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1 Introduction

Prior to initialisation, a project is often evaluated by calculating its Net Present
Value (NPV). The NPV is defined as the discounted difference between the ex-
pected value of project revenues and costs over the lifetime of the project. NPV
is the preferred criterion of profitability since it reflects the net contribution to
the owner’s equity considering his cost of capital. NPV calculations are typically
used by the management to select between competing projects.

Traditional NPV calculations do not take into account the uncertainty in the
risk factors that influence the NPV, for instance the selling price of the produced
goods, exchange rates, salaries or maintenance costs. In order to study the un-
certainty of the NPV, management have traditionally used approaches such as
increasing the discount rate, comparing pessimistic and optimistic cash flows, or
performing sensitivity analyses modifying one or several input quantities sepa-
rately. Attempts to evaluate the uncertainty of the NPV are typically based on
marginal considerations (e.g. Dailami et al. (1999)) or a categorisation of the asso-
ciation between risk factors (Warszawski and Sacks, 2004).

We propose a simulation approach to incorporate uncertainty in the NPV cal-
culations. We construct a stochastic model that describes the simultaneous be-
haviour of the risk factors that have the largest influence on the uncertainty of
the NPV of the project. The marginal models and relationship between risk fac-
tors are estimated based on historical time series data. By simulating from this
model, we obtain the probability distribution of these risk factors over the time
horizon of the project. When these distributions are incorporated in the NPV cal-
culations, we obtain the probability distribution of the NPV. The results show the
expected profitability and the risk that the profitability deviates from the expected
value. As the full distribution of the NPV is available, we may select measures of
uncertainty such as a confidence interval or Value-at-Risk (VaR), see Jorion (1997).

An essential feature of our approach is that we may choose to specify the
level around which the simulations fluctuate. Historical data is used to estimate
the uncertainty of the risk factors. The mean level may also be obtained from
the historical data, or it can be consistent with a certain prespecified scenario
level. For many risk factors this is an advantage as the historical data will not
be representative of future development. If the risk factor is traded in a market,
there might exist market forward curves that are far more relevant than historical
levels.

The proposed methodology has been developed in co-operation with Boliden
Odda AS and has been applied to evaluate their P2007 Expansion project. In this
paper, this project is used to illustrate some of the model aspects. However, due
to confidentiality requirements, the main results for the NPV are not included.
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The main product of Boliden Odda AS is zinc. In their case the stochastic model
included seven risk factors on which Boliden Odda has no influence since they
are given by the market. The risk factors that were identified as crucial for the
uncertainty of the NPV included commodity prices (the LME zinc price and the
sulphuric acid price), a power spot price, two different exchange rates, as well as
two other prices related to the processing of zinc.

The paper is organised as follows. Section 2 presents the framework and sys-
tem requirements of our approach. In Section 3 we present the joint stochastic
model for the selected risk factors. In Section 4 we explain how the model is fit-
ted to historical data, while Section 5 shows how we simulate from the model.
Section 6 demonstrates the quantities and results that can be obtained by ap-
plying the suggested approach. Finally, in Section 7 we summarise and discuss
improvements of our approach.

2 Setting

2.1 Net present value
Our approach is motivated by the P2007 expansion project of Boliden Odda AS.
Boliden Odda AS had developed a system based on several Microsoft Excel work-
sheets in which the calculation of the NPV of the project was one functionality.
In the following we will assume that a similar system for the calculation of the
NPV of the project of interest is available. This system calculates the value of the
project Vt for each year t in the project period t = 1, . . . , T . Typically, the value of
the project is a complex function of a large number of risk factors that influence
the revenues Rt and costs Ct each year. Each risk factor is assessed by a yearly
value that represents the level of the risk factor in the particular year. For simplic-
ity, we assume that the risk factors that influence the revenues and costs are the
same for each year in the project period. The value of the project in year t is then
given by

Vt = Vt(X1t, . . . , XNt)

= Rt(X1t, . . . , XNt)− Ct(X1t, . . . , XNt),

where X1t, . . . , XNt denote the risk factors that influence the revenues and costs.
Depending of the functional form of Rt and Ct some risk factors might influence
the revenues or the costs only. Applying yearly discount rates r1, . . . , rT the NPV
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is given by

NPV = NPV (V1, . . . , VT )

=
T∑

t=1

Vt∏t
j=1(1 + rt)

.

Often a constant discount rate is applied, in which case rt is replaced by r in the
formulae above. Investment costs (CAPEX) are included by subtracting a con-
stant term from the NPV.

2.2 System
In the following we assume that risk factors S1t, . . . , SMt that influence either the
revenues or the costs, or both, has been identified as crucial for the NPV cal-
culation of the project of interest. Typically, these risk factors are a subset of all
the risk factors included in the NPV calculation. To simplify the notation, we as-
sume that the identified factors are the first M risk factors. Hence, X1t, . . . , XNt =

S1t, . . . , SMt, X(M+1)t, . . . , XNt.
Our model produces simulations S∗b

1t , . . . , S
∗b
Mt, b = 1, . . . , B; t = 1, . . . , T , where

B denotes the number of simulations. These simulations represent the probabil-
ity distribution of the selected risk factors and hence all the information about the
uncertainty. Simulated values of the NPV are obtained by performing the NPV
calculation using the simulated values, so that

NPV ∗b = NPV (V ∗b
1 , . . . , V ∗b

T ), b = 1, . . . , B,

where

V ∗b
t = Rt(S

∗b
1t , . . . , S

∗b
Mt, X(M+1)t, . . . , XNt)− Ct(S

∗b
1t , . . . , S

∗b
Mt, X(M+1)t, . . . , XNt).

In order to integrate the NPV calculation and the model of Section 3, it is required
that the selected risk factors are changeable variables in the system. Typically, the
simulated risk factors are written to file, and then successively feed to the system
calculating the NPV. For each simulation of the risk factors, the corresponding
NPV value is recorded.

In the case of Boliden Odda AS, the values S1t, . . . , SMt, t = 1, . . . , T , were
specified as a matrix in one of the sheets in the Excel workbook. The Excel work-
book was extended with a macro written in Microsoft Visual Basic 6.3. The pur-
pose of the macro was to read the simulated values from the files and for each
simulation activate Boliden’s NPV worksheet, and calculate the NPV value. The
macro runs through all the simulations and writes the resulting NPVs to a new
Excel worksheet.
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3 Model

In our model, all the risk factors are treated on a logarithmic scale. To simplify
the notation, we let St denote the value at time t of one of the selected risk factors.
The log-values are modelled as a sum of a deterministic trend and a stochastic
residual process,

st = log(St) = µt + rt.

Here µt describes the trend of the time series. We will assume that the trend is a
linear function of time, that is,

µt = a + bt.

The residual process rt models deviations from the trend, that is the variability
in the risk factors that may not be described by the trend. The model selected
for rt needs to reflect the characteristics of the variability of the risk factor. In
the case of Boliden Odda AS, an autoregressive assumption was reasonable for
the selected risk factors. An autoregressive assumption implies that we expect
the time series of the risk factors to be mean reverting, i.e. to have a tendency to
return to some normal level. In statistical terms our model is stationary and there
exists a mean-level around which the process fluctuates. The simplest possible
stationary model is an autoregressive (AR) model of order one, which we denote
by AR(1). We model the residual process as such an AR(1) process,

rt = αrt−1 + εt.

Here 0 < α < 1 is the AR-parameter, and εt denotes the innovations. The AR-
parameter determines the mean-reversion rate of the series. A small α gives a
strongly mean-reverting series, while an α close to one gives a series that tends
to return very slowly to the mean level.

If the selected risk factors were stocks, a random-walk or a GARCH-model
(Bollerslev, 1986) are more realistic than the autoregressive model. A random-
walk is obtained by simply letting α = 1.

For all the risk factors in our model, we assume that the innovations follow
a normal distribution with mean 0 and standard deviation σ. This assumption
needs to be verified using the data at hand.

In order to build a simultaneous model for all the risk factors, we need to
incorporate the correlations between them in the model. We use a multivariate
normal distribution for the innovation processes of all the risk factors. This mul-
tivariate normal distribution has a zero mean vector and a correlation matrix R.

To summarise, each risk factor of the model is defined by the parameter vec-
tors a, b, α and σ, and the relationship between the risk factors by the correlation
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matrix R of the multivariate normal distribution of the innovations. With M risk
factors there are 4M + M(M − 1)/2 parameters in the model.

4 Estimation

4.1 Historical data
The model parameters a, b, α, σ and R are estimated using historical time series
data. For each risk factor historical values must be collected from a relevant time
period. The source and availability of the data will depend on the risk factor,
typically stocks and commodity exchanges are sources of information. The time
horizon of NPV calculations is usually 10 to 20 years. It is recommendable to use
time series that includes several time periods of this length, but in practice this is
rarely possible. Also, as economic regimes changes through time, older data tends
to be less representative of current and future regimes. Therefore, we collect the
longest, obtainable and relevant time series.

In most NPV calculations, a yearly time resolution is applied. However, it is
possible to use data on a finer resolution such as daily or monthly. In this case,
the model of Section 3 also needs to have the same, finer, resolution. The daily
or monthly simulations from the model are aggregated to yearly notations, for
instance by averaging.

4.2 Procedure
The model from Section 3 is fitted to historical data as follows:

1. Compute the logarithm of historical data, log(St).

2. Estimate the coefficients a and b of the trend by regressing log(St) on t. This
yields an estimated trend µ̂t = â + b̂t.

3. Find the estimated residual process r̂t = log(St)− µ̂t.

4. Estimate the autoregressive parameter α of the residual process and the stan-
dard deviation σ. This is common functionality in most statistical software
packages. We used the ar-function of S-Plus, Version 6.2.1.

5. Calculate the estimated innovations ε̂t = r̂t − α̂r̂t−1.

6. Estimate the correlation matrix of the innovations. If the time series have
different lengths, correlations can be estimated pairwise, using the maximum
available length for each pair. The resulting correlation matrix need not be
positive definite, in which case it can be transformed to one that is by using
the method of Rebonato and Jäckel (1999).
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5 Simulation

5.1 The risk factors
The bth simulation from the fitted model is generated as follows:

1. Simulate the innovations from the multivariate normal distribution with cor-
relation matrix R for each of the T years in the NPV time horizon. For sim-
plicity, we suppress the risk factor index in the notation, and let ε∗b1 , . . . , ε∗bT

denote these innovations for one of the risk factors.

2. Generate the autoregressive processes for each of the risk factors as r∗bt =

α̂r∗bt−1 + ε∗bt , t = 1, . . . , T .

3. Add the AR-processes to the trends, using the mean of the historical data as
the future trend, s∗bt = â + b̂t + r∗bt , t = 1, . . . , T .

4. Transform to the original scale, S∗b
t = exp(s∗bt ), t = 1, . . . , T .

The above procedure is repeated for a certain number of simulations b = 1, . . . , B.
If the time resolution of the model and the NPV calculation differs, the simula-
tions need to be aggregated to a yearly resolution.

By selecting the acceptable standard error of quantiles of the resulting NPV
distribution, the number of simulations can be determined by applying an ap-
proximation (Jorion, 1997, p. 99).

Figure 1 shows an illustration from the case of Boliden Odda AS. The histori-
cal LME Zinc data has a monthly resolution and notations from January 1980 to
December 2005. The monthly simulations cover the 18 year NPV time horizon,
starting in January 2006. The figure shows three examples of simulated paths for
this risk factor.

5.2 Adjusting the simulations
The simulations S∗b

t , t = 1, . . . , T, b = 1, . . . , B for one or several of the risk fac-
tors, may be adjusted so that their mean level is consistent with a certain prespec-
ified scenario level, rather than the estimated historical level µ̂t. Such a level can
be based on the managements long term expectation or it can be based forward
curves defined by a market. The simulations are adjusted by multiplying with the
ratio between the required level and the average of the simulations over the full
time horizon for each year separately.
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Historical and examples of simulated values
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Figure 1. Illustration of the historical data for the LME Zinc price (black line) and three

different simulated paths, on a monthly time resolution, for a time horizon of 18 years.
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6 Results

Once the simulations NPV ∗b, b = 1, . . . , B have been obtained they can be used
to estimate the distribution of the NPV. A histogram or density-estimate can be
found by feeding the simulations to standard statistical software functions. Fig-
ure 2 is an illustration of the type of results we are able to obtain. The average
value, standard deviation and empirical quantiles of the simulations approxi-
mate the expectation, theoretical standard deviation and the confidence interval,
respectively. Any measure based on the true probability distribution may be esti-
mated using the empirical counterpart.

In a comparison between projects, the information about the uncertainty which
is obtained using the outlined approach, is valuable. Two competing projects may
have quite similar NPVs, but their uncertainty may differ greatly. If risk minimi-
sation is an aim, management could prefer the project with lower expected NPV,
but reduced uncertainty. Worst-case scenarios are another aspect of risk manage-
ment, for which the lower quantiles of the estimated NPV distribution represent
important information.

7 Conclusions and further work

In this paper we have presented an approach to incorporate uncertainty in a NPV
calculation. Stochastic simulations of risk factors known to influence the NPV are
generated from a joint stochastic model. A correlation matrix represents the rela-
tionship between the risk factors. The presence of positive correlations between
risk factors that influence the NPV in the same direction is captured in the NPV
calculations. This implies that we neither underestimate the up-or downside as
done by assuming independence, nor are we strictly conservative as done when
assuming linear relationships.

Our approach does not account for all the uncertainty associated with the
NPV. Only a subset of all the risk factors is included, and the selection of risk
factors is based on subjective judgement. By increasing the number of risk factors
in the model, we account for more of the uncertainty, but increase the complex-
ity of the model. Also, we do not account for the uncertainty associated with the
choice of model. Sensitivity towards the model choice, may be evaluated by fit-
ting several different models.

The methodological challenges of our approach are associated with designing
the marginal and joint stochastic model of the risk factors of interest. The selected
risk factors may be very different in nature, in which case the joint model can not
be a standard multivariate model. Such marginal distributions may be joined in a
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Figure 2. Illustration of a simulated probability distribution of the NPV, using 1000 simu-

lations. The distribution may be used to find a 90% confidence interval, the mean or the

standard deviation, as indicated in the figure.
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multivariate model by using copulas Embrechts et al. (2001). Also, we suggest a
simple AR(1) model. An alternative is the class of Vector Autoregressive Models
(VAR), see Sims (1980), that allows for more flexible dependency structures.

The time horizon of the NPV calculations presents another challenge. It is
often difficult to find relevant historical time series data for the risk factors of
interest of a similar length. When the available time series are too short we stand
the risk of underestimating the extremes of the risk factors. The time aspect makes
it important to perform a subjective assessment of the shortcoming of the data at
hand, and if possible, correct for this.
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