
Using the Flag Taxonomy to Study Hypermedia System
Interoperability

Uffe Kock Wiil

The Danish National Centre for IT Research
Aarhus University†

Kasper Østerbye

Department of Computer Science
Aalborg University‡

ABSTRACT
Interoperability between existing systems, program
packages, tools and applications with various degrees of
hypermedia awareness is a complex and important challenge
facing the hypermedia community. This paper presents a
general framework (called the Flag Interoperability Matrix)
to discuss and examine hypermedia system interoperability
based on the concepts and principles of the Flag taxonomy
of open hypermedia systems. The purposes of the Flag
Interoperability Matrix are to provide a framework to
classify, describe concisely and compare different
approaches to hypermedia system interoperability, and
provide an overview of the design space of hypermedia
system interoperability. The Flag Interoperability Matrix is
used to examine existing interoperability approaches. Based
on a systematic analysis of possible approaches to
hypermedia system interoperability, the paper explores one
solution to hypermedia system interoperability that seems
particularly promising with respect to handling the growing
number of applications with increasing but incomplete
awareness of hypermedia structure concepts.

KEYWORDS: Flag taxonomy, interoperability matrix,
partial hypermedia system, interoperability protocol

1 INTRODUCTION
Interoperability between existing systems, program
packages, tools and applications with various degrees of
hypermedia awareness is a complex and important challenge
facing the hypermedia community. This type of
interoperability offers significant promise for future
widespread use of hypermedia technology across existing
desktop and Internet applications. The overall goal of this
research is to be able to create and traverse links just as
easily between different applications with different levels of

hypermedia awareness as can be done internally in fully
hypermedia aware applications. A close examination of this
problem domain reveals two general tasks in the quest for
interoperability:

• Intra-application hypermedia services: adding
hypermedia services to applications with limited
concept and knowledge of hypermedia. Basic
hypermedia services include support for anchors and
links, while more advanced hypermedia services also
include support for composites, guided tours, trails, etc.

• Inter-application hypermedia services: allowing links,
composites, etc. to cross application boundaries.

Researchers in the open hypermedia community are
currently addressing these issues [20, 22, 25]. An open
hypermedia system (OHS) is typically a middleware
component in a computing environment offering intra- and
inter-application hypermedia services to third party
applications orthogonal to their storage and display services.
A third party application can be extended to become
hypermedia aware by both making the hypermedia services
available in the user interface of the application and
enabling the application to communicate hypermedia
requests to an OHS.

The Flag taxonomy [27] (or simply the Flag), which is
briefly presented in Figure 1, can be used to depict the open
hypermedia approach to interoperability. An OHS contains a
session manager module and a data model manager module
that are responsible for managing and storing the
hypermedia structures (see Figure 2). Applications are
responsible for manipulating (editing and presenting) and
storing content, either in a storage manager (e.g., a file
system) or in an OHS when possible. OHSs that provide
only structural services are often called link server systems
(e.g., Microcosm [10], Chimera [2] and Multicard [16]),
while OHSs that also provide content storage often are
called open hyperbase systems (e.g., Devise Hypermedia
(DHM) [9], HOSS [15] and HyperDisco [23]).
†

Current address: Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700

Esbjerg, Denmark, ukwiil@aue.auc.dk

‡
Current address: Norwegian Computing Center, Postbox 114 Blindern,

N-0314 OSLO, Norway, Kasper.Osterbye@nr.no

Data Model

Manager

Session

Manager

Viewer
Storage

Manager

LinkingStorage

S
to

ra
ge

P
re

se
nt

at
io

n

RuntimeStorage

Content

Structure

1 4

32

Figure 1: The Flag distinguishes between storage
aspects and runtime aspects, and between structure and
content. Four functional modules (shown as grey boxes)
are specified: storage manager (content storage), data
model manager (structure storage), session manager
(structure runtime) and viewer (content runtime). Four
protocols (shown as white bands) enable neighboring
functional modules to exchange information.

Although the approach depicted in Figure 2 is used by most
OHSs and has proven quite effective [6, 19], it has also
uncovered an important interoperability challenge: How do
we handle the growing number of applications with
increasing awareness of hypermedia structure concepts? As
pointed out in [14] and [26], the major underlying premise
of the previous work on application integration with OHSs
has been that the majority of applications can be
characterized as hypermedia unaware (meaning that they
have no inter- or intra-application hypermedia services).
This rigid view of applications is no longer appropriate,
since many applications (such as the individual applications
in Microsoft Office 97) have a high degree of hypermedia
awareness internally (intra-application hypermedia
services). Thus, in these cases, it is only necessary to add
inter-application hypermedia services to the applications,
and, equally important, make the intra- and inter-application
hypermedia services interoperate in a seamless manner.

The remainder of the paper is organized as follows. Section
2 presents a general framework to discuss and examine
hypermedia system interoperability based on the concepts of
the Flag. The introduced framework is used to examine
existing interoperability solutions. Section 3 explores one
solution to hypermedia system interoperability that seems
particularly promising. Section 4 concludes the paper.

2 HYPERMEDIA SYSTEM INTEROPERABILITY
This section is divided into five parts. Section 2.1 provides a
theoretical point of view on how the Flag can be used to
depict hypermedia system interoperability. The
interoperability challenge is further examined in Section 2.2
in an empirical manner by analyzing an interoperability
experiment between HyperDisco [23] and Chimera [2]. The
theoretical and empirical results are used to develop a

framework (the Flag Interoperability Matrix) for systematic
analysis of hypermedia system interoperability solutions.
The Flag Interoperability Matrix is presented in Section 2.3
and used in Section 2.4 to examine two existing
interoperability solutions. In Section 2.5, the results of the
previous sections are used to identify one particularly
promising solution to interoperability.

Application

Content

Management

System

Open Hypermedia System

Figure 2: The Flag used to depict the OHS approach to
interoperability. An open hypermedia system handles
structure and in some cases also content storage on
behalf of integrated applications (hence the dotted lines
around the content management system).

2.1 Depicting Interoperability with the Flag
This section provides a first view of how the Flag can be
used to outline interoperability settings where a number of
hypermedia systems interoperate. Two settings (based on
Figure 3) and their implications are presented below.

A

B

Hypermedia System 1 Hypermedia System 2

Hypermedia System 3

C

Figure 3: Using the Flag to depict interoperability.

Interoperability Setting 1. Hypermedia System 1 (HS1)
interoperates with Hypermedia System 2 (HS2) and
Hypermedia System 3 (HS3) through protocols A and B that
connect the session manager of HS1 to the data model

managers of HS2 and HS3 respectively. The resulting
interoperability setting enables the session manager of HS1
to access a distributed hypermedia storage system. It is
important to notice that this setting does not require full
functionality of all three hypermedia systems. HS1, HS2 and
HS3 could be partial systems that only provide some of the
functional modules of the Flag. HS2 and HS3 only need to
implement the data model manager (and potentially also the
storage manager). HS1 only needs to implement a session
manager that interoperates with one or more hypermedia
aware applications. This would allow HS1 applications to
create and traverse links between content managed by HS2
and content managed by HS3.

Interoperability Setting 2. HS2 and HS3 interoperate through
protocol C that connects the session managers of both
systems. Compared to Setting 1 where HS1 initiates the
interoperability, Setting 2 suggests an equal participation
among two systems resulting in shared control over the
interoperation. This could apply to a collaborative
interoperability setting between two different hypermedia
systems or two instances of the same hypermedia system.
HS2 could, for example, be a partial hypermedia system
consisting of an application providing intra-application
hypermedia services and a wrapper implementing a simple
session manager that allows the application to interoperate
with other hypermedia systems. HS3 could be a full
hypermedia system implementing all the functional modules
of the Flag and proving both intra- and inter-application
hypermedia services. In this case protocol C would allow
HS2 to access and use the inter-application hypermedia
services of HS3. Thus, this type of interoperability setting
could also allow applications with different levels of
hypermedia awareness to interoperate.

Two important observations can be made from these two
interoperability settings:

1. Previously, the Flag only dealt with integrated
applications assumed to have no prior hypermedia
functionality and full hypermedia systems. The notion of
partial hypermedia systems (and similarly partial Flags)
allows us to distinguish applications based on the degree of
hypermedia functionality available. An integrated
application with no prior hypermedia functionality is
depicted as a single functional module, an application
providing some degree of inter-application hypermedia
functionality is depicted as a partial Flag (e.g., two
functional modules), and an application (system) with full
hypermedia functionality is depicted as a full Flag.

2. In an interoperability setting it makes a great difference
which functional modules of the participating systems are
connected. The full range of interoperability connections
will be explored in Section 2.3.

2.2 Examining the Interoperability Challenge
This section presents a particular interoperability experiment
involving the HyperDisco [23] and Chimera [2] OHSs. The
experiment is described fully in [24]. It will be briefly
described here and major implications for hypermedia
system interoperability will be discussed. Figure 4 depicts

the interoperability experiment using the Flag. The
HyperDisco tool integrator interoperates with the Chimera
server (version 1.2) through a wrapper process. From the
perspective of HyperDisco, the wrapper enables the tool
integrator to access the Chimera server like it was a
HyperDisco workspace. From the perspective of Chimera,
the wrapper accesses the Chimera server like any other
Chimera enabled application. This allows Chimera enabled
and HyperDisco enabled applications to access and update
simultaneously structure stored in the Chimera server. The
status of the experiment is that a basic level of
interoperability has been achieved: HyperDisco enabled
applications can use the anchoring and linking services of
the Chimera server, and links can connect anchors in a
HyperDisco workspace with anchors in the Chimera server.
Even though actual collaboration experiments where
impossible (HyperDisco supports collaboration, but
Chimera 1.2 does not), the experiences suggest that the
developed interoperability setting can support collaborative
work across different hypermedia systems [24].

Storage

Tool
Integrator

Applications

HyperDisco

Chimera 1.2
Workspace

ApplicationsStorage

Chimera Server

Wrapper

Chimera
linking

protocol

HyperDisco
linking/storage

protocol

Figure 4: The HyperDisco – Chimera interoperability
experiment. HyperDisco workspaces provide both
content and structure storage as indicated with the box.
The Chimera server handles both session management
and structure storage, but does not handle content
storage. This is indicated with the box around two
functional modules and the black protocol field (which
in Flag terminology means that no protocol exists).

The lessons learned from the experiment (and the theoretical
interoperability settings of Section 2.1) can be used to
observe relationships between the interoperability issue and
other issues in hypermedia system design and development
such as distribution, multiple users, collaboration and
heterogeneity:

• Distribution is a special case of interoperability in
which multiple instances of the same hypermedia
system interoperate. The more general case
(interoperability) allows interoperation between
different hypermedia systems. Thus, a general solution
to hypermedia system interoperability will encompass
the issues of hypermedia system distribution.

• Distribution is a pre-requisite for multiple users and
collaboration.1 To support collaboration, one or more
functional modules of a hypermedia system must be
replicated across different workstations. Collaborative
hypermedia systems of the early 1990s often provided a
client-server solution with one server and multiple
clients distributed across a local-area network (e.g.,
Sepia [17] and EHTS [21]). Since distribution is a
special case of interoperability, a general
interoperability solution can serve as a basis for
collaboration.

• Interoperability implies heterogeneity. While
hypermedia system distribution is a matter of managing
multiple instances of homogeneous functional modules,
then hypermedia system interoperability must deal with
heterogeneous functional modules of different
hypermedia systems. Thus, a general solution to
functional module interoperability will address the
issues of heterogeneity.

These observations will be used in Section 2.3 to classify
hypermedia system interoperability into broad categories.

2.3 The Flag Interoperability Matrix
The previous sections show that the Flag can be used to
depict hypermedia system interoperability. Since the Flag
has four functional modules, two hypermedia systems can
interoperate in sixteen different ways (see Table 1). If one
hypermedia system module is considered the initiator of the
interoperation and the other the responder, none of the
sixteen possible interoperability connections are symmetric.
This section briefly discusses all sixteen fields of the matrix
and in each case gives an example of what interoperability
might be about if realized through a connection between the
two given functional modules. Some of the more interesting
interoperability connections will be dealt with in more
detail. Each field is given a unique number. For example,
the (3,2) field corresponds to a setting where a session
manager of one hypermedia system initiates communication
with a data model manager of another hypermedia system.

The sixteen fields are not completely independent; many
share several characteristics. Based on the observations
made in Section 2.2, the matrix has been divided into four
main categories: distribution, notification, collaboration and
undefined. The undefined category results from the fact that
two of the six possible protocols have not been defined in
the Flag. It is neither possible for a viewer to communicate
directly with a data model manager nor for a session
manager to communicate directly with a storage manager in
the Flag.2 These four fields will therefore not be further
discussed in this paper. Notice that the four corners (1,1),
(4,1), (1,4) and (4,4) are less interesting from a hypermedia

1 Obviously, multiple users are a pre-requisite for collaboration. A
hypermedia system must support multiple users to be able to support
collaborative work settings. We will use the more general term
“collaboration”.
2 On a number of occasions, Randy Trigg has pointed out that we should
consider these two connections in the Flag as well (which would make the
Flag look like the Union Jack rather than Dannebrog – the Danish Flag).
We have not yet seen a need to do this, but invite useful examples.

perspective because the participating functional modules
only handle content not structure.

notification
(1,4)

collaboration
(1,1)

collaboration
(2,2)

undefined
(1,3)

collaboration
(4,4)

distribution
(4,1)

undefined
(3,1)

distribution
(2,1)

undefined
(4,2)

collaboration
(3,3)

notification
(2,3)

distribution
(3,2)

notification
(1,2)

undefined
(2,4)

notification
(3,4)

distribution
(4,3)

initiator

re
sp

on
de

r

storage
manager

data model
manager

session
manager

application
(viewer)

storage
manager

data
model

manager

session
manager

appli-
cation

(viewer)

1 2 3 4
1

2

3

4

Table 1: The Flag Interoperability Matrix.

Distribution. The fields above and including the diagonal all
represent interoperability settings that are well suited for
providing distribution.

The (2,1) field corresponds to an interoperability setting in
which a data model manager of one system contacts a
storage manager of another system. In the DHT system [12],
the data model manager is capable of handling content from
several storage managers. DHT allows integrated
applications to access diverse storage managers in a uniform
manner. The DHT data model manager transforms data
from the storage managers into nodes and links of the DHT
data model and vice versa.

The (4,1) field corresponds to a setting in which an
application stores or retrieves its content from a storage
manager of another system. This requires that the storage
manager of the responder is a self-contained server that can
handle requests from the outside and is thus only loosely
coupled to the responding hypermedia system.

The (3,2) field represents a setting where a session manager
of one hypermedia system communicates with a data model
manager of another system. The HyperDisco – Chimera
interoperability experiment (Section 2.2) can be interpreted
as an example of this. From the perspective of HyperDisco,
HyperDisco enabled applications can access the Chimera
server via the tool integrator in the same manner as other
HyperDisco workspaces.

The (4,3) field represents a setting where an application
initiates communication with a session manager of another
system. Some applications can have several documents open
at the same time. It is possible to imagine that an application
simultaneously manages documents that are handled by
different session managers. If we ignore the problem of
determining which hypermedia system such an application
actually belongs to, it is still possible that the application
contacts the session manager of more than one hypermedia
system. In a setting with several interoperating hypermedia

systems, a “save as” operation might allow the user to store
the structure in a different hypermedia system than that in
which it was first created. The HyperDisco – Chimera
interoperability experiment can also be interpreted as an
example of this setting. From the perspective of Chimera,
HyperDisco can be perceived as a Chimera enabled
application that accesses the Chimera server in the same
manner as other enabled applications.

Notification. The fields below and including the diagonal
represent interoperability settings that naturally arise
between systems where the initiator needs to inform the
responder about changes - that is, in notification based
collaboration. Each notification field complements a specific
distribution field such that functional modules engaged in a
specific interoperability setting can act as both responder
and initiator. This two-way asynchronous communication
between functional modules is necessary to support
collaborative interoperability settings.

The (1,2) field corresponds to settings in which a storage
manager notifies a data model manager of another
hypermedia system that a document has been changed in
one way or the other. If the responder has a node that wraps
a file in the initiator, the responder can be interested in
changes to e.g., the file contents or file name in order to
maintain its own state as a true model of the file. This
setting complements the (2,1) setting.

The (2,3) field represents a setting in which a data model
manager communicates with a session manager of another
hypermedia system to distribute events. Thus, this setting
complements the (3,2) setting.

In a (1,4) setting, a storage manager communicates with an
application of another hypermedia system. This might occur
in link server systems, where distribution of documents is
achieved through distribution of storage managers. In such a
case, locking and event distribution to applications will
come not only from the session manager but from the
distributed storage managers as well. This setting
complements the (4,1) setting.

In a (3,4) setting, a session manager could notify an
application in some other hypermedia system that some of
its cross application links have been changed. This setting
complements the (4,3) setting.

Collaboration. The four fields along the diagonal are
characterized by supporting both distribution and
notification. Both aspects are a pre-requisite for
collaboration. Because the two interacting functional
modules are of the same type, the interoperability setting is
typically not a client-server relation, but communication
between peer systems.

In a (1,1) setting, a storage manager directly accesses a
storage manager of another system. Several interpretations
are possible. The storage manager of the initiator could
allow transparent access to content from its own storage as
well as the responder's. Alternatively, they might need to be
kept synchronized over a distributed environment.

The (2,2) field represents a setting where a data model
manager exchanges information with a similar component in
another hypermedia system. An example of this setting is a
set of hypermedia systems sharing one logical but physically
distributed hypermedia database. The (2,2) communication
can be used to keep the distributed hypermedia database in a
consistent state.

The (3,3) field represents two session managers that
interact. One way to view it is as a single logical
hypermedia system composed of a number of hypermedia
systems, which interoperate through their session managers.
The HyperDisco – Chimera interoperability experiment can
also be interpreted as an example of this setting, since the
tool integrator (session manager) interoperates with the
session manager part of the Chimera server through the
wrapper, which transforms the HyperDisco protocol to the
Chimera protocol and vice versa.

The (4,4) field represents the setting where two applications
communicate directly. This could happen when multiple
instances of a collaborative application are used in different
hypermedia systems at the same time.

The different interpretations of the HyperDisco – Chimera
interoperability experiment shows that a particular
interoperability setting can be viewed from different
perspectives: from the perspective of each participating
system and from a more general, system-independent
perspective based on the actual connections between
functional modules of the participating systems. (3,2) is a
HyperDisco perspective, (4,3) is a Chimera perspective, and
(3,3) is a general, system-independent perspective. The
latter perspective is the generic way to classify the
experiment using the Flag Interoperability Matrix. However,
the two system perspectives are useful as a supplement
because they give additional details on how the
interoperability setting is constructed (i.e., what
communication protocols are used, etc.).

2.4 Case Studies
A number of OHSs such as DHM [8], Microcosm [4],
Chimera [1], Hyper-G [11] and HOSS [15] are currently
interoperating with the World Wide Web (WWW) [3].
Anderson [1] provides a taxonomy of possible integrations
between OHSs and the WWW, which is constructed by
considering the intersections between the four major
architectural elements common to both systems: clients,
servers, protocols and data formats.3 This section shows
how the Flag Interoperability Matrix can be used to analyze,
classify and compare two of these approaches, namely
DHM and Microcosm.

Case Study 1: DHM and the WWW. Figure 5 depicts the
interoperability approach used in the integration between
DHM and the WWW, which is called DHM/WWW [8].
Like HyperDisco, DHM can be classified as an open
hyperbase system, which is why these two systems are

3 While Anderson’s taxonomy focuses on OHSs and the WWW, the Flag
Interoperability Matrix provides a framework to examine interoperability
among hypermedia systems in general (i.e., the example in Section 2.2).

depicted in the same manner using the Flag (compare
Figures 4 and 5). However, these systems use different
names for their functional modules. The WWW consists of
servers, browsers, helper applications and storage. The
browser can retrieve local files directly from the local file
system and remote files through remote servers. The
browser launches helper applications and browser plug-ins
to display data formats that cannot be displayed by the
browser itself such as PDF files (Acrobat Reader plug-in).
Several possible implementations are described in [8]. The
platform-independent solution extends the WWW browser
with an applet that handles communication to the WWW
server via HTTP, communication with DHM through
common gateway interface (CGI) scripts, and presentation
of links in HTML documents in the WWW browser. The
applet has a separate user interface that allows DHM links
and anchors to be created in existing HTML documents.

Storage

Hypermedia
Service

Applications

Devise Hypermedia

World Wide Web

Hypermedia
Database

Storage

Browser
(plug-ins)

Server

H
T

T
P

Helper
Applications

HTTP

CGI scripts

Devise
Hypermedia

linking
protocol

Figure 5: Interoperability between DHM and the WWW.
The CGI scripts are invoked via an ordinary WWW server
that runs in the same Internet domain as DHM. The CGI
scripts transforms HTTP requests into DHM linking
protocol requests.

Case Study 2: Microcosm and the WWW. The
interoperability approach used in the integration between
Microcosm and the WWW is depicted in Figure 6. The
research version is called Microcosm’s Distributed Link
Service [4], while the commercial release is called
Webcosm [18]. This example will examine Webcosm. Like
Chimera, Webcosm belongs to the link server system
category of OHSs (hence the Flag depicts Webcosm and
Chimera in a similar manner – compare Figures 4 and 6).4
Webcosm consists of a link server, a WWW server
extension and linkbases. The Webcosm extension can either
be applied to an existing server or a proxy server (the
Webcosm extension can also be used as a standalone server
that basically acts like a proxy server). The link server,
which can manage several different linkbases, is accessed
via CGI scripts. WWW browsers need not be extended in

4 Except that Chimera implements the data model manager and session
manager as one process (hence the enclosing lines) and Webcosm
implements these functional modules as two separate processes.

any way. Instead, Webcosm provides a separate user
interface that handles selection a linkbases, presentation
styles for Webcosm links in HTML documents, and creation
of Webcosm links in HTML documents.

Storage

Link Server

Applications

Webcosm

World Wide Web
Linkbase

Storage

Browser
(plug-ins)

Server

H
T

T
P

Helper
Applications

CGI scripts

HTTP

Webcosm
linking
protocol

Figure 6: Interoperability between Microcosm and the
WWW. The CGI scripts are either invoked via a proxy
server or through an extension to an ordinary WWW
server. In both cases the CGI scripts (and the server
activating them) must reside in the same Internet
domain as the Webcosm link server. The CGI scripts
transforms HTTP requests into Webcosm linking
protocol requests.

Both case studies use the (3,3) interoperability setting5 and
are depicted in the exactly same way using the Flag. From a
user’s point of view the two resulting systems have many
features in common. Both solutions add external links to the
WWW, provide a separate user interface for the creation of
these links, and benefit from existing WWW infrastructure,
which provides Internet distribution, scalability and a large
user base. The differences lie in the way the interoperability
is implemented and in the resulting hypermedia features.
DHM/WWW extends the WWW browser, while Webcosm
extends the WWW server to achieve the interoperation. The
hypermedia models of DHM and Microcosm are quite
different (DHM provides a richer hypermedia model), which
is reflected in Webcosm and DHM/WWW. Webcosm adds
external links to the WWW, while DHM/WWW adds
external links, composites and a potential for collaborative
authoring of HTML documents and external structure
(composites and links).

2.5 Towards a Single Interoperability Protocol
The previous sections show that hypermedia systems can
interact in many ways. We believe that it would be counter-
productive to specify and develop twelve protocols (not
counting the four undefined). A more interesting question is:
“Can we narrow the number of protocols down to one?”
Such a candidate should be sought at the diagonal of the

5 The actual communication takes place between the session managers of
each system, but both DHM and Webcosm use the existing WWW
infrastructure to activate the CGI scripts. Requests are routed through a
WWW server, which makes the settings resemble a (2,3) setting.

Flag Interoperability Matrix, since these four protocols are
all potentially collaborative and peer to peer distributed. The
two corners, (1,1) and (4,4), can be ignored, as they do not
address hypermedia structure directly. This leaves two
choices: (2,2) and (3,3). The (2,2) approach represents
interoperation through the structural storage module. While
this can lead to interoperability settings with powerful
collaboration capabilities, it is less obvious how runtime
information can be shared and exchanged. To create a link
that spans two hypermedia systems, the user has to select
link endpoints in both systems. This simple observation
implies that both systems must have a notion of “current
endpoint selection”, which is an archetypecal runtime
concept. This leaves the (3,3) approach as the most
promising candidate for an interoperability protocol for
hypermedia systems. In fact, all the interoperability
solutions examined in this paper are based on the (3,3)
approach. Section 3 defines the necessary operations of such
a protocol.

3 A PROPOSAL FOR INTEROPERABILITY BETWEEN
HETEROGENEOUS HYPERMEDIA SYSTEMS
In Section 2, the Flag was used to describe different ways in
which (partial) hypermedia systems can interoperate. The
OHS working group [13] is currently creating a standard
linking protocol (called the Open Hypermedia Protocol or
OHP [5]) for interaction between hypermedia aware
applications and OHSs. In essence, the OHP allows different
OHSs to use the same set of applications. However, the
OHP does not address interoperability among peer
hypermedia systems. This section introduces a protocol for
interoperability between heterogeneous hypermedia
systems. The protocol is named the T3 protocol after the
matrix entry three-3. It has been an explicit goal of ours to
reuse existing OHP operations whenever possible. In order
to analyze what new operations are required in the session
managers, we will examine two typical hypermedia system
services: following a link (navigation) and creating a link
(link authoring). In order for the T3 protocol to work, it was
necessary to introduce a new component into the overall
system, the Hypermedia System Manager (HSM), which
maintains information about the location of hypermedia
systems and services. The HSM can be implemented as a
separate component or as part of an existing hypermedia
system. In this section, we will show the HSM as a separate
component for illustrative purposes. Section 3.2 discusses
the HSM in more detail.

3.1 The T3 Protocol
Navigation. Figure 7 illustrates the process of following a
link. The boxes represent hypermedia systems and the
arrows are calls the systems make to each other. The
numbers along the arrows describe the calling order, and a
small dot at the source of the arrow indicates that the call
returns a value of interest. The situation is that the user
activates a link on System 1 (S1), the link is resolved
through a series of steps, and finally the destination of the
link is shown in System 3 (S3):

System 1

System 3

System 2

Hypermedia
System

Manager

1

24

3

3

5

Figure 7: The process of following a link between
heterogeneous hypermedia systems using the T3
protocol. Although not explicitly shown, hypermedia
systems interoperate via their session manager.

1. The user activates a link marker in S1. S1 looks up the
link endpoint and decides that it is either not able to
resolve it, or that it will ask other systems to resolve it.

2. S1 calls the operation whoResolves in the HSM. The
HSM returns a set of system identifications, which can
be used by S1 to address these systems.

3. Based on the answer from the HSM, S1 now knows that
both System 2 (S2) and S3 resolve. S1 decides (either
by built-in logic, or based on user interaction) to ask
both S2 and S3 to resolve the given endpoint. This is
done using the resolve operation that returns the set of
endpoints of the resolved link. Because both S2 and S3
were asked to resolve the link, S1 needs to combine the
results in some way. We will assume that S1 selects just
one endpoint to be displayed. Otherwise, steps 4 and 5
must be repeated for each endpoint to be displayed.

4. Because S1 is not able to present the type of document
that is the destination of the link (we assume it is not for
illustrative purposes), it needs to find out who is. S1
calls the HSM operation whoShows. An endpoint
consists of three specifiers: a node specifier, which
identifies the node of the endpoint, a location specifier,
which identifies a location within the node, and a
presentation specifier, which specifies how the node is
to be presented. Part of the presentation specification is
a description of the media type of the node (i.e., if it is
ASCII text, a word document, midi sound format, etc.).
S1 is told that S3 can show the endpoint. The HSM
might only consider the media type of the presentation
specification, or it might be more advanced taking into
account other parts of the specifications as well.

5. Finally S1 asks S3 to present the endpoint (using the
show operation). An interesting issue is whether S3 is
able to display the endpoint on the same machine as S1.
As some users have several computers running different
operating systems in their office, we will not restrict the
protocol as to require that the destination(s) of a link
should be presented at the same display as its source.

The navigation part of the T3 protocol can be used to
provide linking into a system that does not store anything
but persistent selections (e.g., a program development
environment (PDE)). PDEs normally support a limited
internal “hypertext” in the sense that program identifier
usage are “linked” to identifier definitions. To enable a PDE
to participate in the T3 protocol, it needs, in its simplest
form, to be able to respond to the show operation. A PDE
can handle endpoints in the form of identifiers and map
them to their definition, automatically finding the file that
contain the definition, and scroll to the appropriate
definition. Thus, the identifier definition can be viewed as a
persistent selection that is maintained by the PDE. Similarly
a PDE can perform a simple resolve operation, as it can
pretend that an identifier usage is indeed linked to its
definition. Thus, a PDE can from the outside be made to
look like it maintains a link database and provides a link
resolution mechanism.

Link authoring. This section will examine what it takes to
create a link that spans two heterogeneous hypermedia
systems. Many of the issues of where the link resides are
similar to issues addressed in the Neptune system [7], but
actually seem clearer in the heterogeneous setting where a
context becomes a unique system.6 Figure 8 illustrates a
situation where a user creates a link from S1 to S3 (storing
the link in S2). The diagrammatic notation is as before.

System 1

System 3

System 2

Hypermedia
System

Manager

1

5
2

4

3

6

Figure 8: The process of creating a link between
heterogeneous hypermedia systems using the T3
protocol. Like before, hypermedia systems interoperate
via their session manager.

1. The user makes a selection, and issues a “create link
with selection as endpoint” function. S1 is not able to
store links, and needs to find some one who can.

2. S1 calls the HSM with the whoLinks operation and is
told that S2 supports structural storage.

6 We refer to the fact that Neptune partitioned the hypertext into contexts
and allowed links to cross context boundaries.

3. S1 then calls the operations createLink followed by
addEndpoint on S2 (S1 created an endpoint based on
the selection).

4. Next the user moves to S3, where another selection is
made. This time, however, the user is not interested in
creating a new link, but adding the endpoint to the
newly created link.

5. S3 issues a whoLinks call to the HSM, which again
gives S2 as the answer. We have not found it useful to
have a whoCreatesLink and a whoAddsEndpoints, as we
have found no situation where it makes sense to have
one but not the other.

6. S3 calls the addEndpoint operation on S2, with the
endpoint created from the selection made in (4).

There is an interesting issue related to the addEndpoint
operation, which is to specify what link the endpoint should
be added to. First it is worth noticing that we cannot give a
link identifier as parameter, as there is no way for S3 to
know the identity of the link created by S1 in S2. One way
to solve the issue is to let each system maintain a “current
link”, which is set using a link editor from the system in
question. Thus, the addEndpoint operation does not need to
have a link parameter at all. However, we feel that this
solution is too inflexible, and suggest that link specifiers be
used to indicate to which link an endpoint should be added.
The only new requirement we make on the OHP is that
addEndpoint can accept link specifiers (e.g., “current”, “last
link created by Kasper”, etc.). This will also solve the
similar issue in (3): createLink returns a link identifier,
which can be used in the following addEndpoint call.

An OHS attempts to provide a framework, which enables
linking between parts of information in formats maintained
by third party applications. Endpoint resolution and
specification is a major issue; the practical problem is to
tailor applications to maintain persistent selections to enable
anchors to remain in place during changes to the
information. It is possible to see the T3 protocol as a middle
ground. A PDE will not normally be able to maintain
arbitrary selections from one session to another (or even
during a session). However, like many other systems, a PDE
provides a set of “predefined” endpoints within the
information. The link authoring example can be interpreted
as follows. S1 could be Microsoft Word with a simple
hypermedia session manager wrapper around it, which
cannot store links. S3 is a PDE. S2 is a link server system
capable of storing links. The link might connect part of a
specification (in Microsoft Word) to the procedure, which
implements the specification (in the PDE). A link is then
created from the Word document to a procedure within a
program source file.

Protocol summary. Table 2 summarizes the operations of the
T3 protocol and lists equivalent OHP operations (if any).

T3 operation Description OHP
equivalent

Navigation

show

Show the endpoint passed as
parameter. The presentation
will be based on the
presentation specification
(node type, etc.) that is part of
the endpoint.

none7

resolve

Return the set of endpoints
that are linked to the endpoint
passed as parameter. Consider
only the links that this
hypermedia system maintains.

followLink8

Link authoring

addEndpoint

Add the endpoint passed as
parameter as endpoint to the
link matching the link
specification parameter.

getLink
followed by
updateLink

createLink Create a new link. createLink
HMS operations

whoShows
Answer the set of hypermedia
systems that can show the
endpoint passed as parameter.

none

whoResolves
Answer the set of hypermedia
systems that support the
resolve operation.

none

whoLinks
Answer the set of hypermedia
systems that support the link
authoring operations.

none

Table 2: Operations of the T3 protocol.

3.2 The Hypermedia System Manager
It has so far been left unanswered how the HSM obtains the
information necessary to answer the whoX requests. There
are several possibilities, both architecturally and with
respect to information flow. The architectural issue is
whether the HSM should be a separate component or part of
an existing hypermedia system. Both solutions have been
implemented in existing hypermedia systems. Both the
WWW [3] and HyperDisco [23] implement their HSM as
part of their session manager, while HOSS [15] implements
its HSM as a separate component. The information issue is
how to migrate location and service information from
hypermedia systems to the HSM. One solution is to
manually keep a configuration file. Another solution is that
each hypermedia system registers its information to the
HSM. Registration can either occur once when the
hypermedia system first starts up or every time the
hypermedia system is started. The configuration file solution
has some obvious scalability problems. The other solutions

7 It is currently under discussion in the OHS working group how the
notion of following a link can be unbundled into link resolution and
endpoint display. In the current status of the discussion there is no way in
the OHP to ask a session manager to display an endpoint, but the session
manager can ask an application to display a document.
8 In the current status of the discussion the followLink operation is
unbundled, and only resolves the link.

are clearly more flexible, but require more functionality of
both the HSM and the participating hypermedia systems.

4 CONCLUSIONS
An important challenge is facing the hypermedia
community: How do we handle the growing number of
applications with increasing awareness of hypermedia
structure concepts? This paper provides three contributions
towards answering this question: the Flag Interoperability
Matrix, the notion of some applications being partial
hypermedia systems, and the proposed T3 protocol.

The Flag Interoperability Matrix is a general framework to
examine and discuss interoperability among hypermedia
systems based on the concepts and principles of the Flag.
Over the years, several solutions to interoperability
(corresponding to entries in the Flag Interoperability Matrix)
have been tried out. The Flag Interoperability Matrix can be
used to distinguish clearly such approaches from each other.
Three different interoperability solutions were examined
using the Flag Interoperability Matrix: HyperDisco with
Chimera, DHM with the WWW, and Microcosm with the
WWW. The analytical results pointed to a particular
interoperability solution based on interaction between
session manager modules of participating hypermedia
systems. The T3 protocol illustrates the highlights of this
solution.

A partial hypermedia system is a system (application) that
only implements part of the Flag in terms of functional
modules (e.g., program development environments, which
can resolve function names into function definitions, and
help systems, which can resolve index terms to help cards).

The major implication of the T3 protocol is that it allows
partial hypermedia systems to participate, since it only
requires that a hypermedia system can respond to show and
resolve calls. Thus, to enable a partial hypermedia system
for the T3 protocol requires less of an effort than enabling it
for the OHP. The fundamental reason is that it has been
relieved of much functionality, which now resides in those
hypermedia systems that provide structural storage. The T3
protocol combined with the notion of partial hypermedia
systems allows for interaction with the built-in links (intra-
application hypermedia services) of many applications.

The concepts introduced in this paper add a new dimension
to open hypermedia integration. Currently, an OHS
assimilates existing third party applications (assumed to
have no knowledge of hypermedia) into an open hypermedia
world through integration (e.g., using the OHP). In contrast,
the proposed T3 protocol accommodates applications with
intra-application hypermedia functionality. Thus, the T3
protocol does not replace the OHP, but instead adds extra
value to the OHP.

ACKNOWLEDGMENTS
We wish to thank Peter Nürnberg for his helpful comments.
This research was supported in part by the Danish Natural
Science Research Council through Grant no. 9400911.

REFERENCES
 1. Anderson, K. M. Integrating Open Hypermedia Systems

with the World Wide Web. In Hypertext ’97
Proceedings, (Southampton, UK, Apr. 1997), ACM
Press, pp. 157-166.

 2. Anderson, K. M., Taylor, R. N., and Whitehead, E. J., Jr.
Chimera: Hypertext for Heterogeneous Software
Environments. In ECHT ’94 Proceedings, (Edinburgh,
Scotland, Sep. 1994), ACM Press, pp. 94-107.

 3. Berners-Lee, T., Cailliau, R, Luotonen, A., Nielsen, H.
F., and Secret, A. The World Wide Web.
Communications of the ACM, 37, 8, (Aug. 1994), 76-82.

 4. Carr, L., De Roure, D., Hall, W., and Hill, G. The
Distributed Link Service: A Tool for Publishers, Authors
and Readers. In WWW4 Proceedings, (Boston, MA,
Dec. 1995), O’Reilly & Associates, pp. 647-656.

 5. Davis, H. C., Reich, S., and Rizk, A. OHP - Open
Hypermedia Protocol. Working Draft 2.0, 20th June
1997. http://diana.ecs.soton.ac.uk/~hcd/ohp/ohp.htm

 6. Davis, H. C., Knight, S., and Hall, W. Light Hypermedia
Link Services: A Study of Third Party Application
Integration. In ECHT ’94 Proceedings, (Edinburgh,
Scotland, Sep. 1994), ACM Press, pp. 41-50.

 7. Delisle, N. M., and Schwartz, M. D. Contexts - A
Partitioning Concept for Hypertext. ACM Transactions
on Information Systems, 5, 2, (Apr. 1987), 168-186.

 8. Grønbæk, K., Bouvin, N. O., and Sloth, L. Designing
Dexter-based Hypermedia Services for the World Wide
Web. In Hypertext '97 Proceedings, (Southampton, UK,
Apr. 1997), ACM Press, pp. 146-156.

 9. Grønbæk, K., Hem, J. A., Madsen, O. L., and Sloth, L.
Cooperative Hypermedia Systems: A Dexter-based
Architecture. Communications of the ACM, 37, 2, (Feb.
1994), 64-74.

10. Hall, W., Davis, H., and Hutchings, G. Rethinking
Hypermedia - The Microcosm Approach. Kluwer
Academic Publishers, 1996.

11. Maurer, H. Hyper-G now HyperWave - The Next
Generation Web Solution. Addison-Wesley, 1996.

12. Noll, J., and Scacchi, W. Integrating Diverse
Information Repositories: A Distributed Hypertext
Approach. IEEE Computer, 14, 12, (Dec. 1991), 38-45.

13. Nürnberg, P. J. (editor). Open Hypermedia Systems
Working Group. http://www.csdl.tamu.edu/ohs

14. Nürnberg, P. J., and Leggett, J. J. And now for the

Tricky Part: Broadening the Applicability of Open
Hypermedia Systems. In [20], pp. 93-95.

15. Nürnberg, P. J., Leggett, J. J., Schneider, E., and
Schnase, J. L. Hypermedia Operating Systems: A New
Paradigm for Computing. In Hypertext '96 Proceedings,
(Washington, DC, Mar. 1996), ACM Press, pp. 194-202.

16. Rizk, A., and Sauter, L. Multicard: An Open
Hypermedia System. In ECHT '92 Proceedings, (Milan,
Italy, Dec. 1992), ACM Press, pp. 4-10.

17. Streitz, N., Haake, J., Hannemann, J., Lemke, A.,
Schuler, W., Schütt, H., and Thüring, M. SEPIA: A
Cooperative Hypermedia Authoring Environment. In
ECHT '92 Proceedings, (Milan, Italy, Dec. 1992), ACM
Press, pp. 11-22.

18. Webcosm. http://www.multicosm.com/webcosm

19. Whitehead, E. J., Jr. An Architectural Model for
Application Integration in Open Hypermedia
Environments. In Hypertext '97 Proceedings,
(Southampton, UK, Apr. 1997), ACM Press, pp. 1-12.

20. Wiil, U. K. (editor). Proceedings of the 3rd Workshop
on Open Hypermedia Systems, Scientific Report 97-01,
The Danish Natl. Centre for IT Research, 1997.

21. Wiil, U. K. Issues in the Design of EHTS: A Multiuser
Hypertext System for Collaboration. In HICSS '92
Proceedings, (Kauai, HI, Jan. 1992), IEEE Computer
Society Press, pp. 629-639.

22. Wiil, U. K., and Demeyer, S. (editors). Proceedings of
the 2nd Workshop on Open Hypermedia Systems. UCI-
ICS Technical Report 96-10, University of California,
Irvine, 1996.

23. Wiil, U. K., and Leggett, J. J. Workspaces: The
HyperDisco Approach to Internet Distribution. In
Hypertext '97 Proceedings, (Southampton, UK, Apr.
1997), ACM Press, pp. 13-23.

24. Wiil, U. K., and Whitehead, E. J., Jr. Interoperability
and Open Hypermedia Systems. In [20], pp. 137-145.

25. Wiil, U. K., and Østerbye, K. (editors). Proceedings of
the ECHT '94 Workshop on Open Hypermedia Systems.
Department of Computer Science, Technical Report R-
94-2038, Aalborg University, 1994.

26. Østerbye, K. Fred the Programmer. In [20], pp. 146-149.

27. Østerbye, K., and Wiil, U. K. The Flag Taxonomy of
Open Hypermedia Systems. In Hypertext '96
Proceedings, (Washington, D.C., Mar. 1996), ACM
Press, pp. 129-139.

