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1 Introduction

When oil companies face development prospects of an oil field, they typically
base their decisions on the expected Net Present Value (NPV) of the project. In or-
der to obtain a good estimate of this number many sources of uncertainty should
be taken into account. The most important contributors to the uncertainty are:

· Uncertainty about the available amount of resources, i.e. how much oil or
gas can be produced from the field.

· Uncertainty about the oil and gas price, i.e. how much profit can be made
from production.

· Uncertainty about the investment cost (CAPEX), i.e. how much will we have
to invest, mainly before production can begin (facilities, drilling).

· Uncertainty about the operating costs (OPEX), i.e. how much will it cost to
run the field during the production phases.

Traditional valuing techniques like the discounted cash flow method or Net Present
Value (NPV) calculations, possess several weaknesses that make them subop-
timal for valuing an oil field development project. The sources of uncertainty
listed above can not be incorporated adequately using these valuation models.
Another important weakness is related to management’s ability to respond to
the evolution of these uncertainties through decisions. The traditional valuation
techniques are not able to take into account how these decisions affect the project
value. Management may for example postpone a project if for example oil prices
are particularly low. During a project it may be of interest to temporarily halt the
project when needed while waiting for conditions to improve. Operational de-
cisions such as platform capacity, purchase of processing equipment and tuning
of the number of production wells are also difficult to incorporate using tradi-
tional techniques. Management may also at any time, at least in theory, terminate
the project if it considers that to be optimal. This managerial flexibility represents
options that the company holds. In contrast to financial options they can not be
traded on a stock exchange. Hence they are called real options.

During the past decades there have been several attempts to develop mathemat-
ical, statistical and economic models to value real options. Early contributions
were to a large extent analytical in nature. These contribution utilize the frame-
work of option pricing theory introduced by Black and Scholes (1973). We be-
gin our summary by highlighting the most important features of the analytical
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approaches. It turned out to be hard to find explicit solutions to the problems
stated in these analytical approaches. As a consequence academics and practi-
tioners were forced to simplify the models to a level at which they lost relevance
to real-world decision makers. As a response to this development, numerical ap-
proaches became increasingly popular and in demand. The evolution of the com-
puter and software industry also played an important part in this development.
In this summary we will treat the two most important and relevant classes of
numerical approaches that have evolved in the real options literature. The two
classes treated are:

· Stochastic programming. Two techniques will be treated, namely stochastic
dynamic programming and scenario aggregation.

· Hybrid techniques. Five techniques will be treated; random tree methods,
stochastic mesh methods, regression methods, parametric methods and state-
space partition methods.

2 Analytical approaches

2.1 General framework
Option pricing theory and contingent claims analysis offers an efficient frame-
work for the valuation of corporate assets and liabilities. Although the option
pricing models developed by Black and Scholes (1973) are founded on many
simplifying and unrealistic assumptions, option pricing theory has become in-
creasingly popular after these papers were published. Black and Scholes designed
their option pricing models for the valuation of tradable assets. The real option
community has applied the framework of Black and Scholes on real investments
treating them as real assets, although these assets are not tradable.

Black and Scholes (1973) constructed a portfolio of tradable assets that replicated
the risk profile of the instrument of interest. In this way they constructed a portfo-
lio that was riskless for a short period of time. Dixit and Pindyck (1994) adopted
this framework and assumed the existence of spanning assets; i.e. they assumed
that there exits a "complete" market where all project cash flows may be repli-
cated by trading securities in the market. More formally, the securities market is
complete if, for every project c there exists a replicating strategy β, that generates
cash flows which exactly match the project’s future cash flows at all times and
in all states. If this assumption is realistic, it is thus possible to hedge all project
cash flows for a short period of time by purchasing tradable assets in the market.
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Then the portfolio of interest also becomes risk-less for a short period of time,
analogous to the risk-less portfolio proposed by Black and Scholes.

The crucial question then becomes whether such spanning assets can be found
or not. The answer to this question is closely related to the level of analysis.
Boehren and Ekern (1985) presents six levels for the analysis of an oil field de-
velopment project. Figure 1 illustrates the investment analysis hierarchy in the
article of Boehren and Ekern (1985). The arrow in figure 1 symbolizes the in-

Figure 1. Investment analysis levels as presented in Boehren and Ekern (1985)

creasing multitude of non-diversifiable risks at the given analysis level. Thus,
project level possesses the greatest multitude of non-diversifiable risks, while na-
tional community level contains the second smallest amount of non-diversifiable
risks in this framework. At project level, the uncertainty associated with the reser-
voir volume, investment costs and maintenance costs represent risky cash flows
that cannot be mirrored by tradable assets in the market. At national community
level, however, it may be reasonable to assume that a well diversified portfolio of
projects and companies and trades only contains market risk. Since we are mainly
concerned with the project level, the assumption of spanning assets is not realistic
for our purpose. Option theory in its purest form will thus not suffice to model the
real options realistically since reservoir uncertainty is such an important element
in our analysis.

2.2 Previous contributions
Many contributions have focused on only one source of uncertainty; typically
uncertainty in the price of oil or gas. The price uncertainty is often modelled
using a Geometric Brownian Motion (GMB). In the early contributions the price
is often modelled using a one-factor model. In later contributions these one-factor
model are typically refined to more complex two- and three-factor models. The
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number of factors here refers to the dimension of the response variable vector. A
one-factor model typically models only the spot price; i.e. the dimension of the
response variable vector is 1. A two-factor model typically models the spot and
for example the convenience yield; i.e. the dimension of the response variable
vector is 2.

The reservoir volume is often assumed to be deterministic. In some cases a very
simple reservoir model is applied. In application 2.3.1 below we see an example
of such a simple model; reservoir depletion is here assumed to follow an expo-
nential decline. Some contributions model the reservoir as a Geometric Brownian
Motion, see i.e. Pindyck (1980) or Ekern and Stensland (1993). This is not an ad-
equate model for many reasons. The most important reason is that, under GMB
assumptions, the variable changes value by the simple passage of time, whereas
in most real life application our knowledge of the reservoir changes only by exer-
cising a learning option. Increased knowledge of important reservoir parameters
such as porosity and permeability is gained by exercising learning options such
as the drilling of exploration wells or shooting new seismic. The technical uncer-
tainty represented in the reservoir volume uncertainty is thus correctly indexed
by events, not by time units as in GMB and many other stochastic processes.

2.3 Applications of analytical approaches
A number of applications of analytical approaches are available. Our main focus
is to model risk at project level. Bearing that in mind, the contributions in the
literature most relevant will be summarized below. Other contributions related
to oil field development projects are Bjerksund and Ekern (1990), Ekern (1988),
McDonald and Siegel (1986), Pickles and Smith (1993) and Pindyck (1980).

2.3.1 Evaluating natural resource investments
Brennan and Schwartz (1985) present one of the earliest contributions in eval-
uating natural resource investments. In their paper they develop a general one-
factor model for valuating a copper mine. Making some simplifying assumptions,
a specialized version of the general model is presented. This specialized version
contains a closed-form solution of the valuation problem. A numerical example
based on the general model is also presented. The finite difference method is ap-
plied in the numerical example. For a thorough explanation of the method of
finite differences, see Jonsbraaten (1998). Further, the optimal timing of this natu-
ral resource investment is discussed. Finally, the problems of pricing fixed price
long term contracts using this methodology are briefly discussed.
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2.3.2 Option valuation of claims on real assets. The case of offshore petroleum
leases

Paddock et al. (1988) model an offshore petroleum lease as a three stage process
where exploration, development and extraction represent the stages. If the ex-
ploration results are promising, the firm may proceed to the development stage,
where equipment such as platforms and drilling wells is put in place to extract the
oil. In this stage an undeveloped reserve is turned into a developed reserve. These
three stages consequentially form a nested sets of options; the offshore petroleum
lease is thus valued as a compound option.

The extraction stage is valued first. Assuming that there exists a petroleum re-
serve market equilibrium, the value of a producing developed reserve is mod-
elled as a Geometric Brownian Motion

dV

V
= αvdt+ σvdzv,

where αv is the expected rate of capital gain, σv is the instantaneous standard
deviation of the rate return per unit time and dzv is an increment to a Wiener
process. The production from a developed reserve is assumed to follow an expo-
nential decline

dBt = −γBtdt.

Secondly, the development stage is valued. At any point in time the current per
unit value of undeveloped reserve X(V, T − t;D(Q)) will be a function of the
per unit value of a developed reserve V and per unit development cost D(Q). By
current we here emphasize that the value of the developed reserve will fluctuate
as the commodity price fluctuates. T denotes the expiration date and t denotes
the current date; consequently T − t refers to the remaining depletion time of the
mine. A differential equation is introduced to find the value of the undeveloped
reserve, X(V, T − t;D(Q)):

∂X

∂t
= rX − (r − δ)

∂X

∂V
− 1

2
σ2
vV

2∂
2X

∂V 2
, (2.3.1)

where r is the riskfree rate and δ is the payout rate of the developed reserve.

Finally, the exploration stage is valued. The exploration stage can be represented
as the option to spend the expected exploration costsE∗, and receive the expected
value of undeveloped reserves,

X∗(V ) =

∫
QX(V, T − t;D(Q))dF (Q),

whereQ represents the random quantity of recoverable hydrocarbons in the reser-
voir and F (Q) denotes the probability distribution over the quantity of hydrocar-
bons. By using equation 2.3.1 and by assuming that development commences
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immediately after the successful exploration has occurred, an expression for the
current value of an option to receive a unit of developed reserves by paying the
per unit combined expected exploration and development costs may be derived.

The final part of the paper presents some empirical results. The option valuation
approach is used to estimate the market value of selected petroleum tracts (water
expanses). The tracts were awarded to the oil industry from the Government in
a federal lease sale and consist of 21 leases. The option valuation estimates are
then compared with estimates using the Discounted Cash flow Method (DCF).
The DCF estimates were prepared by the US Geology Service. Finally, both sets
of estimates are compared with industry bids.

2.3.3 Implementing a real option model for valuing an undeveloped oil field
Cortazar and Schwartz (1997) implement a real option model for valuing an un-
developed oil field. Like Paddock et al. (1988) they model the development as a
three stage process. Stage 1 represents the period before the firm commits to the
development. Thus stage 1 can contain both exploration activities and postpone-
ment. Stage 2 and stage 3 represent development and production respectively. In
order to value the oil field, stage 3 is valued first, then stage 2 and finally stage 1.
This approach resembles a dynamic programming approach. Dynamic program-
ming and stochastic dynamic programming are treated in section 3.2 and section
3.3. The value of an oil field in stage 3 is given by

1

2
VSSS

2σ2 − qpVQ +M + (r − c+ β(S − S∗))SVS − (r + λ)V = 0, (2.3.2)

subject to the boundary condition

V (S, 0) = 0. (2.3.3)

The notation used in equations 2.3.2 and 2.3.2 is summarized in table 1. Appendix
A contains details concerning the derivation of equation 2.3.2 and it also explains
the reasoning behind the modelling and assumptions used in the article. Valu-
ation expressions for the other stages are derived using the same arguments as
those used in the derivation of equation 2.3.2.

Since the model presented does not have an analytical solution, a numerical solu-
tion is presented. Since the article presents a numerical solution to the problem, it
could be argued that this contribution should be categorized as numerical. How-
ever, the article applies the framework of option pricing theory and erects from
the analytical tradition. Therefore, it is natural to categorize it as an analytical con-
tribution. The numerical method of finite differences is used. The results from a
case study are presented in snapshots from an application written in Visual Basic
and Fortran.
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3 Stochastic programming approaches

3.1 Introduction
An oil field development project will include many kinds of real options in the
different phases of the project. Management may for example be interested in
postponing commencement of a project. Under certain circumstances it may be
sensible to terminate or temporarily halt a project. Capacity adjustment may also
represent an important real option to management. All these options are Amer-
ican; i.e. they may be exercised any time up to their expiration. To estimate the
value of an American option the optimal exercise time - or the optimal stopping
time - needs to be established. There is no closed form solution of an Ameri-
can option in the standard Black-Scholes framework. Numerical techniques have
evolved as a response to this.

A fair share of the real option literature is found in the operational research lit-
erature. Stochastic programming is an important class of methods in operational
research. We will here consider two techniques from the stochastic programming
tradition, namely stochastic dynamic programming and scenario aggregation. In
the next section we will consider various hybrid techniques which represents an-
other important class of numerical approaches.

3.2 Dynamic stochastic programming
The statement

An optimal policy has the property that whatever initial state and initial deci-
sion are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision.

is known as Bellman’s Principle of Optimality. This principle forms the basis for
the fundamental equation of optimality which is central in dynamic program-
ming. To understand this principle sufficiently, we first highlight some notions
from dynamic programming. Important concepts in dynamic programming are
time horizon, state variables, decision variables, return functions, accumulated
return functions and transition function. The time horizon refers to the number
of stages or time periods in the problem. The state variables quantify the states of
the system, for example oil production capacity. The decision variables represent
management’s ability to make decisions, for example the decision to install new
process equipment, to install injection wells or to shut down parts of a field or
the entire field. A return function reflects the immediate cost or benefit associ-
ated with the execution of a specific decision in a specific state. The accumulated
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return functions show the accumulated return from now and until the end of
the time period associated with the execution of a specific decision in an specific
state. The transition function shows how the state variables change as a function
of decisions. Remark 3.2.1 below deals with restrictions we may wish to impose
on transition functions.

The application of Bellman’s principle results in a decomposition of the optimiza-
tion problem into an immediate return function and a continuation value:

Vn(i) = max
a
{R(i, a) +

1

1 + r

∑
j

pij × Vn+1(j)} ∀i, n = 1, . . . , N − 1 (3.2.1)

and

VN(i) = max
a
{R(i, a)} ∀i, (3.2.2)

where the notation used is explained in table 2. The equations 3.2.1 and 3.2.2
are solved recursively starting at the final stage and working backwards in time
one stage at a time towards the initial state. The advantage of the decomposition
above is that only two values, i.e. the immediate return function and the con-
tinuation value, need to be compared at a given stage n. This is beneficial for
computational purposes.

Remark 3.2.1 In general we are looking for transition functions that possess certain
desired properties. To understand what properties we seek we introduce the concept of a
generator. If f(Xt) is an appropriately smooth function on the state space and Xt is the
state vector, then the operator A is a mapping that creates a new function Af on the state
space given by

Af (x) = lim
dt→0

E{f(Xt+dt)− f(Xt)

dt
|Xt = x}. (3.2.3)

Heuristically the function Af (Xt) is an "expected differentiation" of f(Xt) given that
Xt = x. The generator is then a mapping that maps f into a new function Af , where both
f and Af are functions of Xt. Time is often discretized; then we set dt = 1 in equation
3.2.3 and we do not need the limit. We are looking for transition functions f that have the
property

Af (x) = 0 ⇐⇒ E{f(Xt+1 − f(Xt)|Xt = x} = 0

⇐⇒ E{f(Xt+1|Xt = x} = f(Xt)

for all Xt within the state space.

To illustrate the mechanics of stochastic dynamic programming, consider the fol-
lowing example, inspired by Wallace and Kall (1994).
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Variable Representation
V (S,Q) the value of the oil field at stage 3
S oil spot price
Q remaining reserves of oil
S∗ long term average unit price of oil
β mean reversion parameter
r risk free rate
c mean convenience yield on holding one unit of oil
dW increment in a standard Gaussian Wiener process
qp annual production rate stage 3
M cash flowing to the owner of the field in stage 3 per unit of time
λ risk premium associated with the country where the oil field is located

Table 1. Notation used in equation 2.3.2.

Variable Representation
Vn(i) the maximum expected value in state i at stage n
R(i, a) the immediate return obtained by taking action a in state i
r the rate of return per period,
pij(a) the probability of going from state i to state j given action a
N the final stage

Table 2. Notation used in equations 3.2.1 and 3.2.2.
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Example 3.2.2 As the manager of an oil platform in the Norwegian oil company Hydro
you are considering to lease new processing equipment for your platform. In two years
the platform will be shut down. If you keep the old equipment you will make a net profit
of 7 % in the first year and 5.5 % in the second year. If you decide to install the new
processing equipment you will make 8 % or 12 % in the first year with equal probability.
The second year you will make 5 % or 9 % with equal probability. There will also be a
lease cost associated with the new equipment amounting to 20 million NOK per year. To
deinstall the new processing equipment there is a cost of 10 million NOK. As a manager
you ask yourself the following question: Should you install the new equipment the first
year, the second year or both years? We assume that if the new equipment is installed in
any of the periods, it has to be de-installed at the end of year 2. Both alternatives will here
increase the net wealth of the platform, but the risk and the reward of the two alternatives
are different. Our preferences will therefore be closely related to our initial wealth. The
greater initial wealth the more interested we are in taking on more risk. In this example
we shall assume that our initial wealth S0 is greater than 1000 million NOK. Figure 2
illustrates our situation. Now we have to define the model parameters. First we define

Figure 2. An illustration of example 3.2.2.

the two-dimensional state variables zt = (z1
t , z

2
t ). The first state variable z1

t refers to
the type of processing equipment (New,Old); the second state variable z2

t refers to our
wealth at time t. zt = (Old, St) represents a state where our wealth is St and we use
the old processing equipment in stage t. Accumulated return functions will be denoted
by ft(z1

t , z
2
t , xt). They describe how the amount z2

t will grow using processing equipment
z1
t , up to the end of the time horizon, if the processing equipment xt is chosen in the next

period, and optimal decisions are made thereafter. We are also interested in the optimal
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accumulated return f ∗(z1
t , z

2
t ) for a given state, which is found by maximising all possible

decisions.

We now have three stages that will be denoted Stage 0, Stage 1 and Stage 2. These stages
represent today, 1 year from now and 2 years from now, respectively. Taking a closer look
at the stages, we see that:

Stage 2: All we can do is to de-install the new processing equipment:

f ∗2 (New, S2) = S2 − 10, f∗2 (Old, S2) = S2.

Stage 1: We have to consider the two processing equipments separately. We look at the
situation assuming we purchased the new processing equipment in stage 0. Now we can
either stick with the new processing system for another year, making a net profit of S2 =

0.5∗{S1 ∗ (1.05−20)+S1 ∗ (1.09−20)}, or we can de-install the new processing system
and go back to the old processing system, making a profit of S2 = (S1 − 10) ∗ 1.055. We
need to calculate

f ∗1 (New, S1, New) = 1.07 ∗ S1 − 30 , f∗1 (New, S1, Old) = 1.055 ∗ S1 − 30,

yielding

f ∗1 (New, S1) =

1.055 ∗ S1 − 10.5 if S1 < 1300

1.07 ∗ S1 − 30 if S1 ≥ 1300.

Now assume that we did not purchase the new processing equipment in stage 0. Then we
can either decide to install the new processing system or stick with the old the last year as
well. This gives us

f ∗1 (Old, S1) =

1.055 ∗ S1 if S1 < 2000

1.07 ∗ S1 − 30 if S1 ≥ 2000.

Stage 0: Since we start out with the old processing system, we only need to check the
situation from that perspective. We find that

f0(Old, S1, New) =

1.1605 ∗ S0 − 31.6 if S0 < 1200

1.177 ∗ S0 − 51.4 if S0 ≥ 1200
(3.2.4)

and that

f0(Old, S1, Old) =

1.12855 ∗ S0 if S0 < 1869.17

1.1449 ∗ S0 − 30 if S0 ≥ 1869.17.
(3.2.5)

Comparing the expressions 3.2.4 and 3.2.5 we see that it is optimal to install the new
processing system today and de-install it in two years.
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3.3 Applications of dynamic programming
The dynamic programming approach requires that equation 3.2.1 is solved for all
possible paths of every valid combination of state variables across the entire state
space. As the number of state variables grows large, this becomes an unmanage-
able task for even the most resourceful computers. This phenomenon is referred
to as "the curse of dimensionality". Although dynamic programming is widely
used in operational research the number of contributions dealing with oil devel-
opment projects is small. "The curse of dimensionality" is one important reason
for this.

3.3.1 The PhD of Morten W. Lund
In his PhD thesis Lund (1997) aims to identify the value of flexibility in off-
shore oil development projects. Lund recognizes that traditional valuing tech-
niques such as the discounted cash flow method have significant shortcomings
that make them suboptimal for valuing oil field development projects. The weak-
nesses that are emphasized by Lund are listed and treated in section 1.

A prototype for an oilfield development project is developed. The life of the
project is divided into phases. Some phases are aggregated and some simplifi-
cations are made. The main objective is to mirror the major decisions and infor-
mation pattern throughout the project in the prototype. The aggregate project
phases include exploration, conceptual study, engineering and construction and
production. Different kinds of flexibility are discussed. In particular, the flexibil-
ity to postpone a project as well as the flexibility to terminate a project are dis-
cussed. Further, start/stop flexibility and capacity flexibility are treated. Project
finance refers to how the financing of a project is structured. Hedging strate-
gies, the modelling of political risk and cash flow structuring are central issues in
project finance. In Lund’s thesis financial flexibility, i.e. issues related to project
finance and the possible interaction between managerial flexibility and financial
flexibility is not modelled.

Stochastic dynamic programming is used to evaluate the project. A state space of
six variables of which three are stochastic is defined. The oil price, the reservoir
volume and the well rate are modelled as stochastic variables. The oil price and
the well rate are modelled using Markov processes; the reservoir volume is mod-
elled with a 0-dimensional tank model. The prototype is then applied to a case
study. The analysis reveals that flexibility might be of considerable value to the
project. As flexibility is not additive, the importance of a joint analysis is high-
lighted. Capacity flexibility and initiation flexibility are identified as important
aspects of the development.
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3.4 Scenario aggregation
The principle of scenario aggregation is analogous to the technique of using event
trees in decision making in the sense that each scenario represents a complete
path in an event tree. Since each scenario is deterministic no value is given to
flexibility. If weights were assigned to the different scenarios, the solution would
inherit the same deficiency regarding flexibility evaluation. The principle of sce-
nario aggregation aims to solve this problem through aggregation of solutions for
different scenarios, see Wets (1989) or Wallace and Kall (1994). Wets (1989) shows
that this overall solution will converge to the solution of the stochastic optimiza-
tion problem. A central concept in scenario aggregation is the progressive hedging
algorithm. Lund (1997) explains the role the progressive hedging algorithm plays
in scenario aggregation:

Scenario aggregation commonly applies the progressive hedging algorithm to
determine the optimal policy. The algorithm can roughly be described as an
iterative two-step procedure. First the individual scenario problems are solved
as separate (deterministic) problems. The solutions to these problems are then
aggregated in order to obtain consistent solutions among the scenarios. If the
deviation between the aggregate solution and the individual ones is above a
predetermined limit, an updated penalty term is introduced in the individual
optimization problems. The individual problems are solved again, and a new
aggregated solution is obtained. These iterations continue until the deviation
between the separate policies is acceptable.

3.5 Applications of scenario aggregation
Applications of scenario aggregation is to a large extent found in the operational
research literature. The most relevant application is summarized below. Other ap-
plications include Ovidiu and Dekker (2002), who apply the method in strategic
airline fleet planning, and Dye (1994), who discusses scenario aggregation in the
context of hydro-thermal power scheduling.

3.5.1 The PhD of Tore W. Jonsbraaten
Whereas Lund (1997) tries to replicate the entire life of an oil offshore devel-
opment project, Jonsbraaten (1998) in his PhD thesis focuses on the production
phase only. Where Lund is concerned with analyzing the contribution of flexibil-
ity in a project’s value, Jonsbraaten emphasizes accurate modelling of the reser-
voir and its applications. The perspective of Lund is more economic than Jons-
braaten’s more technical approach.

In the first part of the thesis various reservoir models are presented. The selected
reservoir model is three dimensional and the flow through the reservoir is mod-
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elled with partial differential equations. Finite differences are applied to estimate
these difference equations by means of Taylor expansions. Decisions such as plat-
form capacity, which wells to drill and production strategy for each well may be
more thoroughly and adequately addressed in these more complex models. But a
more complex model is not necessarily a better model, and a cost-benefit analysis
and the purpose of the study should provide guidelines to model choice.

In the second part of the thesis four papers are presented. The first paper aims
to optimize an oil field under price uncertainty. A finite set of oil price scenario
and policy aggregation technique is applied. The reservoir is modeled by the use
of a deterministic model. In the second article Jonsbraaten develops a class of
stochastic programs with decision dependent random elements. The third pa-
per deals with optimal selection and sequencing. Initially the reservoir is limited.
When the first well is drilled, this information will be crucial in the following de-
cision making. Dependent on the results from this drilling, further action is taken.
Both the number of wells and the location of the wells may be optimized given
this information. If it is decided to drill another well, the process is repeated. A
Bayesian model for updating the a priori probability distribution over reservoir
characteristics is proposed. Jonsbraaten also shows how this decision problem
can be modelled by means of a decision three. The last article is concerned with
oil extraction on a block boundary. A typical situation is two competing oil com-
panies both eager to deplete the reservoir first. Jonsbraaten shows there exists
a Nash equilibrium for this non-cooperative game; i.e. both oil companies can
make simultaneously optimal decisions without co-operating.

4 Hybrid techniques

4.1 Introduction
One advantage of Monte Carlo simulation is that its convergence rate is indepen-
dent of the number of state variables To be more precise, the approximation error
in Monte Carlo simulation is of order o(m−1/2) irrespective of the number of state
variables. Here m denotes the number of observations in the simulated sample.
In other methods, such as Riemann approximation, the approximation error with
p state variables is of order o(m−1/p). Another advantage is that it can easily han-
dle a wide variety of models and payoff structures. Monte Carlo simulation was
for a long time regarded to be not applicable to American-style pricing problems.
The reason is that the state variables are simulated forward in time. A path price
is then estimated for a certain state trajectory and a pre-specified exercise policy.
An unbiased estimate of the security price may be obtained by averaging inde-
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pendent samples of path prices. By contrast assets with early exercise features
are generally priced by ’backward’ algorithms. At maturity the optimal exercise
strategy is easily determined, since all uncertainty is resolved at this point in time.
The optimal exercise policy is then found by using dynamic programming pro-
ceeding backward in time. The difficulty in using simulation to price American
options thus stemmed from applying a forward based algorithm to a problem
that required a backward problem to solve.

Broadie and Glasserman (1997) propose a way to deal with this problem by de-
veloping two estimates of the asset price. One estimate is biased high and the
other is biased low. Both estimates are asymptotically unbiased and converge
asymptotically to the true asset price. Heuristically the two estimates together
form a confidence interval for the asset price. This method will be explained in
more detail in section 4.2 below. Glasserman (2004) proposes this technique and
many others to estimate the value of American options. Some important aspects
of many of these methods will be summarized in all the following subsections
of section 4. Many of these methods uses the same basic approach in the sense
that a high estimate and a low estimate are generated. Together these estimates
form a confidence interval for the asset price. Longstaff and Schwartz (2001) ap-
proximate the conditional expectation in the dynamic programming principle by
projections on a finite set of functions. Monte Carlo simulation and least squares
regression is used to compute the value function of these projections. This tech-
nique is treated in Glasserman (2004) and is shown to be a special case of the
stochastic mesh method1. Clement et al. (2002) prove almost sure convergence of
the Longstaff and Schwartz algorithm under fairly general conditions.

4.2 Random Tree Methods
Two estimators are introduced, one biased high and one biased low; together the
estimates form a confidence interval for the true asset price. The two estimators
are created by constructing a random tree. The parameter b represents the number
of branches per node. Figure 3 illustrates a random tree with b = 3. We will now
explain how the high estimator Θ and the low estimator θ are constructed and
state the intuition behind their high and low bias. 2.

4.2.1 The high estimator Θ

In the following we will assume that we have a finite amount of exercise op-
portunities; i.e. we are studying Bermudan options. We introduce C to represent

1. The stochastic mesh method is also treated in Glasserman (2004) and will be summarized in
this section. Longstaff and Schwartz (2001) do, however, not construct a confidence interval in the
spirit of Glasserman (2004) in their method.
2. The explanations are based on the explanations of Broadie and Glasserman (1997)
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the price of an American call option with d + 1 exercise opportunities at time
ti; i = 0, . . . , d 3. The definition of the high estimator Θ is the call value obtained
by applying a dynamic programming algorithm to the random tree. At maturity,
the option value is known, since all uncertainty is resolved at this point in time.
At each prior date the option value is obtained by maximizing the immediate
exercise value and the expectation of the succeeding discounted option values.
The final option value of Θ is the estimated option value at the initial node. In-
tuitively, Θ is biased high due to perfect foresight; i.e. in the algorithm we know
"everything" because we start at the end of the time period and work ourselves
backwards. In real life we stand at a point in time and know the history up to this
point and nothing about the future.

4.2.2 The low estimator θ

Branches at each node is divided into two sets,E1 andE2. The exercise decision is
determined by means of the branches in the first setE1. The continuation value is,
if necessary, estimated by using the branches of the second set E2. To understand
why this estimator is biased low consider the time just prior to expiration. The
exercise decision is now based on unbiased information from the maturity date.
This exercise decision may now be right or wrong, due to the finiteness of the
sample. To understand why the decision may be wrong, note that the finiteness
of the sample will result in a loss of information. There will be points in the state
space at this point in time that are not contained in the branches of the random
tree. Therefore it is possible to infer a suboptimal decision based on the informa-
tion in the random tree. If the correct decision is inferred from the information,
the estimator would be unbiased. But if the exercise decision is wrong and a sub-
optimal decision is made, the value of the node will be an unbiased estimate of
the lower value associated with the incorrect decision. The expected node value
will then be biased low, since it is a weighted average of an unbiased estimate
(based on the correct decision) and an estimate which is based low (based on the
incorrect decision).

At each node, branch 1 is used to estimate the continuation value and the other
b − 1 branches to estimate the exercise decision. This process is repeated b − 1

times. The b values obtained are averaged to determine the option value at the
node.

3. With no dividends it is never optimal to exercise an American call option prior to maturity,
see for example Hull (2000).
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4.2.3 Properties of the estimators Θ and θ

In this section the estimators will be precisely specified. The following notation is
used:

· {St : t = 0, 1, . . . , T} is a (possibly vector-valued) risk-neutralized Markov
chain denoting all state variables.

· exp−Rt is the discount factor from t− 1 to t.

· ht(s) is the payoff from exercise at time t in state s.

· fT (s) = hT (s), i.e. at expiration the option is worth the payoff from immedi-
ate exercise.

· gt(s) = E{exp−Rtft+1(St+1)|St = s} is the continuation value at time t in
state s.

· ft(s) = maxht(s), gt(s) is the option value at time t in state s.

A random tree with b branches per node is represented by the array

{Si1...itt : t = 0, 1, . . . , T ij = 1, . . . , b j = 1, . . . , t},

see figure 3 for an illustration.

4.2.4 The high estimator Θ

The high estimator Θ is defined recursively by

Θi1...iT
T = fT (Si1...iTT )

and

Θi1...it
t = max

{
ht(S

i1...it
t ),

1

b

b∑
j=1

exp−Ri1...itj
t+1 Θi1...itj

t+1

}
,

for t = 0, . . . , T−1. At each node this estimator chooses the maximum of the early
exercise payoff and the continuation value estimated from all successor nodes.
Let Θ̄0 denote the sample mean of n independent replications of Θ0. Then it is
stated and shown in Broadie and Glasserman (1997) that Θ̄0(b) converges to f0(S0)

in probability and is thus a consistent estimator of the option value. Further, it is
stated and shown in the same article that for finite b the bias is always positive;
i.e. that E{Θ0(b)} ≥ f0(S0) for all b.
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4.2.5 The low estimator θ

The low estimator θ is defined recursively as follows. First let

θi1...iTT = fT (Si1...iTT ).

Next define

ηi1...itjt =


ht(S

i1...it
t if ht(Si1...itt ≥ 1

b−1

∑b
i=1
i6=j

e−R
i1...iti
t+1 θi1...itit+1

e−R
i1...iti
t+1 θi1...itit+1 if ht(Si1...itt < 1

b−1

∑b
i=1
i6=j

e−R
i1...iti
t+1 θi1...itit+1 ,

for j = 1, . . . , b. Then let

θi1...itt =
1

b

b∑
j=1

ηi1...itjt ,

for t = 0, . . . , T − 1. This estimator is also consistent. In Broadie and Glasserman
(1997) it is shown that the low estimator has the same convergence properties as
the high estimator; i.e. we have that θ̄0(b) converges to f0(S0) in probability and
is thus also a consistent estimator of the option value. Further, it is stated and
shown in the same article that for finite b the bias is always negative; i.e. that
E{θ0(b)} ≤ f0(S0) for all b.

4.2.6 Strengths and weaknesses of the random tree method
The random tree method is intuitive and easy to communicate to users. An im-
portant weakness of the method is that the computational work is exponential in
the number of exercise opportunities.

4.3 Stochastic Mesh Methods
The stochastic mesh method is developed in Glasserman and Broadie (1997). Like
the random tree method the stochastic mesh method estimates the value of an
American option by solving a randomly sampled dynamic programming prob-
lem. Standing at node i the stochastic mesh method however utilizes all nodes at
time i+1. By contrast, the random tree method utilizes only nodes that are direct
successors of the current node. Thus the number of nodes at each point in time
says fixed in the stochastic mesh method. In this way a mesh is created instead of
a tree. Figure 4 illustrates a stochastic mesh.

The first task in the method is to generate the stochastic mesh Xt(i); i = 1, . . . , b

and t = 1, . . . , T . Methods for construction of the mesh will be described below.
The mesh estimator is defined as

f̂T (XT (i)) = hT (XT (i)),
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Figure 3. Random tree for b = 3

Figure 4. Mesh illustrated for n = 1, T = 4 and b = 4. A generic node in the mesh is

denoted Xt(i); a generic arc from one node to another has weight wt(Xt(i), Xt+1(j)).
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for i = 1, . . . , b; ft(x) and ht(x) are the option value and payoff from exercise,
respectively, at time t in state x. These functions were also defined in section 4.2.3
above. For time points t = T − 1, . . . , 0 and i = 1, . . . , b the mesh estimator is

f̂t(Xt(i)) = max{ht(Xt(i)),
1

b

b∑
j=1

f̂t+1(Xt+1)wt(Xt(i), Xt+1(j))}, (4.3.1)

where wt(Xt(i), Xt+1(j)) is a weight attached to the arc joining Xt(i) to Xt+1(j).
The notation f̂t(Xt(i)) represents the estimate of the true American value ft(Xt(i)).
Now we need to describe how the stochastic mesh is generated and how the
weights on the arcs are determined.

Suppose that conditional on St = x, St+1 has density kt(x, ·) and let kt(·) denote
the marginal density of St. The challenge then is to determine the density lt(x, ·)
from which the vectors Xt(i) in the mesh are sampled from. In Glasserman and
Broadie (1997) it is shown that the weight

wt(Xt(i), Xt+1(j)) =
kt(Xt(i), Xt+1(j))

b−1
∑b

l=1 kt(Xt(l), Xt+1(j))
(4.3.2)

is optimal, given that the mesh is Markovian4. Note that the numerator in equa-
tion 4.3.2 is simply the conditional density of St+1 given that St = x. The denomi-
nator is heuristically the "average" probability of getting to node j at time t+1. The
optimal weight of the mesh is thus the original conditional density of St+1 given
that St = x scaled with a factor (the denominator). The purpose of the scaling is
to avoid that the variance of the estimators grows exponentially with the number
of exercise opportunities, see Glasserman and Broadie (1997). If the mesh is not
Markovian, weights may be defined through likelihood ratios, see Glasserman
and Broadie (1997) and Glasserman (2004).

4.3.1 The high estimator
The mesh estimator f̂ bt (Xt(i)) defined in equation 4.3.1 represents the high esti-
mator; b here denotes the size of the mesh. In Glasserman and Broadie (1997) it is
stated and proved that the mesh estimator f̂ bt (Xt(i)) is biased high and asymptot-
ically unbiased. More formally, it is proved that E{f̂ b0(S0)} ≥ f0(S0) for all b and
that f̂ bt (x) converges to ft(x) in probability for all x and t 5.

4.3.2 The low estimator
The low estimator is derived using a path estimator. The path estimator is defined
by simulating a trajectory of the underlying process St until the exercise region

4. Glasserman (2004) states the precise definition of a Markovian mesh.
5. Convergence in p norm is actually proved, but since this convergence is stronger, convergence
in probability is implied.

26 A Summary of Real Options Methodology



determined by the mesh is reached. First the path S = (S0, S1, . . . , ST ) is simu-
lated. This simulation is now independent of the mesh points. Along this path
there will exist an optimal policy τ ∗(S) = min{t : ht(St) ≥ ft(St)} for a payoff
of the option hτ∗(Sτ∗). The approximate optimal policy determined by the mesh
exercises at

τ̂(S) = min{t : ht(St) ≥ f̂t(St)}, (4.3.3)

where f̂t(St) is given in equation 4.3.1. Define the path estimator, and thus the
low estimator, as

q̂ = hτ̂ (Sτ̂ ). (4.3.4)

The stopping time defined in equation 4.3.3 is not necessarily optimal. To under-
stand why, note that we only have a finite number of nodes, b, in the mesh at time
i. Thus our mesh does not contain all available information at time i, or alterna-
tively all points in the state space at time i. Thus the stopping time defined in
equation 4.3.3 does not need to be an optimal stopping time since this stopping
time is determined via the mesh. Consequentially q̂ in equation 4.3.4 represents a
lower bound on the true asset price. In Glasserman and Broadie (1997) it is stated
and proved that that the path estimator q̂ is biased low and asymptotically unbi-
ased. More formally, it is proved thatE{q̂b} ≤ f0(S0) for all b and that q̂b converges
to f0(S0) in probability as b→∞.

4.3.3 Strengths and weaknesses of the stochastic mesh method
Since the number of nodes at each point in time says fixed, the computational
work is not exponential in the number of exercise opportunities. This represents
a clear advantage compared to the random tree method. In the stochastic mesh
method it can however be challenging to find the weights of the mesh. In a
Markovian mesh, the formula for the weights is given in equation 4.3.2. If the
method of likelihood ratios is applied to find the weights, it is necessary to find a
transition density. Transition densities for the underlying Markov chain may be
unknown or may fail to exist. If, however, such a set of weights is found for the
underlying Markov chain, it does not depend on the payoff functions hi. Thus,
the mesh can be applied to many different American options. See Glasserman
(2004) for details regarding likelihood ratio weights.

4.4 Regression Methods
Longstaff and Schwartz (2001), and also Carriere (1996) and Tsitsiklis and Van Roy
(1999) apply regression techniques to estimate continuation values from simu-
lated paths. Continuation values are explained in section 3.2 and defined in sec-
tion 4.2.3. The American options may then be priced by simulation. In particular,
each option value ft+1(Xt+1) defined in section 4.2.3 is regressed on the current
state x. To be more specific, each continuation value gi(s) defined in section 4.2.3
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is approximated by a linear combination of known functions of the current state.
Then regression is applied to estimate the best coefficients of this approximation.
A more precise expression for the continuation value is

gi(x) =
M∑
r=1

βirψr(x), (4.4.1)

for some basis functions ψr : Rd → R and constants βir, r = 1, . . . ,M . Here d is
the dimension of the state-space vector. Assuming that 4.4.1 holds, the vector βi
is given by

βi = {E{ψ(Xi)ψ(Xi)
T}}−1E{ψ(Xi)fi+1(Xi+1)} ≡ B−1

ψ Bψf .

Here, Bψ is an M × M matrix and Bψf is an vector of length M . The coeffi-
cients βir may be estimated from observations of pairs (Xij, fi+1(Xi+1,j)), if we
assume that fi+1(Xi+1,j) is known. The least squares estimate of βi is then given
by β̂i = B̂−1

ψ B̂ψf , where B̂−1
ψ and B̂ψf are the sample counterparts of B−1

ψ and Bψf .
A procedure for estimating the option value by regression is then6:

1. Simulate b independent paths {X1j, . . . , Xmj}, j = 1, . . . , b of the Markov
chain.

2. At terminal nodes, set fTj = fT (XTj), j = 1, . . . , b.

3. Apply backward induction: For i = m − 1, . . . , 1, if we have computed esti-
mated values f̂i+1,j, j = 1, . . . , b, we then apply regression as described above
to calculate β̂i = B̂−1

ψ B̂ψf f̂ij = max{hi(Xij), ĝi(Xij)}, j = 1, . . . , b, with ĝi de-
noting the estimated continuation value of equation 4.4.1.

4. Set f̂0 = (f̂11 + · · ·+ f̂1b)/b.

As mentioned previously, the regression-based algorithm corresponds to a stochas-
tic mesh estimator with an implicit choice of mesh weights. For an excellent com-
parison of these methods, interpretations, examples and treatment of implica-
tions, see Glasserman (2004).

4.4.1 The high estimator
The estimator f̂0 = (f̂11+· · ·+ f̂1b)/b represents the high estimator. It is not proved
that f̂0 is biased high. However, Clement et al. (2002) prove almost sure conver-
gence of the Longstaff and Schwartz algorithm under fairly general conditions.

6. This procedure is stated in Glasserman (2004).
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4.4.2 The low estimator
The estimated vectors of the coefficients βi yield estimated continuation values
ĝi(x) for every time point i and every state x. The reasoning we used in deriving
the low estimator in the stochastic mesh in equation 4.3.4 is valid also for regres-
sion methods. The continuation values ĝi(x) define an exercise policy, which is
suboptimal. Thus we have a low estimator.

4.4.3 Strengths and weaknesses of the regression method
The principle of using least-square regression to estimate the continuation value
is intuitive and comprehendible. However, it may not be straight forward to
choose the functions used in the regression. In the literature only some gen-
eral recommendations are provided which may prove difficult to implement in a
high-dimensional setting.

4.5 Parametric methods
We have now studied several techniques that try to approximate solutions to the
dynamic programming problem presented in sections 4.2.3 and 3.2. This section
will deal with a technique that tries to find the optimal stopping time within a
parametric class. Consider the following example:

Example 4.5.1 Brekke and Schieldrop (2000) consider a firm which has the option to
build a plant that produces a single product. The plant uses one or two input factors with
uncertain prices. They study a thermal power plant which is fuelled by either gas or oil.
The plant can use either a pure technology that can use either gas or oil, or a flexible
technology that can switch between the two types of fuel. Under the assumption that both
fuel types are available, but only as pure technologies, the authors find explicit solutions to
their optimization problem. When both fuel types are considered simultaneously, the firm
is less willing to invest than in the benchmark case when the two options are considered
separately. The findings of Brekke and Schieldrop are illustrated in figure 5.

The firm will wait as long as the process lies in the continuation region Cog, but once the
process hits the boundary ∂Cog the firm will invest and the choice of technology will be
determined by which part of the boundary that is hit.

To be able to utilize the findings of the authors in a real world setting, it would is neces-
sary to estimate the boundary of the continuation region ∂Cog. This task in itself may be
formidable. If, however, we restrict ourselves to a parametric subclass, the task is much
more tractable. Imagine for example that we limit ourselves to estimate boundary func-
tions of the form

f(x) =
1

ax+ b
,
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where x denotes the price of the fuel, i.e. oil or gas, and a and b are constants. Thus we try
to find an optimal value within a parametric class.

Glasserman (2004) formalizes the parametric approach. A class of stopping rules,
τθ is considered with each τθ ∈ T and Θ a subset of some RM . Here the set T
represents all admissible stopping rules. Let

V θ
0 = sup

θ∈Θ
E{hτ(θ)(Xτ(θ))}.

We are now interested in estimating V θ
0 , the optimal value within the parametric

class. Since the supremum in this definition is taken over a subset of all admissible
stopping rules T , it is true that

V θ
0 ≤ V0 = sup

τ∈T
E{hτ (Xτ )}. (4.5.1)

If we can find a consistent estimator of V θ
0 , equation 4.5.1 tells us that it will under-

estimate the true option value. Glasserman (2004) gives an outline of an algorithm
for the estimation of V θ

0 :

1. Simulate n1 independent replications X(j), j = 1, . . . , n1 of the Markov chain
(X0, X1, . . . , XT ).

2. Find θ by maximizing

V̂ θ̂
0 =

1

n1

n1∑
j=1

hτ (j)(θ̂)(X
(j)

τ (j)(θ̂)
),

where for each θ ∈ Θ, τ (j)(θ) is the time of exercise of the jth replication
evaluated with parameter value θ.

3. Fix θ̂ at the value found in step 2. Simulate n2 additional independent repli-
cations of the Markov chain using the stopping rule τθ̂ and compute the esti-
mate

V̂ θ
0 =

1

n2

n1+n2∑
j=n1+1

hτ (j)(θ̂)(X
(j)

τ (j)(θ̂)
).

Step 3 is added to determine the direction of the bias of V̂ θ̂
0 .

4.5.1 Strengths and weaknesses
Parametric methods reduce the optimal stopping problem to a tractable finite-
dimensional optimization problem. Implementing the algorithm stated above can
however be challenging. The main difficulty in implementing steps 1-2, beyond
selection of the class of parametric rules, lies in the optimization in step 2. Glasser-
man (2004) gives some guidance on how this can be done.
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4.6 State-space partitions
Whereas the dynamic program in the random tree method and the stochastic
mesh method is based on randomly sampled states, the states in the state-space
partition method are defined in advance. The definitions of the states are based
on partitioning of the state space of the underlying Markov chain X0, X1, . . . , XT .
The state space Xi is partitioned into bi subsets Ai1, . . . , Aibi for i = 1, . . . , T ; i.e.
for every exercise date. For the initial time 0, we set b0 = 1 and A01 = X0. Figure
6 illustrates a state-space partition.

Define the transition probabilities

pijk = P (Xi+1 ∈ Ai+1,k|Xi ∈ Aij)

for all j = 1, . . . , bi, k = 1, . . . , bi+1 and i = 0, 1, . . . , T . For each i = 1, . . . , T and
j = 1, . . . , bi define

hij = E{hi(Xi)|Xi ∈ Aij}.

We now consider the backward induction

fij = max{hij,
bi+1∑
k=1

pijkfi+1,k}, (4.6.1)

i = 0, 1, . . . , T − 1, j = 1, . . . , bi. Equation 4.6.1 is initialized with fTj ≡ hTj .

To implement this method we need to calculate the transition probabilities pijk and
average payoffs hij . To be able to do this, we simulate replications of the Markov
chain X0, X1, . . . , XT and estimate these quantities from the simulation. Glasser-
man (2004) provides a detailed description of the implementation. He produces
an estimate that is guaranteed to have a low bias, relative to the true option value
f0(X0).

4.6.1 Strengths and weaknesses
The main difficulty to overcome using this approach lies in the selection of the
state-space partition. If a partition could be applied to price many different Amer-
ican options, the effort could be justified. Intuitively, it is natural to expect that the
estimated option value will converge to the true option value as the resolution of
the partitions increases.

4.7 Applications of hybrid techniques
Since hybrid techniques are fairly new the number of relevant, interesting ap-
plications in the real option literature is scarce. Stentoft (2004) and Moreno and
Navas (2003) have applied the least-squares regression method proposed by Longstaff
and Schwartz to value some financial options of limited complexity.
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Figure 5. The border ∂Cogwhen both gas and oil technologies are available, but only as

pure technologies. p∗ and q∗ are the reservation prices for the pure gas and the pure oil

technologies. The reservation price represents the price level at which the firm would

invest, provided that only one of the technologies were available. If for example only oil

were available, the firm would invest if the oil price were below or equal to q∗ and else

wait.

Figure 6. An illustration of a state-space partition.
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4.7.1 The valuation of a copper mine
Cortazar et al. (2005) extend the model of Brennan and Schwartz (1985) summa-
rized in section 2.3.1. Brennan and Schwartz applied a one-factor model to value
a mine that could be open, closed or abandoned. Cortazar et al apply a three fac-
tor model to solve the same problem. Whereas Brennan and Schwartz (1985) only
modelled the spot price of copper as a stochastic process, the model of Cortazar
et al. (2005) has three state variables; the spot price S, the convenience yield y and
the expected long term spot price return ν. Such a model is much more success-
ful than a one-factor model in capturing the stochastic behaviour of commodity
prices. Features of commodity prices are for example mean-reversion, declining
volatility term structure and imperfect correlation between future returns with
different maturities. This model extension became possible because Cortazar et al.
(2005) apply Monte Carlo simulation to solve the valuation problem.

Cortazar et al. (2005) apply the least squares regression method proposed by
Longstaff and Schwartz (2001). To reduce model complexity, a reduced-base im-
plementation of the Longstaff and Schwartz method is proposed. To test the reduced-
base form Cortazar et al. (2005) value an option that has a closed-form solution
and compare the analytic solution to the alternative implementation of the LS01
method. Root Mean Square Error (RMSE) is then compared between the reduced-
base form and other forms of polynomials. RMSE declines much more rapidly for
the reduced-base form than other polynomial forms. Then the proposed model
is implemented to solve the extended Brennan and Schwartz model. To vali-
date the implemented model, the original Brennan and Schwartz model is solved
with the proposed procedure. The results are very similar to the results obtained
by Brennan and Schwartz. Daily values of the extended Brennan and Schwartz
open mine is then plotted using historical copper prices as input in the valuation
model. The mine value exhibits mean-reversion.

5 Concluding remarks

About 20 years ago the real options contributions were analytical in nature. As
closed form solutions turned out to be difficult to produce for these analytical
contributions, and as the development of the computer industry escalated, nu-
merical methods became increasingly popular and in demand. In the past decade
contributions applying hybrid techniques have emerged. The hybrid techniques
try to overcome some deficiencies of the older numerical methods, like the ’curse
of dimensionality’ associated with stochastic dynamic programming.
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Most contributions in the real option literature devote most of the energy on mod-
elling commodity price uncertainty. Modelling of the reservoir uncertainty re-
mains largely untouched. The potential for new, original contributions with more
advanced and realistic reservoir models should therefore be considerable.
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A

A.1 Assumptions and models in application 2.3.3
The oil price is modelled as a Geometric Brownian Motion:

dS

S
= (r − c+ β(S∗ − S))dt+ σdW. (A.1)

The parameters in equation A.1 are explained in application 2.3.3. Some of the
parameters in the model, like β, are most conveniently modelled by comparing
historical prices for a futures contract for delivery of oil in τ years, F (τ, S), with
those from a theoretical pricing equation. The value of an oil future is modelled
by applying Ito’s Lemma:

dF (S, τ) = {Fτ (−1) + µSFs +
1

2
σ2S2Fss}dt+ σSdzFs

= {−Fτ +
1

2
σ2S2Fss}dt+ {µSdt+ σSdz}Fs

= FsdS − Fτdt+
1

2
FssS

2σ2dt,

where τ = T − t yields the minus in front of Fτdt. Further, µ = r − c+ β(S∗ − S),
i.e. the expected capital gain in equation A.1. The oil market is assumed to be
arbitrage free. Thus, an investor with a portfolio long in one unit of oil and short
in (Fs)

−1 units of futures contracts has hedged his price risk and should earn the
risk free rate:

dS + (c− β(S∗ − S))dt− dF

Fs
= rSdt. (A.2)

Replacing A.1 in A.2 we get:

dS + (−µ)Sdt− dS +
Fτ
Fs
dt− 1

2Fs
FssS

2σ2dt = 0

⇐⇒ µSFs − Fτ +
1

2
FssS

2σ2 = 0

⇐⇒ 1

2
FssS

2σ2 + SFs(r − c+ β(S∗ − S))− Fτ = 0.

We are now interested in finding the value of the oil field in stage 3. By applying
Ito‘s Lemma to the value of the oil field in stage 3, V (S,Q), we obtain:

dV (S,Q) = VsdS − qpVQdt+
1

2
VssS

2σ2dt. (A.3)

If an investor takes a long position in the oil field and Vs/Fs short position in
futures contracts he hedges his risk and should earn the risk free rate plus a risk
premium associated with the location of the oil field

dV +Mdt− Vs
Fs
dF = (r + λ)V = 0, (A.4)
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where λ is explained in application 2.3.3. We now combine the expressions A.3
and A.4 to obtain:

VSdS − qpVQdt+
1

2
VSSS

2σ2dt+Mdt

−VS
FS
{FSdS − Fτdt+

1

2
FSSS

2σ2dt} − (r + λ)V dt = 0

⇐⇒ VSdS − qpVQdt+
1

2
VSSS

2σ2dt+Mdt

−VSdS + VS
Fτ
FS
dt− 1

2
FSSS

2σ2dt− (r + λ)V dt = 0

⇐⇒ 1

2
VSSS

2σ2dt− qpVQdt+Mdt+ VS{
Fτ
FS
dt− 1

2FS
FSSσ

2S2dt} − (r + λ)V dt = 0

⇐⇒ 1

2
VSSS

2σ2 − qpVQ +M + (r − c+ β(S∗ − S))SVS − (r + λ)V = 0,

(A.5)

which is equivalent to 2.3.2. We assume that dt is positive in equation A.5.
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