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1 Introduction

1.1 Motivation.

An observed stochastic process may consist of many different processes chang-
ing in time. As an example we can think of network traffic. The process may
be well determined and understood as long as no problem occurs, but sud-
denly, when there are errors somewhere in the network, the process may get
a quite different behavior. The problem is to be able to determine when the
process follows a new model, and also what kind of a new model. Different
kinds of errors in the network may result in different new processes. In such
a situation, recognition of what kind of model the process has switched to,
may also tell us what kind of an error we are dealing with.

This problem can be solved by letting the actual time series follow a Dynamic
Linear Model where the parameters depend on an unobservable underlying
stochastic process. To simplify the calculations, this unobservable process is,
in this note, taken to be a Markov chain.

These models are very complicated, and we need the tool of stochastic simu-
lation to analyze them. Then the problem lies in the fact that a huge number
of calculations has to be done, but the advantage is the pretty reasonable
mathematics involved. Faster and faster computers make these techniques
more and more practical to use.

1.2 Statistical model.
We will consider an extension of the Dynamic Linear Model (DLM). First, a

normal DLM is formulated, and then we motivate the extensions which lead
to the model considered in this note.

1.2.1 DLM and the Kalman filter.

An ordinary DLM may be formulated as

Xy = X +wy (1)
Yi = HX, +¢ (2)

where

X; 1is an unobservable process with dimension p
Y, is an observable process with dimension ¢
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(1) is called the system equation and (2) the observation equation.
{w¢} and {¢;} are white noise processes with covariance matrices

Var Wy = Qt
Var € = Rt (3)

The parameters of the model are ®;,Q;, H; and R; ,t=1,....,n .

We assume
1. Corr(wy,ws) =0 s t# s
2. Corr(eges) =0 i t# s

3. w; and ¢; are uncorrelated

From established theory (Harrison and Stevens (1976)) we know that the
best linear estimator, X;,, for X; given y,...,y; is found by the Kalman
filter recursions:

X1 = (I)tXt—l\t—l
Xip = KiZy+ Xy (4)

Zi =Y, — H Xy (5)

The so-called Kalman gain, Ky, is found by the following recursions:

P, = &5, .9, +Q, = Var (Xy1 — X;)
ft = Ht_PtHé + Rt = Var Zt

K, = PH{f

St = (_l — Kth) Pt = Var (Xt|t — Xt)

When we assume white noise processes for w; and ¢;, the best linear estimator
will be equal to the expected value, i.e. Xy, = E (Xy|y1, ..., %:). The Kalman

filter can also be expanded to give the best linear estimator an for X;
given all data yi, ..., y,. With white noise processes we again have X, =

E (Xily1, .-, Yn)-

1.2.2 DLM controlled by a hidden Markov chain.

In many situations it is more reasonable to believe that the behavior of the
stochastic process changes in time. It may consist of many dependent shorter
processes with different parameters. We can state this as a DLM where the
parameters vary in time. The variation of the parameters is here expressed
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by a hidden Markov chain controlling which one of many possible models the
system follows at a given time. In this note we will only let the parameters
controlling the system process vary, and they will be controlled by the same
hidden Markov chain. But in theory all the parameters may be controlled
by unequal hidden processes.

Let {C}} be a Markov chain with transition matrix P controlling the param-
eters of the system process, i.e. ®;, = ®(C}) and Q; = Q(C}). The number of
possible states of the Markov chain is finite, say K. In practical situations
K will often be small, e.g. equal to 2.

The model is then given by

Xt = (I)(Ct)Xt—l +C()t (6)
Y, = HX;+¢ (7)

where

Varw; = Q(Cy)
Vare, = R

and {C}} is an unobservable Markov chain with transition matrix P where
Cye{1,2,..,K}.

If {C;} had been known this would just be a normal Kalman filter situation.
Our purpose is to simulate the {C;} chain and use the Kalman filter with
the simulated series plugged in, to give Xy,.

First, we will consider the K possible parameter values for ®(C}) and Q(C})
as known, and then we will consider the situation where the parameters have
to be estimated.

1.3 Simulation method.

We want to simulate realizations (cy, ..., ¢,) of the hidden Markov chain based
on data yi,...,y,. This can be done by sampling from the distribution of
(Cy,..sy Culy1y ooy Yn). The number of possible outcomes is K™. The Metropo-
lis algorithm is well suited for an intelligent way of performing such a sam-

pling.

In this situation we start with a random state i = (¢4, ..., ¢n;) and calculate

T = P (01 = Cl’i,CQ = Co,i, ,Cn = Cn,i

yl:"'7yn) (8)
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A new state j = (¢1, ..., Cnj) is chosen, m; is calculated and the Metropolis
algorithm tells us to move from i to j with probability min(1, 7).

It can be shown (Hastings (1970)) that we can walk sequently through the
series and change only one component at the time. Then we just deal with
transitions from

T = (cl,...,clt,...,cn)
to § = (C1yeeey Cpyeens Cn)

When we reach ¢ = n the procedure is repeated. This is done v times.
The Metropolis algorithm ensures us that when v — oo we end up with a
state which may be considered as sampled from the distribution of

(Cla ERR) Cn|y17 e yn)
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2 How to perform the simulations

Our aim is to develop a simulation algorithm to discover the hidden Markov
chain {C;}. An important point is to develop an algorithm of order n. Gen-
eral algorithms of order n? are not too difficult to develop, but they will often
be too slow for practical use.

We will simulate B realizations of {C;} and finally use the “best” combination
of these as the estimated hidden Markov chain. Here we simply pick the one
of the K states that has occurred most times for each t, as the final value of
¢;. Many other and maybe better solutions can be made.

2.1 One realization of the hidden Markov chain.

The main point is to be able to get a realization of the hidden Markov chain,
that is to sample from the distribution f(cy, ..., cu|Y1, .-y Yn). As we saw in
section 1, such a sampling can be done by using the Metropolis algorithm.
We then need to find the proportion between f(ci, ..., ¢, ..., Caly1, ..., yn) and
f(ct, ooy Cty oy CalY1s oy Yn) Where ¢, is one of the possible values ¢, may be
changed to.

By using Bayes’ theorem, we get

F W1y s Yn|Cly ooes Cty ooey € ) P(C1y ony €ty oeny Cn)
f Cl""7ct’ ---,C’n yl’ "'7y =
( | TL) f(yh ayn) (

9)

and then

!

FCty oy Chy oy CalY1y oons Yn) s nler, e 6y 6) Plen, -y Cpyeoey Cn)
= (10)
flet, e Cy ooy CalYty ooy Un)  FYLy ey YnlCLy oy Cty ooy €n) PC1y ooy Cry eey C)

Notice that the complicated factor f(yi,...,y,) has disappeared. Because of
the Markov dependency, the last part of (10) is reduced to

P(cya]c) P(cylei-1)
P(crriled) Pleei-1)

(11)

and if the transition matrix P is known, this part is simple.

Our main problem is then to calculate the density f(y1, .., Yn|C1, .-, Cn) at a
given time step. We will do this by developing a recursive technique where we
in a systematic way move from ¢t = 1 to ¢ = n and change cy, .., ¢, according
to the result of the Metropolis algorithm.
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To do this we have to allow one backward recursion from t = n,...,1 for
each time n is reached. In this backward recursion we find X, which is the
optimal estimator for X, given y, ..., y,. Thisisequal to E (X¢|y, ..., y,) since
we only consider white noise. To find X, we will maximize f(y, ..., yn|z:) as
a function of x;. In Teigland (1992) it is shown that

T Wty oos UnlTe) = f(@eg15 Vel we) fWes1s s YnlTeg1) (12)

and since we consider a backwards recursion, where )~(t+1 is known when we
calculate X;, we only have to maximize the first part of (12). Let us consider
X1 and Y; as two independent measurements of X;:

Xev1 = e X+ (Wis1 + Ev1) (13)
}/;5 = HXt + €t (14)

vghere €41 = Var ~Xt+1 = Rtﬂ. :fhe variance of Y, is R; and the variance of
X1 is given by Vi1 = Q1 + Ry

The estimate of X; will then become:

% 1 oxr—1 rp—1 + TR VY rp—1

Xy = ((I)t+1V;t+1q)t+1 +H Rt H) <(I)t+1v;t+1Xt+1 +H Rt yt) (15)
and

R,=Var¢g = Var X,

~ _ +
(W Vit + HR )
(®)41Viz i Besa Vit @040 + H'R;VH)

~ B +7
<(D£+1V;5+%(I)t+1 + H'R, IH) (16)

Some of these matrices may be singular, so we have to use general inverse
matrices which we denote by the symbol “+”.

To start the recursion, we have

X. = (B'R;'H)" (H'R'y,) (17)

Y (H'R,"H) (H'R, H)" (18)

R, = (H'R,'H)

Now we can consider the optimal estimator X, for X; given data v, ..., Yn
as known when we return to the problem of calculating f(y1, .., Yn|C1, -5 Cn)
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recursively. We will drop the conditional probability in our notation, and
write f(y1, ..., Yn|C1, -, Cn) just as f(y1,...,yn). We can split this density in
two parts:

f(yla crey yn) = f(yla - Yt jt-l-l)f(yt-i-l’ e yn|3~3t+1) (19)
Notice that the last part of (19) is irrelevant when we consider possible
changes from ¢4 to 41 in the Metropolis algorithm since ;1 is known.

The first part of (19) may be further split into:

F@y oy, Ter) = Fn) felyn) - F ey, oo Y1) [ (Zeqa Y1, -, ye) (20)

Only the last factor will depend on c¢;11, so what we have to calculate is the
density f(Zi11|y1, ..., y¢) for both ¢;y1 and c’t+1.

At time t+1, ¢y, ..., ¢; are found. All the parameters up to this time are then
given, and the Kalman filter can be used recursively to get Xy, P, S;, f; and
K;.

Since (Xt+1|y1, ., y¢) is a linear combination of normallly distributed vari-
ables, it has to be normally distributed itself, so we only have to find the
expectation and variance of this variable to calculate f(Z;.1|y1, ..., y¢) explic-
itly.

X,+1 can be thought of as an extra observation of X,,; white noise é.:

Xen = X+ &
= Qo1 Xi+ (Wi + E41) (21)

Here, w1 and €, are independent. They both have expectation equal to
zero, and their variances are known. Then we can easily find the expectation
of (Xeq1|y1s s Ys):

E (Xe1|yis o) = E {@p1 Xy + (Weg1 + &41)|Y1s - Y1)

= & E (Xy|yr,ooyye) +0
- (Dt—i-lXt\t (22)

Let us define

Var (Xt+1|y1, ---ayt) = ];H—l (23)
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Now, for time ¢ + 1, we have a system which can be considered as a normal
DLM with system and observation equations:

Xiy1 = Qe Xy +win (24)
Yi? = Xy = Xppn + 6 (25)

By using the Kalman filter one step on this system, we get the value

Py = 01115® 4, + Qi (26)
and then
frr1 = ﬁt+113t+1[:f£+1 + Ry (27)

where H, ., is equal to the identity matrix. By combining (26) and (27) we
get the result

for1 = Pep1 + Ry = ®1 8@y + Qun + Ry (28)

The procedure can be summarized as follows:

The expectation (22) and the variance (28) are calculated for both ¢
and c,,;, that is with different ®,;; and Q1. Then f(Zy1ly1,.... yr) is
found for both. Since all other terms are equal, the proportion between
f(yl,...,yn\cl,...,C;H,...,cn) and (Y1, - Yn|Cly -oes Co1y -y Cp) 1S e’asily cal-
culated, and (10) is used to decide if ¢;; will be changed to ¢, ; or re-
main unchanged. Finally, the Kalman filter is used one further step to give
fte1, Kiy1, Si1 and Xt+1\t+1 which are needed in the next step of the algo-
rithm.

When ¢ = n is reached, we perform a new backwards recursion to give new
X, and R, t = n,...,1, before we again move from ¢ = 1,...,n to decide
new values ¢y, ...,c,. This is repeated v times, and when v — oo, we have
a sample ¢y, ..., ¢, from the distribution of (Ci, ..., Cp|y1, ---, Yn). In practical
situations it is impossible to let v — oo, but in many models we seem to get
acceptable results with about 100 repetitions.
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3 Parameter estimation

In many of the situations considered in this note, the parameters of the dif-
ferent models will be fixed. The problem is to discriminate between possible
models with given parameters. However, we may think of situations where
the parameters are not explicitly known. As an example consider situations
with two possible models, one with little noise and one with much noise, but
where the actual values of the variances are unknown. Then we can try to
estimate these values.

It seems to be an extremely difficult task to implement parameter estimation
in our stochastic simulation method. The updating of the Markov chain is
based on known parameters. Therefore, we need a recursive technique where
we from initial values for both the parameters and cy, ..., c, first get a new
Markov chain. From these simulated values the estimates of the parameters
are updated before we simulate a new chain. In this way we finally get a
vector (ci, ..., ¢,) sampled from the distribution fy(c1, ..., ¢u|Y1, -, Yn), Where
0 = (P4,....,Px,Q1, ..., Qx, H, R), at the same time as well, the parameter
estimates are updated to increase the likelihood at each step.

We repeat the whole procedure B times, and will then have B simulated
{c:}-s and B estimates of the parameter values. The final estimates are then
naturally given as the mean of these B values.

To solve the problem of updating the estimates of the parameters, we use the
EM-algorithm. In this note we only give an outline of a solution. Details are
given in Teigland (1992). The results look promising when we don’t have to
estimate too many of the parameters at the same time.

3.1 The EM-algorithm

Let 0 be the parameter vector, Y the vector of observations with distribution
fo(y), and X the unobservable vector with distribution Py(z). X and YV are
stochastic dependent and fy(y|x) is known. To follow the procedure above,
we need an expression for m%’;‘"(y) based on the distribution of X given Y =y
to get maximum likelihood estimators at each step with the cy, ..., ¢, given.
If we let E * denote the expectation of X given Y = y, the following result
can be shown:

dlog fo(y) . | 0log fo(y|X) . | 0log Py(X)
el (Sl )

In our situation the parameters of interest will occur either in the distribution
of X or in the relation between X an Y, but not in both. This means that
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one of the parts of (29) will equal 0.

3.2 Estimation of the parameters in the model

By combining the result in (29) and the Kalman filter, it is shown in Teig-
land(1992) that we get the following formulae for updating our parameters:

n n —1
H= [Z th£|n] lZ{Xthém + Ptln}] (30)
t=1 t=1

n

o 1 ~ ~
R=— 3 { (ye — HXy) (yy — HXypp)' + HPy H' } (31)
t=1
-1
(i)k = Z (Xt—l\nX£|n + LthPt|n) [ Z (Xt—1|nX£71\n + Pt—1|n) (32)
t;ce=k tict=k
N 1 ~ -,
Qk = Z { (XtInXt\n + Pt\n)

(number of ;s = k) o=,
_(I)t()%tflm)%ém + L1 Pyp)
_[q)t(Xt—HnXém + L1 Py,))

+(I)t(Xt—1\nX£71|n + Pt—1|n)¢£ } (33)
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4 Examples

In this section some examples will be presented to illustrate how the stochas-
tic simulation method presented, performs in various situations. Five ex-
amples are presented, and in each example data is simulated by using the
corresponding dynamic linear model. This provides us with knowledge of the
true underlying Markov process, and thus the evaluation of the results from
the estimation becomes easy.

The parameters in the DLM are assumed known in four of the examples.
The fifth example contains estimation of parameters in two of the preceding
examples. In all examples 100 simulations of the Markov chain are calculated
(B=100), and each realization is a result of 100 repetitions in the Metropolis
algorithm (v=100).

4.1 Example 1: A simple model

The first example is a simple model with the observable variable, Y;, equal
to the unobservable, X;, with noise added. The variance of ¢; is R; = 0.05.
The DLM can be written:

Xy = X +wy
Y;g = Xt+€t

The Markov process consists of two possible states. Both ®; and the variance,
W, in the system model depends upon the state of the Markov chain:

D4 (1)

0.8 W, (1) = 0.01
3,(2) = 1.2

W,(2) = 0.5

The probability of transitions between the two different states is set to 0.1
and thus the probability of remaining in the same state is 0.9:

0.9 0.1
P‘[m 0.9]

In figure 1 the observed variable is plotted together with the true and esti-
mated Markov processes. The estimated Markov process is equal to the true
at all points in time with one exception, the starting point. It is typical for
the model that the endpoints cause problems. The algorithm for deciding C;
depends upon previous estimates for C;_; and C}y;, and these do not both
exist at the endpoints.

Norwegian Computing Center, P.B. 114 Blindern, N-0314 Oslo, Norway Tel.: (+47) 22 85 25 00 Fax: (447) 22 69 76 60



STAT/17/95  Mixed processes in Dynamic Linear Systems. 12

The observed process

15

10

. . true
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Figure 1: The upper plot shows the observed data V;, and the lower plot shows the
true and estimated Markov processes for the model in example 1. The estimated Markov
process is equal to the true at all points in time with one exception, the starting point.

4.2 Example 2: An extension of the simple model

To see if the number of states in the Markov chain has an influence on the
ability of discrimination between states, example 1 is extended to consist of
a Markov chain with 3 possible states. ®, and W; now have a third possible

value:
3,(2) = 1.2 W,(2) = 0.5
®,(3) =2.0 Wi(3) =0.2

The probability of transition between different states is still 0.1 and thus the
probability of remaining in the same state is 0.8:

0.8 0.1 0.1
P=1]01 08 0.1
0.1 0.1 0.8

The simulation method performs well also with three possible states. There is
one point in time where the estimated process differs from the true process:
At time 8 the estimated chain jumps up to class 3, one point in time too
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late. The observed process and the true and estimated Markov processes are
shown in figure 2.

The observed process

-20000-15000-10000 -5000 O

0 10 20 30 40
t
The true and estimated underlying process

15

10
[
—

Figure 2: The upper plot shows the observed data Y;, and the lower plot shows the true
and estimated Markov processes for the model in example 2. There is one point in time
where the estimated process differs from the true process.

4.3 Example 3: Difference in variance

In the DLM model in this example, only the variance term depends upon
the underlying model. In this case the model discriminates between the
two different possible states by using only the variance. As in the previous
examples, the observable variable equals the unobservable with noise added.
The variance of ¢; is 0.05 and ®; = 1 for all states. The DLM can be written:

Xy = X+ wy
Vi = Xite

The two levels of the variance of w; are:

W,(1) = 0.01
Wi(2) = 1
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The transition between states is assumed to have probability of 0.05, and
thus the probability of remaining in the same state is 0.95:

0.95 0.05
F= l 0.05 0.95]

The stochastic simulation method discriminates the two states well. The only
difficulties are that the estimated process jumps too late at two of the jumps
in the Markov process. However, this looks reasonable from the variance in
the data set and the conservatism in the transition matrix. See figure 3 for
the observed data and the true and estimated Markov chains.

The observed process

0 10 20 30 40 50 60 70 80

t

10 12 14 16 18 20

Figure 3: The upper plot shows the observed data Y;, and the lower plot shows the true
and estimated Markov processes for the model in example 3.

4.4 Example 4: AR(3)

This example is an autoregressive process of order 3, AR(3). The AR(3) is
assumed to have coefficients which depends on an underlying process with
two possible states. This can be written as a DLM as follows:

Xy = X1 +wy
Y, = Xy
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and the coeflicients:

1 0.01 0.01

d()=|10 0
(01 0
(0.2 0.2 0.2

®2)=|1 0 0
0 1 0

Notice that there is no noise in the observation equation, R; = 0. The noise
term in the system equation is set to depend on the underlying process:

1
W,(1) = | 0.000001
| 0.000001

[ 0.01
W,(2) = | 0.000001
| 0.000001 |

The transition between states is assumed to have a probability of 0.05, and
thus it is a probability of 0.95 to remain in the same state:

0.95 0.05
F= l 0.05 0.95]

The stochastic simulation method performs well also for this difficult model.
The results are plotted in figure 4. The method has some small problems at
the beginning of the Markov chain. These problems are due to the fact that
the data values lie around 0. The estimated process also jumps one point
in time too late at the last jump of the Markov process. But the overall
impression of the performance of the method is very good.

4.5 Example 5: Estimation

Often some of the parameters in the DLM are unknown. Here, two examples
of the stochastic simulation method with estimation are presented. These
are example 1 with unknown ® and example 3 with unknown W.
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The observed process

Y
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t
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Figure 4: The upper plot shows the observed data Y;, and the lower plot shows the true
and estimated Markov processes for the model in example 4.

Example 1 The simulation method for the same data set as in example 1
is run. The only difference is that ®; is assumed to be unknown with initial

values
®,(1)=1.0
d,(2) 0

From example 1 we have that the true value of &, is 0.8 and 1.2 respec-
tively. The estimation method performs well in this situation. The esti-
mated Markov process is equal to the result in example 1, and the parameter
is estimated to

&,(1) = 0.803
$,(2) = 1.196

which is close to the true values.

Example 3 Here the simulation method is run on the same data set as
in example 3. In example 3 only the variance in the system equation de-
pended on the states in the Markov process. Now, this variance dependence
is assumed unknown, thus W, has to be estimated. The starting values used
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are:

The true values are given in example 3 and are 0.01 and 1.0 respectively.

Also in this situation the estimation method performs well. The results of
the estimation are:

W,(1) = 0.015
Wi(2) = 1.038

Booth estimates agree well with the true values. Further the estimation of
the Markov chain is equally good as in example 3, where all parameters are
known.
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