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1 Introduction

Statistical inference for point processes originates, as pointed out by Daley and Vere-Jones
(2005), in two sources: life tables, and counting phenomena. Among early sources of
inferential work are Graunt, Halley and Newton in the 18th century on the life table side,
and Newcomb, Abbé and Seidel in the second half of the 19th century on the counting side
(for Newcomb’s contributions, see Guttorp (2001); the others are all described by Daley
and Vere-Jones). The modern approach originated mainly in England in the 1950s and
60s, with Bartlett and Cox as the main names. A few examples of point process patterns
are shown in Figure 1.

This paper will review the Bayesian contributions to inference for point processes. We
will only discuss non-Markovian processes, as lately much of the emphasis has been on
Markovian models, and we consider it important not to lose sight of the non-Markovian
ones. We make no pretense of a complete literature review; rather, we have chosen papers
that we think are interesting or important or that we can use to make a point. A more
comprehensive review paper is Møller and Waagepetersen (2007). Chapter 4 of the recent
Handbook of Spatial Statistics (Gelfand et al., 2010) is devoted to spatial point processes.

Figure 1. Examples of point process patterns. Left: a process which is both clustered and regular (a
Matérn type I process, section 2.4, yields the cluster centers and a Neyman-Scott process, section
4, the points). Middle: a regular process (a Matérn type I process). Right: completely random
process (Poisson process, section 2.1). Shown is the Voronoi tesselation of the points. Generated
by Ute Hahn and Dietrich Stoyan.

We start in section 2 by reviewing work on nonparametric estimation (Bayesian is al-
ways assumed unless otherwise specified) of the rate of a nonhomogeneous Poisson pro-
cess. Immediately we will see that many processes, and many inference problems, can
be viewed from more than one point of view. We then proceed to models derived from a
Poisson process using thinning, and show how one can use Bayes factors to distinguish
between models of late fall precipitation in upstate New York, USA.

The next section 3 deals with doubly stochastic models, and again we encounter the prob-
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lem of how one views the inference. Section 4 deals with cluster processes, where we
show an application to brain imaging, and section 5 is about model selection. Here we
compare the Akaike criterion and the Bayes factor for selecting between types of cluster
models. Finally, a short summary is given in section 6.

We are grateful to the organizers of the Toledo conference for the opportunity to partici-
pate and to write this paper. We also need to thank the Norwegian Computing Center in
Oslo, Norway, and the University of Heidelberg, Germany, for accommodating visits by
one or the other of us. Alex Lenkoski provided many helpful comments, and we thank
Ute Hahn and Dietrich Stoyan for generating the patterns in Figure 1.

2 Poisson and related processes

2.1 Nonparametric estimation for nonstationary Poisson rate
functions

In 1978 Aalen (1978) revolutionised point process analysis by introducing a general non-
parametric statistical theory for the class of multiplicative counting processes. It was a
frequentist theory, but received a Bayesian adaptation in the work of Lo (1982) for Pois-
son processes, and Lo and Weng (1989) for the general multiplicative processes. Kim
(1999) also dealt with the general multiplicative process, but used a Lévy process prior.
Here we will focus on Lo’s treatment of the Poisson process case. Consider a Poisson
process with intensity measure ν. Lo showed that a gamma process prior is conjugate.
To define the gamma process prior, consider a σ-finite measure α, and say the measure
µ is selected by a gamma process prior if for disjoint sets A1, ..., Ak we have that the
collection of random variables {µ(A1), ..., µ(Ak)} are independent gamma random vari-
ables of scale 1 and means α(Ai). The measure µ is then said to have shape measure
α and scale parameter 1. We denote the corresponding probability measure having these
finite-dimensional distributions by Pα,1. We can rescale the measure by an α-integrable
positive random function β by defining βµ(A) =

∫
A
β(x)µ(dx) and the corresponding

probability measure is denoted Pα,β . Lo showed that if we observe independent realisa-
tions N1, ..., Nn of N , and assign a prior measure Pα,β to the intensity measure ν, then the
posterior measure is Pα+

Pn
1 Ni,β/(1+nβ).

Consider now the special case where β(x) = 1/θ, and suppose we are interested in esti-
mating the intensity νt = ν(0, t] under integrated squared error loss. It is not difficult to
verify that the Bayes estimator is

θ

θ + n

α(0, t]

θ
+

n

n+ θ

1

n

n∑
i=1

Ni(0, t],

i.e., a weighted average of the prior guess and the sample empirical estimate.
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Generally the tools needed to estimate nonparametrically a nonhomogeneous Poisson pro-
cess with time dependent rate λ(t), assumed integrable over the period of observation A,
are the same as those for density estimation. Conditionally upon the total number of points
N = N(A) the points are distributed as the order statistics from a distribution with density
(Cox and Lewis, 1966)

f(s) = λ(s)/

∫
A

λ(u)du. (1)

Diggle (1985) used this fact to develop a kernel estimator for the intensity, and Peel-
ing et al. (2007) used a histogram type estimator in setting up a Bayesian analysis of an
interesting problem in musicology. In order to create a Bayesian structure, it has been
popular to assign a prior related to a Gaussian process, typically of the form exp(X(t))

where X(t) is a Gaussian process. By the same misnomer as for the lognormal distribu-
tion, this tends to be called a log Gaussian Cox process, although it is the log intensity
which is Gaussian, and in our context serves as a prior for a nonhomogeneous Poisson
process intensity, while the setup mathematically (albeit not conceptually) corresponds to
a doubly stochastic Poisson process (Cox, 1955). The doubly stochastic Poisson process
if of course of interest in its own right (see section 3). The conditional likelihood for this
model, given the realisation of λ(s), s ∈ A, is simply the usual Poisson likelihood

L(λ(s)) = exp
(∫

A

(log λ(s)dNs − λ(s)ds)
)
. (2)

For random infinite dimensional λ(s) the integral in the exponential of (2) cannot be eval-
uated explicitly, which makes Bayesian inference with a prior Y (t) based on a Gaussian
process intractable. Cressie and Rathbun (1994) and Møller et al. (1998) used a discreti-
sation approach to obtain a tractable expression for the likelihood and Beneš et al. (2005)
applied this to the Bayesian problem we are considering in this section. The idea is to ap-
proximate the continuous process Y (t) by a sequence of step functions in the linear case,
and values on a grid in the spatial case. Waagepetersen (2004) showed that the resulting
posterior density converges to the true posterior as the discretisation interval shrinks to
zero. Both he and Beneš et al. (2005) pointed out the sensitivity of the resulting inference
to the discretisation scheme.

Heikkinen and Arjas (1998) took a similar route, using piecewise constant functions with
random number of jumps of random size as prior on the intensity function, but not think-
ing of this as an approximation to a smooth prior process. It does not follow, for example,
that the posterior mean is piecewise constant. In fact, it typically comes out smooth.

Kottas (2006) used the representation in (1) to develop a different estimation method.
Treating γ =

∫
A
λ(u)du as a separate parameter, he used explicit density estimation tools

to estimate f(s). We let A = (0, T ]. Then f is estimated as a Dirichlet mixture of scaled
beta densities (supported on (0, T ]). The Dirichlet process is determined by a precision
parameter α, which is given a gamma prior, and a base distribution, which is a function
of the location and dispersion of the beta distributions. These are taken to be independent

6 Bayesian Inference for Non-Markovian Point Processes



uniform and inverse gamma, respectively. Finally, γ is given a Jeffreys prior of the form
1/x.

2.2 The thinning approach to simulation
Lewis and Shedler (1979) introduced the standard approach to generating nonhomoge-
neous Poisson processes on a set A. If the rate is λ(s) and we write λ∗ = supt∈A λ(t),
their thinning approach is to generate a homogeneous Poisson process of rate λ∗, and then
keep a point at location τ with probability λ(τ)/λ∗. This is, of course, a form of rejection
sampling.

Adams et al. (2009) extended the Lewis-Shedler method to enable exact computation of
the posterior distribution of a nonhomogeneous Poisson process with a Gaussian process
prior of the form λ∗σ(X(s)), where σ(x) = (1 + exp(−x))−1, by keeping track of the
deleted locations as well as the values of the Gaussian process at both the deleted and the
kept locations, which they think of as a latent variable. Their approach is to use a Markov
chain Monte Carlo approach containing three types of steps: changing the number of
deleted points, the locations of the deleted points, and the values of the Gaussian process.
The likelihood of this finite system can then be written down explicitly, without the need
to evaluate integrals of Gaussian processes. Their approach appears to outperform the
discretisation approach of the previous subsection on smooth intensity functions.

2.3 Extensions
Many of the methods for point processes on the line generalise to spatial processes. In
some cases these extensions are non-straightforward, mainly concerning the lack of well-
ordering of R2. A fairly recent review is Kottas and Sanso (2007), section 2.4. Interesting
applications include Skare et al. (2007) who modelled a spatial pattern of badger terri-
tories and the distribution of pores in 3D translucent alumina using an inhomogeneous
Poisson process with high intensity near the edges of an unobserved Voroni tessellation.
We have chosen not to focus on parametric rate models (which abound e.g. in the software
reliability literature,Huang and Bier (1999); Kuo and Yang (1996)), since most of these
are very similar to Bayesian models for iid data.

2.4 Matérn thinning
Matérn (1960) introduced three different thinnings of Poisson processes in order to pro-
duce point processes that were more regular than the Poisson. Type I simply deletes all
pairs of points that are within a radius R of another point. This is perhaps the simplest
hard core rejection model in the literature. Type II introduces independent uniform marks
ti, called times, to each of the original points. The point with the smallest mark among
all neighbours within distance R is retained. Clearly this model would have a higher rate
of points than type I. Matérn also considered a third, dynamic variant, which Huber and
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Wolpert (2009) called Type III, and which Matérn thought intractable. The retained points
are called "seen", while the removed points are "hidden". In the type III process the seen
points are those for which no seen point with lower time mark lies within distance R. So,
for example, if we have three points with increasing times, such that the first is within R
of the second, and the second is within R of the third, we have no points left in a type I
process, only the first point left in the type II process, but potentially two points left in the
type III process (see Huber and Wolpert (2009), Figure 1, for a graphical illustration).

In order to calculate the likelihood for a type III process, Huber and Wolpert used a tech-
nique akin to that used by Adams et al. in the previous subsection. Specifically, they
suggested starting with n seen points and parameters λ and R, and then draw hidden
points from a Poisson process of rate λ, and draw time marks uniformly for both seen
and hidden points, until for all hidden points there is a seen point within distance R and
with smaller time mark. This has the drawback that it can take quite a long time if there
is a large number of seen points. Define the shadow of a seen point configuration as the
union of balls of radius R centred at each seen point cross the interval (ti, 1] containing
the possible hidden points. Let dΛ(x, t) be the joint intensity of a Poisson point at x with
mark t. Then the density (with respect to a Poisson process with uniform marks) of a seen
point pattern x with marks t becomes

1
(
ρ(x) > R)λn exp(|S|(1− λ)) exp(Λ(D(x, t))

)
(3)

where ρ(x) = mini 6=j(xi, xj) is the smallest interpoint distance andD(x, t) is the shadow
of (x, t). It is straightforward to verify that the acceptance-rejection approach outlined
above samples directly from the likelihood. A faster perfect simulation approach was also
outlined, and has been expanded upon in Møller et al. (2010).

The likelihood calculation can now form the basis for a Bayesian approach to estimating
parameter of a Matérn type III process. To our knowledge this has not yet been imple-
mented elsewhere in the literature.

Example 2.1. (Comparison of cluster processes for precipitation models)

Hobbs and Locatelli (1978) described mesoscale rainfall activity in cyclonic storms rough-
ly as follows. Synoptic scale weather fronts contain large mesoscale regions, rainfall
bands, where precipitation activity is possible. In turn, these bands contain moving rain
cells, which are the points of higher rainfall rates. Observing this from a fixed point in
space (e.g., a rain gauge), we see varying amounts of rainfall over time, with precipitation
tending to come in clusters. Mathematically, Le Cam (1960) was first to suggest mod-
eling rainfall at a location by a cluster point process, while Kavvas and Delleur (1981)
proposed a Neyman-Scott Poisson cluster process, in which the primary process is a non-
homogeneous Poisson process, and were the first to fit it to observed data. In a sequence of
papers in the 1980’s, a variety of cluster process approaches were developed (a review is
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Figure 2. Fall (October through December) precipitation events observed at Whiteface Mountain,
New York, 1976-1982.

provided in Guttorp, 1996; Salim and Pawitan, 2003, discusses more recent work), usually
made stationary by considering only a short time period each year, such as a month.

In most versions of cluster point process analysis of precipitation, the primary process is
assumed unobserved. This may be reasonable if only rain gauge data is used. However,
one would often be able to assess the arrival of weather fronts using different types of data.
Guttorp (1988) used so-called event-based data from the MAP3S acid rain monitoring
network to assess features of the secondary process. This is the same data set that we will
be using for our analysis, see Figure 2. The MAP3S/PCN (Multistate Atmospheric Power
Product Pollution Study / Precipitation Chemistry Network) network of nine monitoring
stations in the northeastern United States was initiated in 1976. We will focus on station
1, located on Whiteface Mountain in New York, at an altitude of 610 meters. The data
were obtained from the Battelle-Pacific Northwest Laboratories ADS (Acid Deposition
System) data base. They are described in Gentleman et al. (1985), and in MAP3S/RAINE
Research Community (1982). The data were collected on an event basis, using samplers
that open during precipitation, and close during dry periods. The definition of an event in
the MAP3S network was left to the operator of the station; the Whiteface operator made
a meteorologically based decision on what constitutes a new event.

For either station, each event may contain several precipitation incidents, indicated by
separate lid openings. Since storm fronts do not arrive according to a Poisson process
(since the fronts are physically separate), we do not expect a Poisson cluster process to be
an adequate description of precipitation. We thus perform a comparison of a homogeneous
Poisson cluster model and the type III Matérn model described in the previous subsection.
Here, we view the data as seven independent realisations of fall precipitation events at
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Whiteface Mountain.

In a Bayesian framework, Bayes factors (Jeffreys, 1935) offer a natural way of scoring
models based on the evidence provided by the data. Specifically, suppose that p(x|θ,M)

is the density function of the observed point pattern x under model M given the model-
specific parameter vector θ. Let the prior density of θ (assumed to be proper) be given by
π(θ). The marginal likelihood of x under model M is given by

m(x|M) =

∫
p(x|θ,M)π(θ|M)dθ. (4)

Two models, M1 and M2 may then be compared by calculating the Bayes factor

B12(x) =
m(x|M1)

m(x|M2)
. (5)

For our data set, the Matérn Type III density in (3) becomes

p(x|λ,R,MMa) = 1
(
ρ(x) > R

)
λn exp(7T + λ(nR− 7T )),

where n = 127 is the total number of observed points, T = 92 is the number of days in
the observation period, and ρ(x) = 0.75 is the minimum interpoint distance over all the
seven realisations. Similarly, the density for the homogeneous Poisson process is given
by,

p(x|λ,MPo) = λn exp(7T (1− λ)).

Here, we assume that λ,R > 0. We assign the parameter λ a conjugate prior density and
set it to be exponential with rate parameter ν = 2 in both models, while the parameter
R in the Matérn Type III density is assigned a uniform prior on (0, T ), see Figure 4. The
Bayes factor for equiprobable models then becomes

BMa,Po(x) =
(7T + ν)

Tn2

(( 7T + ν

7T + ν − nρ(x)

)n
− 1
)

= 273618, (6)

which strongly favours the Matérn Type III model which is consistent with our hypothesis.
As shown in Figure 3, the value of the Bayes factor is highly dependent on the value of
the minimum interpoint distance ρ(x).

Based on the results above, we continue with the analysis of the Matérn Type III model
only. The full conditional posterior distribution for λ is given by a Γ(n+ 1, 7T + ν−nR)

distribution and

p(R|x, λ,MMa) = 1
(
0 < R < ρ(x)

) λn

exp(λnρ(x))− 1
exp(λnR).

Figure 4 shows the posterior distributions for R and λ which are obtained from 50000
simulations using a Gibbs sampler and the inverse transform. The posterior distributions
are much sharper than the prior distributions and the posterior means are very close to
the maximum likelihood estimates. The maximum likelihood estimates are given by R̂ =

0.75 and λ̂ = 0.23, while we obtain the posterior means R̃ = 0.74 and λ̃ = 0.23.
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Figure 3. The Bayes factor for comparing the Matérn Type III model and the homogeneous Poisson
model for the Whiteface Mountain precipitation data, as a function of the minimum interpoint
distance, ρ(x). The Bayes factors are plotted on a log-scale; values greater than zero favour the
Matérn Type III model.
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Figure 4. Posterior distributions for the parameters R (left) and λ (right) in the Matérn Type III
model for precipitation events at Whiteface Mountain. The respective prior distributions are de-
noted by solid black lines.
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3 Doubly stochastic processes

The doubly stochastic Poisson process, introduced by Cox (1955) and so named by Bartlett
(1963) is obtained by letting the rate λ(t) of the Poisson process vary according to a
positive stochastic process, say Λ(t). There are instances of doubly stochastic Poisson
processes that are identical to cluster processes (for example, the shot noise process is
a Neyman-Scott Poisson cluster process, see Daley and Vere-Jones (2005, p. 171-172).
It is worth noting here that, except when the rate process is determined by the scientific
situation, it is difficult to analyse a doubly stochastic process without having repeated ob-
servations, since the model is indistinguishable from a nonhomogeneous Poisson process
based on a single path (see Møller and Waagepetersen, 2004). Thus, how you view your
analysis can be seen as a matter of preference or convenience. We have not been able to
find any Bayesian analyses of data where repeated observations are available, so that one
can tell apart the doubly stochastic mechanism from the nonhomogenous Poisson process
model.

Wolpert and Ickstadt (1998) modeled a spatial Poisson process with random intensity,
where the intensity measure is a kernel mixture with a gamma measure. An an example,
they analyse the density and spatial correlation of hickory trees. The same data were also
analysed in Chapter 10.4 of Møller and Waagepetersen (2004) in a Bayesian setting using
a nonhomogeneous Poisson process with a log-Gaussian prior process, where the Gaus-
sian process has constant mean β, variance σ2, and an exponential correlation function
with range parameter α. The hyperparameters β, σ2, κ = log(α) need prior distributions
as well. They used Jeffreys priors for the mean and variance, and a uniform prior between
-2 and 4 for κ. As discussed in section 2, a discrete approximation to the prior process
was used. The analysis was very sensitive to the prior on κ, and compared to a frequen-
tist method of moment analysis using the g-function, the Bayesian method indicates a
substantially larger correlation range. As pointed out above, this can also be viewed as a
parametric Bayesian analysis of the doubly stochastic Poisson process obtained using a
log Gaussian rate function.

Gutiérrez-Peña and Nieto-Barajas (2003) considered a doubly stochastic Poisson process
with a gamma process (as in Lo, 1982) being its rate function Λ(t). This process has
parameter functions α (the rate function measure) and β (the scale process). In the case of
constant scale β = b, the resulting process is what they call a negative binomial process
of type 2. To perform a Bayesian analysis, they assigned a gamma process prior to the rate
function measure α, and computed a closed form expression for the posterior distribution
of α given the data. The authors did not view the distribution of the rate function Λ(t) as
a prior distribution.

Rue et al. (2009), in their highly influential paper on integrated nested Laplace approxi-
mations (INLA), illustrated how their numerical alternative to Markov chain Monte Carlo
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methods can be applied to a doubly stochastic Poisson process where the intensity process
is log Gaussian, although the method would work for any positive function of a Gaussian
process such that the resulting doubly stochastic Poisson process is valid. The calcula-
tion of over 20,000 marginal distributions, applied to the rainforest data set also analysed
by Waagepetersen (2007), took four hours of computing time. Again, the Gaussian pro-
cess was discretized to a fine grid. To get similar precision with MCMC methods would
be prohibitive computationally. It is possible within INLA to calculate Bayes factors, as
noted in section 6.2 of the paper. However, the prior distributions used for the underlying
random field are usually improper which means that the Bayes factor is only determined
up to an unknown ratio of constants.

4 Cluster processes

The general cluster process (Daley and Vere-Jones, 2005) consists of a parent point pro-
cess X to each point τi of which is associated a secondary point process Zi + τi. The
structure of the primary and secondary processes is a suitable source of classification.
Thus we can for example separate Poisson cluster processes (in which the primary pro-
cess is Poisson) from general cluster processes (with a general primary process). On the
line the most common secondary processes are of the Bartlett-Lewis type in which a ran-
dom number of secondary points are laid out according to a renewal process, and the
Neyman-Scott type where the secondary points are iid around the parent point (or cluster
center). The named processes that abound in the literature (Cox cluster process, Matérn
cluster process, Thomas process etc.) are simply special cases, and it does not seem useful
to us to have a nomenclature which separates the particular distributional assumption. For
example, we would call the Thomas process a Poisson cluster process of Neyman-Scott
type using a Poisson cluster size distribution and normally distributed dispersion. Most
Poisson cluster processes are non-Markovian; the exception being those with uniformly
bounded cluster diameters (Baddeley et al., 1996).

Lieshout and Baddeley (2002) developed likelihood expressions for cluster processes with
Poisson distributed offspring sizes, and developed Bayesian inference for processes where
the prior distribution of the parent process is a Markov inhibition process. Of course, one
could assign a Poisson process or a Matérn type III prior, and the results would be very
similar. The main tool is a Markov chain Monte Carlo algorithm that uses a birth and death
process (or, in a special case, coupling from the past), and the techniques are applied to a
classical data set.

McKeague and Loizeaux (2002) considered Neyman-Scott processes in the plane, and
also used an inhibition process as prior on the parent process. They used perfect sampling,
and applied their tools to an example involving leukemia cases, where unobserved cluster

Bayesian Inference for Non-Markovian Point Processes 13



centers are estimated to lie close to some hazardous waste sites.

The idea of self-exciting processes is to have the rate depend on the development of the
model in the past. If this dependence can be written as a linear functional, there is an
alternative representation of this process as a cluster process (see Daley and Vere-Jones
(2005), pp. 183-185). Gamerman (1992) used a variant where the intensity is piecewise
constant, but dependent on the events in the previous piece. One could of course also think
of this as a doubly stochastic model. Gamerman writes down equations for filtering and
prediction as well as for Bayesian estimation of the rates in each interval.

Waagepetersen and Schweder (2006) used a Neyman-Scott process with negative bino-
mial cluster size distribution and truncated bivariate normal dispersion to model minke
whale populations. The data are obtained from line transect samples, and are modelled
as a random thinning of the cluster process. The parameter of interest is the product of
the rate of the cluster centers and the mean cluster size, called the whale intensity. It is
estimated using Markov chain Monte Carlo, even though the exact likelihoods are com-
putable.

Example 4.1. (Modelling activation in the human brain)

Functional magnetic resonance imaging (fMRI) is a technique for non-invasive in vivo
recording of brain activation. It is based on the different magnetic properties of oxy-
genated and deoxygenated haemoglobin; images obtained with the method show chang-
ing blood flow in the brain associated with neural activation. Figure 5 shows such data
set, where the subject was not exposed to stimuli during the recording of the data. Despite
the lack of specific stimuli, changes in the signal appear over time, some of which show
covariation in different regions of the brain.

−100

0

100

Figure 1: Development of the MR signal activity over time in a single slice through
the human brain. From left to right and top to bottom: the activity at time t =
12, 30, 48, . . . , 210 seconds.

constitute a major challenge because of a high level of noise and no prior knowledge of
time points of activation. Another complication is possible aliasing with respiratory
and cardiac cycles. The difficulties faced in such non-stimulus experiments are
much more serious than those met in more traditional experimental designs of fMRI
experiments with known periods of stimuli (‘on periods’) between periods of rest
(‘off periods’). Recently, experiments with a more continuous but known type of
stimulus has also been tried out, cf. [1, 2]. A good statistical review on design of
fMRI experiments may be found in [10].

The aim of this paper is to show how spatio-temporal point process models
for functional magnetic resonance imaging (fMRI) data can be used in the study
of resting state networks in the human brain. A more detailed account will be
published elsewhere [19].

2 Correlation analysis

The data from an fMRI experiment constitute a collection of time series

Ztx, t = t1, . . . , tm,

x ∈ X . Here, Ztx is the MR signal intensity at time t and voxel x. The time points
t1, . . . , tm are usually equidistant and belong to the interval [0, T ], where T is the
length of the experiment. The set X is a finite subset of R2 or R3 with N elements,
called voxels, representing a two dimensional slice or a three dimensional volume of
the brain.

In [8], the functional connectivity in the resting brain is studied by a simple
correlation analysis. A seed region X0 ⊂ X is selected and the correlation between
the average time series for this region

Z̄tX0 =
1

|X0|
∑
x∈X0

Ztx, t = t1, . . . , tm

2

Figure 5. Development of the magnetic resonance (MR) signal activity over time in a sin-
gle slice through the human brain. From left to right and top to bottom: the activity at time
t = 12, 30, 48, . . . , 210 seconds. Note that the images shown here have been preprocessed to
correct for movement related artefacts and the signal changes have been enhanced so that they can
be observed with the naked eye. From Thorarinsdottir and Jensen (2006).
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In Thorarinsdottir and Jensen (2006) and Jensen and Thorarinsdottir (2007), a Bayesian
spatio-temporal point process model for such data was proposed. Purely spatial processes
for this type of data have also been proposed in Taskinen (2001) and Hartvig (2002). The
activation is described by a marked point process Φ, where the point process is latent
and corresponds to the unobserved neural activation while the marks are observed and
describe the associated observed MR signal changes due to changes in the blood oxy-
genation level. It is thus the latent point process, Ψ, and the associated intensity function
that are of main interest for the statistical analysis.

Assume that we have observed data {Ztx}, where t ∈ [0, T ] denotes time and x ∈ X
denotes a spatial location, or a voxel, in the brain region X which is a bounded subset of
R2 or R3. Here, X is a single slice through the brain, X ⊂ R2. To account for edge effects
in the time domain, we assume that Ψ is a process on [T−, T ]×X , where T− < 0 is chosen
such that it is very unlikely that a neural activation starting before time T− will affect an
observed MR signal on [0, T ]. The marked process is denoted by Φ = {[ti, xi;mi]} with
(ti, xi) ∈ Ψ and marks mi ∈ Rd.

The resulting model for the observed MR signal intensity at time t and voxel x becomes

Ztx = µx +
∑
i

ftx(ti, xi;mi) + σεtx, (7)

where µx is the baseline signal at voxel x and εtx is an error term with mean 0 and variance
1. The function ftx describes the contribution to the observed signal intensity at voxel x
and time t caused by a neuronal activation at (ti, xi) ∈ Ψ. This function is assumed
to be separable in space and time with ftx(ti, xi;mi) = g(t − ti;mi)h(x − xi;mi) and
mi = (θ1i, θ2i, θ3i) ∈ R3

+, where

h(y;m) = θ1 exp
(
− ‖y‖

2

2θ2

)
and

g(u;m) =

∫ θ3

0

1√
2π3

exp
(
− (u− v − 6)2

18

)
dv.

Here, ‖ · ‖ donotes the Euklidian norm. The mark parameters thus have the following
interpretation: θ1i describes the magnitude of the signal change due to neural activation i,
θ2i describes the spatial extend of this change, and θ3i its temporal duration.

For simplicity, assume that the marks mi and the variance σ2 are fixed. The aim of the
statistical analysis is then to recover the latent point process Ψ and its intensity function
based on the observations {Ztx} under the model described by (7). Further, we may re-
place Ztx in (7) by Ztx− Z̄·x and ftx by ftx− f̄·x. The new data have µx = 0 and the same
correlation structure as the original data if the number of observed images is sufficiently
large.

The prior distribution of Ψ is chosen as Poisson with intensity λ. There is thus no inter-
action between points in the prior distribution and any interactions found in the posterior
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distribution derive from interactions observed in the likelihood. The intensity function λ
is assumed to be of the following form

λ(t, x) =
K∑
k=1

λk1
(
x ∈ Xk

)
, (8)

where the sets Xk ⊆ X are disjoint. Their union may be the whole observed brain region
X but need not be. The sets Xk should be specified by the experimenter while the param-
eters λk are unknown. The intensity function can be written as λ(t, x) = cλ2(x), where
c > 0 and

∫
X λ2(x)dx = 1. If follows from (8), that λ2 can be written as

λ2(x) =
K∑
k=1

πk
1
(
x ∈ Xk

)
|Xk| ,

where |·| denotes area and πk > 0 with
∑K

k=1 πk = 1. The parameters c, π = (π1, . . . , πK)

are assigned non-informative prior distributions.

The posterior density is of the form

p(c, π, ψ|z) ∝ p(z|ψ)p(ψ|c, π)p(c)p(π),

where the likelihood is given by

p(z|ψ) = [2πσ2]−n(z)/2 exp
(
− 1

2σ2

∑
t,x

[
ztx −

∑
(ti,xi)∈ψ

ftx(ti, xi;m)
]2)

.

A fixed scan Metropolis within Gibbs algorithm is used to simulate from the posterior
density where in each scan c, π, and ψ are updated in turn. The full conditional distribu-
tions for c and π are given by a Gamma and a Dirichlet distribution, respectively, while
the full conditional distribution for ψ is

p(ψ|c, π, z) ∝ cn(ψ)

K∏
k=1

π
nk(ψ)
k exp

(
− 1

2σ2

∑
t,x

[
ztx −

∑
(ti,xi)∈ψ

ftx(ti, xi;m)
]2)

, (9)

where nk(ψ) denotes the number of points in ψ that fall within Xk. Note that the full
conditional distribution for ψ is in fact a pairwise interaction density. The point process ψ
is simulated from the density in (9) using a Birth-Death-Move algorithm as described in
Møller and Waagepetersen (2004).

Based on an earlier analysis of the same data set by Beckmann et al. (2005), the prior
intensity in (8) was set to be positive in three sub-regions of interest, the left and right
motor cortex and a middle region. The resulting posterior spatial intensity pattern for ψ
when cumulated over time is shown in Figure 6. The posterior spatial intensity is clearly
inhomogeneous in contrast to the homogeneous prior intensity with strong indications for
clustering in the spatial domain.
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Figure 6. The posterior spatial activation pattern in the three regions of interest cumulated over
time. The three regions are the left and right motor cortex and a middle region. From Jensen and
Thorarinsdottir (2007).

5 Model selection

Model selection for point process models is commonly carried out by investigating the
summary statistics of the point pattern prior to the model fitting. Formal Monte Carlo
tests of goodness-of-fit to the homogeneous Poisson process or comparison of the nearest-
neighbour distance distribution function and the spherical contact distribution function
can provide the modeller with evidence for regularity or clustering in the point pattern
as compared to complete randomness (Baddeley, 2010; Illian et al., 2008). Such compar-
isons can produce important guidance for choosing the correct class of models, yet these
model classes are very broad, rendering the information less valuable.

Statistical inference for point process models is usually very computationally intensive,
and it is often not feasible to perform inference for a single data set under many differ-
ent models. For this reason, scientific understanding of the data, combined with expert
knowledge of the model class, is often combined to a priori select a single model for a
given data set, once the appropriate class of models has been established. However, if the
scientific question of interest relates to specific details in the modelling, such as partic-
ularities in the clustering mechanism of the point pattern, a more formal procedure for
model comparison is called for.

The Akaike information criterion (AIC), which is given by

AIC = −2 logL+ 2k, (10)

where L is the maximum likelihood value and k is the number of parameters in the model,
is by far the most popular model comparison criterion used in the point process literature.
The AIC has the advantage that it can be applied to any likelihood based inference method.
However, it has been noted that it tends to favour more complicated models for larger data
sets (Ogata, 1999). This is a clear disadvantage in a setting where the modelling easily
becomes computationally intractable. We discuss this issue further in Example 5.1.
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Bayes factors (see Example 2.1) were first used in a point process context by Akman and
Raftery (1986), who compared parametric intensity models for nonhomogenous Pois-
son processes on the line. The focus of this work was to develop conditions for which
the Bayes factor could be determined under vague prior information. In this context,
Akman and Raftery call the Bayes factor B(n)

12 (x, T ) operational if for Un(T ) = {u =

(u1, . . . , un) : 0 ≤ u1 ≤ . . . ≤ un ≤ T}, there exists a positive integer n such that

sup
T>0

sup
u∈Un(T )

B(n)
12 (u, T ) <∞.

Then, m, the smallest such integer, is the smallest number of observed events needed for
a comparison of M1 and M2. Furthermore, if B(n)

12 (u, T ) is a bounded function of u for
each fixed n and T , and invariant to scale changes in the time variable,

B(n)
12 (u, T ) = B(n)

12 (au, aT ) ∀a > 0,

for all n, u, T , then the Bayes factor is operational. It is thus, under fairly general con-
ditions, sufficient to define the prior distributions such that the Bayes factor becomes
time-invariant for it to be well defined. Akman and Raftery demonstrated this explicitely
for log-polynomial intensity models.

Walsh and Raftery (2005) used partial Bayes factors for hypothesis testing to classify
a point pattern as either a homogeneous Poisson pattern or a mixture of a homogeneous
Poisson pattern and a hard-core Strauss process. Here, the term partial Bayes factor refers
to calculating the Bayes factor in (5) using a summary statistic y rather than the full data
x, as the marginal likelihood is intractable for the mixture model considered in the study.
The partial Bayes factor is equivalent to (5) if and only if y is a sufficient statistic for x

under both M1 and M2.

To our knowledge, the work by Akman and Raftery (1986) and Walsh and Raftery (2005),
are the only applications of Bayesian model selection criteria reported in the literature in
the context of point process models as those, discussed in this paper. In Example 2.1, we
showed how Bayes factors may be calculated directly for simple models. In the follow-
ing example, we consider using a reversible jump algorithm for Bayesian model selection
when direct calculation of the Bayes factor is not feasible.

Example 5.1. (Model selection for point processes of Neyman-Scott type)

Here, we compare using AIC and Bayes factors for model selection within the class of
Neyman-Scott cluster processes. More precisely, we compare two different models of
Neyman-Scott type which differ in the dispersion process for the secondary points. Model
M1 has a homogeneous Poisson cluster process, a Poisson cluster size distribution, and
the dispersion distribution is given by a normal distribution. ModelM2, on the other hand,
can be seen as a mixture of two such processes, where the dispersion variance differs for
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the two components of the mixture. Palm likelihood inference for M1 and M2 was con-
sidered in Tanaka et al. (2007), where the two models are called the Thomas model and
generalized Thomas model of type B, respectively. Prokešová and Jensen (2010) showed
that the Palm likelihood estimator for these models is consistent and asymptotically nor-
mally distributed.

Model M1 has a latent cluster centre process and three unknown parameters: the intensity
of the cluster process, κ, the mean cluster size, α, and the dispersion variance, ω2. We
generate ten samples from this model on B = [0, 1]× [0, 1] for (κ, α, ω) = (50, 30, 0.03)

and perform Palm likelihood inference and Bayesian inference for each sample under
both model M1 and M2. The procedure is then repeated with data samples generated
from model M2. Model M2 has two latent cluster centre processes and five unknown
parameters. We set the true parameters as (κ1, κ2, α, ω1, ω2) = (25, 25, 30, 0.02, 0.04),
where κi is the intensity and ω2

i is the dispersion variance for cluster process i = 1, 2.
Examples of such point patterns are shown in Figure 7.
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Figure 7. Examples of simulated point patterns of Neyman-Scott type in the plane. Left: Poisson
cluster centre process with Poisson number of offsprings and normal dispersion process. Right:
mixture of two such processes which differ in the dispersion variance. The observed point patterns
are indicated with gray dots, while the black squares and circles indicate the latent cluster centre
processes.

Bayesian inference for similar processes is discussed in e.g. Møller and Waagepetersen
(2004), Møller and Waagepetersen (2007), and Waagepetersen and Schweder (2006).
Contrary to the models considered in Example 2.1, we cannot calculate the marginal
likelihood (4) of a dataset x under the models M1 and M2 directly. Instead, we define
a reversible jump algorithm (Green, 1995) where we jump between the models M1 and
M2. The Bayes factor can then be obtained directly from the MCMC sample by compar-
ing the time spent in M1 and the time spent M2.

Bayesian Inference for Non-Markovian Point Processes 19



The random intensity function of M2 is given by

αZ(ξ|Ψ, ω) = α
[ 1

2πω2
1

∑
c∈Ψ1

exp
(
− ‖c− ξ‖

2

2ω2
1

)
+

1

2πω2
2

∑
c∈Ψ2

exp
(
− ‖c− ξ‖

2

2ω2
2

)]
,

where ω = (ω1, ω2), Ψ = (Ψ1,Ψ2) denotes the cluster centre processes, and ‖ · ‖ is
the Euklidian norm. To account for edge effects, we define the centre processes on the
extended window Bext = [−0.1, 1.1]× [−0.1, 1.1]. The density of a Poisson process on B
with intensity function κwith respect to a homogeneous Poisson processX1 with intensity
λ is given by

p(x|κ) = exp
(
λ|B| −

∫
B

κ(ξ)dξ
)∏
ξ∈x

κ(ξ),

where | · | denotes area. As noted by Møller and Waagepetersen (2004, p. 151), the choice
of X1 is not important for maximum likelihood inference and for MCMC simulations
from a single model. However, when performing a reversible jump step between models
with different number of latent processes, we need to choose λwith care in order to obtain
balanced proposals, see below.

The joint posterior distribution of the latent processes and the parameters in M2 is thus
given by

p(ψ, κ, α, ω|x) ∝ p(x|αZ(·|ψ, ω))p(ψ1|κ1)p(ψ2|κ2)p(κ)p(α)p(ω),

and the joint posterior distribution under M1 is an obvious simplification. Our MCMC
simulation algorithm consists of the following steps:

(a) updating the latent process ψ;
(b) updating the parameter κ;
(c) updating the parameter α;
(d) updating the parameter ω;
(e) proposing to jump between M1 and M2.

Steps (a)-(d) are repeated 25 times under the same model between proposals to jump
between models. For step (a), we use the Birth-Death-Move algorithm described in Møller
and Waagepetersen (2004). If we are currently in model M2, we propose one change for
each of the latent processes ψ1 and ψ2. We assign conjugate priors to the parameters
κ and α which result in closed form full conditional distributions for these parameters.
More precisely, we set κ ∼ Γ(50, 1), κ1, κ2 ∼ Γ(12.5, 0.5) and α ∼ Γ(30, 1), where the
gamma distributions are parameterized in terms of shape and rate. The full conditional
distributions are then

κ | ψ ∼ Γ(50 + n(ψ), 1 + |Bext|)
κi | ψi ∼ Γ(12.5 + n(ψi), 0.5 + |Bext|), for i = 1, 2

α | x, Z(·|ψ, ω) ∼ Γ
(

30 + n(x), 1 +

∫
B

Z(ξ|ψ, ω)dξ
)
.
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A Metropolis-Hastings step is needed to update the dispersion parameter ω. We define the
prior distribution for ω in terms of the precision and set 1/ω2 ∼ Γ(1, 0.001). Under model
M2, we simulate initial values for ω1 and ω2 from the prior distribution until ω1 < ω2.
This is needed for identifiability, asM2 is otherwise invariant to permutations of the labels
i = 1, 2. The joint prior distribution of (ω1, ω2) is thus 2 times the product of the individual
prior components; this plays a role in the reversible jump step (e). To update the dispersion
parameter ω under M1, we generate a proposal 1/ω2∗ ∼ Γ(1/ω2, 1) and accept it with
probability

min
{p(x|αZ(·|ψ, ω∗)q(ω|ω∗)
p(x|αZ(·|ψ, ω)q(ω∗|ω)

, 1
}
,

where q(ω∗|ω) is the proposal density for ω∗ given the current state of the chain. Under
M2, the parameters ω1 and ω2 are updated in a similar way. However, a proposal is rejected
immediately if the condition ω1 < ω2 is violated by the proposal.

The reversible jump step (e) is similar to the reversible jump step for normal mixtures
described in Richardson and Green (1997). To move from M2 to M1 we need to merge
the two cluster processes into one process. This is proposed by setting

ψ∗ = ψ1 ∪ ψ2

κ∗ = κ1 + κ2

ω∗ =

√
κ1ω2

1 + κ2ω2
2

κ1 + κ2

.

The reversible split move from M1 to M2 is now largely determined. There are two de-
grees of freedom involved in the split which we determine with a two-dimensional random
vector u given by

u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2).

Here, we set

κ∗ = (κ∗1, κ
∗
2) = (u1κ, (1− u1)κ), (11)

ω∗ = (ω∗1, ω
∗
2) =

(√u2

u1

ω,

√
1− u2

1− u1

ω
)
,

and reject the proposal immediately if ω∗1 < ω∗2 does not hold. It still remains to allocate
the points in ψ to either ψ∗1 or ψ∗2 . This is performed by allocating each point in ψ at
random to either ψ∗1 with probability κ∗1/κ or to ψ∗2 with probability κ∗2/κ.

The acceptance probability for a split move is

min
{ p(ψ∗, κ∗, α, ω∗|x)

p(ψ, κ, α, ω|x)q(u)
|J |, 1

}
,

where q(u) is the density function of u and J is the Jacobian of the transformation de-
scribed in (11),

|J | = ωκ

2
√
u1(1− u1)

√
u2(1− u2)

.
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As mentioned above, we need to choose the densities of the latent cluster processes care-
fully in order to obtain balanced proposals. Let X , X1, and X2 be homogeneous Poisson
processes on Bext with intensities λ, λ1, and λ2, respectively, such that

λ =
n(ψ)

|Bext| , λ1 =
n(ψ1)

|Bext| , λ2 =
n(ψ2)

|Bext| .

The log-ratio of the density of (Ψ∗1,Ψ
∗
2) with respect to (X1, X2) and the density of Ψ

with respect to X is then given by

log
(p(ψ∗1|κ∗1)p(ψ∗2|κ∗2)

p(ψ|κ)

)
= n(ψ∗1)

[
log

κ∗1
κ
− log

n(ψ∗1)

n(ψ)

]
+ n(ψ∗2)

[
log

κ∗2
κ
− log

n(ψ∗2)

n(ψ)

]
,

which penalizes for a lack of balance between the proposed intensites and the correspond-
ing point patterns. The acceptance probability for a merge move is calculated in a similar
fashion. The algorithm was implemented in R (R Development Core Team, 2009).

The Palm likelihood inference is performed as described in Tanaka et al. (2007), where
the maximization is repeated five times for each sample using different starting values
each time. We found that this was necessary, as different starting values would often give
different results. The AIC in (10) is then calculated for each sample based on the optimal
result obtained over the five runs. The MCMC chain is run for 300000 iterations over the
steps (a)-(d). We assessed the convergence by running several such chains for each data
set which give nearly identical results. The starting values for both inference methods are
set as

κ ∼ Po(50), α ∼ Po(30),
1

ω2
∼ Γ(1, 0.001),

under M1 and similar under M2. For the Bayesian inference, the initial latent centre pro-
cesses are simulated from a Poisson model and the chain is started randomly in either M1

or M2. The Palm likelihood inference takes about 30-40 minutes on a standard desktop
computer for a single data set. Running one MCMC chain takes about 1.5-2 hours on the
same computer.

Table 1. Model selection results for comparing M1 and M2 based on Akaike information criterion
(AIC) and Bayes factors (BF) for simulated data. The table reports the classification results for
each of the model selection criteria based on ten simulated data sets from each model.

AIC BF

Correct model M1 M2 M1 M2

M1 8 2 10 0
M2 3 7 0 10

The results of the simulation study are reported in Table 1. In the Bayesian framework,
all the MCMC chains would initially jump back and forth between the two models and

22 Bayesian Inference for Non-Markovian Point Processes



then settle in the correct model. Under M1, this initial burn-in period was very short,
or only about 5000 iterations. However, the mixing was slower under M2, and about
100.000 iterations were needed before all the chains would settle in M2. In the frequentist
framework, a data set would be classified as belonging to either M1 or M2 based on the
minimum AIC obtained for that data set. As Table 1 shows, 25% of the data sets were
wrongly classified by this method. We did, however, not find any indications of the AIC
preferring either the simpler or the more complicated model. Generally, though, we would
obtain a much greater difference between the two AIC scores when M2 was chosen as the
correct model.

6 Summary

Statistical inference for point process models was initially performed in a frequentist man-
ner, with the earliest work on Bayesian inference being published about three decades
ago. In this paper, we have reviewed the Bayesian contributions for non-Markovian pro-
cesses. Our aim was not to provide a complete literature review; rather, we have chosen
to focus on those papers that we find especially important or interesting. In particular, we
have tried to emphasize the variety of applications to which non-Markovian point process
models have been applied to.

We have further emphasized the use of Bayesian methodology for model selection. We
show how Bayes factors can be used to determine model probabilities for simple models
without performing a full inference under each model. For more complicated models, this
is usually no longer the case. In an example, we show how a reversible jump algorithm can
be used to determine model probabilities when the marginal likelihoods for the compet-
ing models cannot be computed directly. Traditionally, model selection methods for point
processes mainly aim at detecting repulsion or clustering in the point pattern and there
seems to be a lack of methods that apply beyond this initial distinction. The results pre-
sented here suggest that Bayesian methodology might be applied to fill this gap, although
further research is needed.
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