance with parameters ¢, =1, a = 1.
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5 Conclusions

We have derived expressions for the second moment of a 2-D non—divergent
gaussian random vector field from an isotropic random stream function. It
is seen that a homogeneous and isotropic covariance function for a random
vector field can involve directions, unlike the scalar field case.

We have also shown that a 2-D non—divergent gaussian homogeneous random
vector field can be specified by

e its first moment (a constant vector)
e its second moment, a 2 X 2 covariance matrix in terms of

— either a twice differentiable homogeneous and isotropic variogram
function

1dF,  d*Fy) 1 d*Fy
Fo(r,0) = — (=52 - —rr - I
v(r0) (7‘ dr arz ) 2’ dr?
— or a differentiable homogeneous and isotropic covariance function

d 1 d
Fy(r,0) = (Fy,y,(r) — dr (r FVrVr))T_QTTI + dr (r Fyv,v,) I.

In a similar way, a 2-D non-divergent gaussian non-homogeneous random
vector field with homogeneous increments can be specified by (see the ap-
pendix)

e its first moment
e its second moment, a 2 X 2 variogram matrix expressed in terms of

— either a twice differentiable homogeneous and isotropic generalized
covariance function

— or a differentiable homogeneous and isotropic variogram function.
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A Appendix

A.1 Random fields with homogeneous and isotropic
increments

For a spatial random field ¥(x) define the variogram function (also known
as the structure function) Dy

Dy(z',x2") = Var {¥(z') — ¥(z")}.

The random field has homogeneous increments if
Dy(z',2") = Dy(r),

for r = ¢’ — 2”. A random field ¥(x) has homogeneous and isotropic incre-
ments if

Dy(r) = Dy(r)

A homogeneous and isotropic random field also has homogeneous and
isotropic increments. For a homogeneous and isotropic random scalar field
¥(x), the covariance and variogram functions are related through

Dy(r) = 2[F(0) — Fu(r)]

Calculations analogous to what has been shown for a homogeneous and
isotropic stream function result in similar relationships for the vector field de-
rived from a stream function ¥ with homogeneous and isotropic increments.
Denote by Dy (r) the variogram matriz (structure matrix) of the vector field
V() with homogeneous and isotropic increments. It is on the form

1
Dy (r,0) = (Dy,v, (r) — Dy,y,(r)) T—er' + Dy,y,(r) T,
where the longitudinal and transversal variogram functions are related
through
d
DVng =7 (T DVTVT)

dr
In terms of Dy, ,, only:

d 1 d
Dy (r,0) = (Dy,v,(r) — dr (r DVTVT))T_Q"""", + dr (r Dy,v,) I, (15)
or in terms of Dgonly
1dD, d’°D,\ 1 d’D,
D =—|= — —rr' — T 1
v(r,0) (r dr dr? ) r2 " dr? (16)
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Equation (15) or (16) can be taken as the definition of a (2-D) non-divergent
random vector field with homogeneous and isotropic increments. For D,
to exist (i.e. for V' to have homogeneous and isotropic increments), it is
sufficient that W(x) is an intrinsic random field of order 1 (see Matheron
(1973), Christakos (1992)). In this case, D, can be specified by a twice
differentiable generalized covariance function of order 1.

For a homogeneous and isotropic vector field V' (x) the covariance and vari-
ogram matrices are related through

Dy(r) =2[F(0) — Fy(r)]

A.2 The covariance with a homogeneous, isotropic
scalar field

Denote by V(z) a homogeneous, isotropic and non-divergent vector field
and denote by A(x) a homogeneous, isotropic scalar field. It will be shown
that V' (x) and A(x) are uncorrelated.

By isotropy and the properties of a first order tensor (see Batchelor (1953)),
the covariance between V' (x) and A(z) must be on the form

1
Cov {V(2), A(z")} = = »r C(r), (17)
r
for r = ' — " and r = ||r||. The divergence of this covariance vector with
respect to &’ is

V- Cov {V ('), A(")} =

, A(2")} + Cov {axgg'), A"} =

Cov {V, -V(z'), A(z")} = 0,

oU (x')

Cov { 5

because V' (x) is non—divergent.

On the other hand, the divergence of the right hand side of (17) is

Ve - [1 r C(r)] =

c(r) me-(%r) + (%r)ijmIC(r) _
Lo + % - %%[7«0(7«)1
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Combining the above results give

1d
This means that the covariance function C(r) must be on the form

constant
o) = 2228

r

For C(0) to be finite, this constant must be zero. This implies
Cov {V ('), A(z")} = 0.

In particular, the stream function and its derived velocity field will be un-
correlated.
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