
Do We Think In Terms Of Objects and What Are The
Consequences For Software Reuse, Architecture and

Patterns?

Jason Baragry
Norwegian Computing Center.

Postboks 114 Blindern, N-0314 OSLO
Visiting address: Gaustadalléen 23, Oslo. Norway.

Jason.Baragry@nr.no

Abstract.
We present an overview of some of the research being performed at the Norwegian
Computing Center. We believe many of the problems related to software engineering in
general and object-oriented development in particular result from too little attention being
paid to the role of modelling, both in terms of how we understanding problems and how we
attempt to solve them using software systems. We present a summary of our research
direction and how it is being applied to areas such as software reuse, patterns, and
architecture.

1. Introduction.
One of the claimed advantages of object-oriented development is that developers can use
objects in a uniform modelling approach throughout the development process. Popular object-
oriented software engineering texts (e.g., [1-5]) all suggest similar approaches to the phases of
the development process and the artefacts produced by them. During requirements elicitation,
the customers, users, and developers use use-cases to develop and represent the system
requirements in a manner that can be communally understood. During the analysis phase, the
collection of use-cases are refined by identifying and reusing similar concepts, specifying the
functionality with greater precision, and removing ambiguities. The result is the generation of
an analysis model that identifies the significant concepts of the problem and the way they
need to interact to provide a satisfactory solution. As use-cases are refined during the analysis
phase, the system moves closer to design because the identified concepts and their
interactions become more formal. Indeed, some object-oriented researchers argue that the
product of the analysis phase, the analysis model, can be viewed as an initial version of the
design model [1] (p. 178).

The boundary between analysis and design, however, is not clearly defined. The goal of
analysis is to specify exactly what the system is to do without necessarily how it is supposed
to do it. However, constructs used to represent concepts during the analysis phase often have
direct analogues in the design phase. Therefore, it may not be clear where the analysis concept
ends and the design concept begins. Despite this blurred boundary, the goal of system design
is to transform the analysis model into a design model. The design model is comprised of
constructs that are directly realisable in the chosen implementation medium, that is, the
combination of hardware environment and software programming language(s).

Traditional OO methods suggest the transition from requirements to analysis to design is
smooth and easy, however in practice it has been shown to be quite difficult [6]. Similarly,

mailto:Jason.Baragry@nr.no


both researchers and developers are beginning to question the assumption that object-
orientated development is advantageous because it allows developers to more easily
implement their model of reality (see for example [7]). While improvements in analysis
techniques are certainly helping (e.g., [8]) we believe the practical problems associated with
moving from analysis to design are far greater and more deeply rooted than currently thought
and that to solve them will require a closer examination of how developers understand their
problems and how those ‘understandings’ can be represented in software.

This paper presents an overview of the relevant issues and the research direction at the
Norwegian Computing Center that is aimed at investigating them. It begins with the concept
of modelling. Most researchers and developers agree that software development revolves
around models, however far too little work has been done on the exact role of modelling. The
next section provides an overview of the problems with modelling in software development
and then summarises relevant theories about modelling from the disciplines of philosophy and
psychology. Section 3, then applies these theories to our understanding of software
development and highlights different ways of thinking about software reuse, architecture, and
patterns.

2. What are conceptual models how do we build them?
The artefacts produced during the transition from requirements elicitation to the design
representation and implementation are often talked about as models. Books and papers
describing software development methodologies constantly refer to terms such as conceptual
models, use-case models, analysis models, design models, process models, architectures,
architecture styles, design patterns, programming idioms, design paradigms, implementation
mediums, and programming constructs. However, the use of those terms is certainly not
consistent throughout the discipline.

Though people have been aware of the issue for some time, it is becoming increasingly
apparent that the ‘conceptual construct’ is the essential part of achieving a good software
design. This issue was discussed at the first software engineering conference in 1968 [9].
Brooks, in his famous No Silver Bullet paper, noted,

“The essence of a software entity is a construct of interlocking concepts: data sets,
relationships among data items, algorithms, and invocations of functions. This
essence is abstract in that such a conceptual construct is the same under many
different representations. It is nonetheless highly precise and richly detailed. I
believe the hard part of building software to be the specification, design, and
testing of this conceptual construct, not the labor or representing it and testing the
fidelity of the representation. We still make syntax errors, to be sure; but they are
fuzz compared with the conceptual errors in most systems.” [10] [Brooks’ italics].

Indeed, his earlier book, The Mythical Man-Month [11], dedicated a chapter to the importance
of the conceptual construct and the importance of conceptual integrity in system design.

Despite the fact that we have known about its importance for decades, the issues surrounding
the creation and utilisation of the conceptual construct still cause problems in our attempts to
engineer software systems. Consider the issue of software reuse. Mili et al note, “software
development cannot possibly become an engineering discipline so long as it has not perfected
a technology for developing products from reusable assets in a routine manner, on an
industrial scale” [12]. The belief that conceptual structures can be designed and implemented



using an ‘engineering’ approach that incorporates significant amounts of reuse requires one
significant assumption on the part of the software development community. That is, the
identification of items that can be reused from previous applications, from the requirements
analysis stage to the implementation stage, assumes that different clients and developers
experience the same reality and can model it using similar collections of distinct concepts and
concept relationships. Moreover, those concepts and relationships can be specifically defined
in terms of essential features and represented the same way in two different applications using
the implementation medium of software development – hardware and software constructs.

We have argued that this assumption is at the root of many problems in software engineering
and stems from the belief that software systems can be understood as being analogous to
traditionally engineered systems, that is, software engineers have an artefact engineering view
of software development (see [13] for more information). This assumption also underlies one
of the major myths of object-orientation – the belief that objects allow us to directly
implement our view of reality, and that these objects can be easily reused by other developers.
This assumption is simply not supported in practice. For example, an earlier study of
automotive cruise control systems has examined how software developers and traditional
engineers approach the same problem (see [13, 14]). Seven of the software designs were
object-oriented. Despite the fact that the requirements for those seven systems were almost
identical, each of the object-oriented designs identified a different collection of objects to
represent the same problem to be solved (see table 1). Even such a small and well-defined
problem as automotive cruise control resulted in seven different models of the problem.

Design Example Objects Identified
Booch Driver, Brake, Engine, Clock, Wheel, Current speed, Desired

speed, Throttle, Accelerator. (9)
Yin & Tanik Driver, Brake, Engine, Clock, Wheel, Cruise control system,

Throttle, Accelerator. (8)
Birchenough Driver, Wheels, Accelerator. (3)
Gomaa (JSD) Cruise control, Calibration, Drive shaft. (3)
Wasserman Cruise controller, Engine monitor, Cruise monitor, Brake

pedal monitor, Engine events, Cruise events, Brake events,
Speed, Throttle actuator, Drive shaft sensor. (10)

Appelbe & Abowd Driver, Brake, Engine, Clock, Wheel, Cruise controller,
Throttle. (7)

Gomaa (Booch OO) Brake, Engine, Cruise control input, Cruise control, Desired
speed, Throttle, Current speed, Distance, Calibration input,
Calibration constant, Shaft, Shaft Count. (12)

Table 1: Cruise Control ‘Objects’.

If we are to improve the way we build software, what is required is a closer examination of
the underlying principles of software systems. Those underlying principles are related,
somehow, to concepts, models, abstractions, theories, and how they are used by the human
mind to understand reality and solve problems. Those issues have been explored by other
disciplines for many years and their theories serve as a starting point for uncovering the
foundations of software engineering. Philosophy, especially in the fields of epistemology and
metaphysics, has a long history of identifying the concepts that constitute reality and how they
are represented in knowledge. Additionally, psychologists, especially in the fields of
conceptual development and cognition, have devised experiments and theories to explain how



concepts are used to capture reality, how they are devised, and how they evolve. Finally,
theories in the history and philosophy of science explain how models and theories are used to
explain the world, how those theories can be verified, and how they evolve over time.

Unfortunately, those disciplines do not offer ready-made explanations of the underlying
principles of software engineering. Nevertheless, different theories from those fields have
been cited in software engineering research as justification for proposed ideas. To ensure our
research does not simply adopt one of the many different philosophical and psychological
positions to support a presupposed understanding of software engineering, it examines, in
detail, the major theories from those disciplines that are related to the underlying principles of
software systems. Moreover, it has also involved researchers form those disciplines. An
attempt here to compress two thousand years of thought into a handful of notes is, perhaps,
over ambitious. However, without this material, the basis for our direction is unlikely to be
clear.

Our analysis identifies two phases of thinking about the underlying issues. The classical way
of understanding concepts and theories dates back to the philosophies of Plato and Aristotle
and begins with the assumption that people can be considered as separate from their
environment and that all things can be classified in terms of essential attributes. Those
assumptions result in a belief that all people observe the same objective reality, and that
concepts are derived by inferring abstractions from that reality. As people operate in the
world, they associate objects with known concepts by identifying the essential attributes.
Furthermore, because reality is objective, theories used to explain phenomena capture the
natural order of the world.

However, as progress occurred in both philosophy and psychology, a different way of
thinking about the issues emerged. Many philosophical arguments and psychological
experiments highlighted anomalies in the classical way of understanding. Subsequent research
showed that people’s conception of reality cannot be considered as separate from an objective
reality. As people interact with the world, they automatically and subconsciously apply their
accrued concepts and theories to the observed phenomena in order to understand it.
Consequently, people’s explanatory theories do not capture the natural order of the world.
Rather, they are subjective to the person using them and different theories cannot be evaluated
as being better or worse depictions of reality. Each can only be evaluated in terms of the
usefulness it provides the person using that theory towards understanding and operating in the
world. An additional contradiction to the classical way of understanding concerns the
definition of concepts. Experiments and dialectic debate have shown that people do not
classify phenomena into different classes of concepts based on the existence of essential
attributes. Instead, concepts are defined in terms of the roles the play within people’s
explanatory theories of the world.

Its important to remember that although these conclusions contradict the classical way of
understanding, researchers observe that the classical way of understanding still pervades the
philosophical assumptions of people who have not studied the relevant philosophical and
psychological research. That is evident in the justification of many views of software
development.

These philosophical foundations provide a different way of understanding the software
development process. For example, the popular Unified Process book [1] provides a table on
page 219 comparing the analysis and design models produced as part of the process. While



there are specific differences between the two it is assumed that the design model is based, in
part, on a refinement of what exists in the conceptual analysis model. However, the issues of
philosophy and psychology show there are more significant differences than those presented
in conventional object-oriented design literature.

Analysis Model Design Model
Concepts and relationships cannot be
precisely defined by essential attributes.

Concepts and relationships must be
defined by essential features and specific
functionality

The precise meaning of concepts and
relationships is dependent on the context
of the theory in which they are contained

The precise meanings of concepts and
relationships, their definitions, are
independent of the system in which they
are implemented.

Concepts and relationships are constrained
only by the previous experience and
imaginative ability of the stakeholders in
the development process

Concepts and relationships are constrained
by the constructs provided by the
implementation medium and the execution
model of the virtual machine that executes
it.

Table 2: Comparison of the Analysis Model and Design Model based on the Philosophical and
Psychological Foundations.

While it does not provide a comprehensive explanation for all our problems, we believe these
foundations can be used to improve software engineering research by providing a basis with
which to evaluate and justify both existing and future research ideas.

3. The Consequences for Software Engineering.
Our investigations have concluded that the discipline-wide understanding in software
engineering research has been dominated by analogies with traditional engineering disciplines
[13]. Those guiding assumptions are not always explicitly stated and practitioners are not
always aware of them. However, those guiding assumptions set research agendas, direct
investigations, bias observations, and justify conclusions. Moreover, those sets of guiding
assumptions change as a discipline evolves and researches based on different sets of guiding
assumptions are not always commensurable with each other. However, an alternative
approach, based on philosophical foundations, offers the potential for an improved way of
thinking about software systems and how they are developed. The remainder of the
presentation explores that potential concentrating on the areas of software reuse, architectures,
and design patterns.

3.1. Software Reuse.
The first concerns software reuse. Substantial gains have been made as a result of our efforts
to reap the benefits of widespread software reuse. However, we have yet to achieve the same
scales of reuse that has been achieved by traditional engineering disciplines. The
philosophical foundations of the model building view may provide some insights to explain
this. The first insight concerns the difference between requirements/analysis concepts and
design/implementation concepts. Concepts are identified during the requirements/analysis
stage of the development process and have to be precisely defined and implemented as
software constructs during the design/implementation stage. However, the concepts we
entertain in our explanations of the world do not identify objective real-world parts and they



cannot be universally defined by essential attributes. They are theory dependent and are
subjective to the person using that theory to understand the phenomena under investigation.
This results in two different types of concepts. The first (referred to here as concepts1) are the
fuzzy, theory-dependent concepts applied to sensory experience to assist human
understanding. The second (referred to here as concepts2) are the independent, rigorously
defined structures of software design and implementation. The identification of a concepts1

concept can result in an infinite variety of concepts2 definitions. If a concept is identified
during the development process of a system, then its definition, the resulting software
construct, is only a realisation of that concept within the theory used to understand the
problem at hand. For example, if the object-oriented analysis of a problem identifies a class,
‘Customer’ (concepts1), then its definition (concepts2) only provides the required features of a
‘Customer’ within the confines of the problem that the system solves. The philosophical
foundations of software engineering suggest that if the analysis of a different problem also
identifies a ‘Customer’ (concepts1) during its analysis stage, then the original ‘Customer’
definition (concepts2) may not be applicable in the new context. It may be possible to reuse
the ‘Customer’ definition in the new situation, but it equally well may not be. This contradicts
the idea of software reuse based on the classical theory of understanding and the artefact
engineering view of software development.

Nevertheless, some successful reuse efforts have been achieved and they are explained with
the foundations provided by a model building view. The first concerns the observation that
reuse is more successful when the designer browses an asset library before beginning design
rather than searching for and retrieving assets to match the concepts of a proposed design
[12]. The human mind applies known concepts and theories to a situation in order to explain
it. That is, humans understand a situation in terms of how they understand previously
encountered situations. Having knowledge of what is already in a reuse repository before
design commences exploits that innate conceptual ability by allowing the mind to devise a
solution to a problem in terms of that knowledge. As the designer interacts with the problem,
knowledge of those artefacts will be automatically and subconsciously applied to the situation
to determine if they provide a useful explanation. Therefore, the human conceptual apparatus
makes it a lot easier to design a system to reuse known artefacts than it is to find artefacts to
meet a designed system.

Analyses of software reuse also notes that software product lines provide the most dominant
form of systematic software reuse today [12]. Additionally, user interface components are
often used as examples in explanations of successful reuse theories. These facts are also
explained as a consequence of the model building view though they are not detailed here.

3.2. Software Patterns.
These foundations can also be applied to develop an understanding of software design
patterns. Software patterns have become extremely useful in systems development. Their
historical link with the patterns of Christopher Alexander are well documented, however the
model building view may provide a different and more useful explanation as to why they are
so constructive and provide insights into how they can be better utilised. .

Despite the successful application of design pattern theories to software development,
research in the area fails to resolve anomalies that exist between software systems and
traditionally built artefacts. Alexander himself questions the validity of the analogy between
software patterns and his building patterns [15]. Additionally, consider his comment, “the
ultimate object of design is form” (Chapter 2: Goodness of Fit in [16]). Software systems do



not have a notion of form that is analogous to that found in traditionally built artefacts. Hence,
it is not clear what Alexander’s term, “the coherence of the created whole” (Chapter 2:
Goodness of Fit in [16]), means in the context of software systems when using the artefact
engineering view of software development.

However, if software development is understood as model building rather than artefact
engineering, some explanations of how patterns are utilised in the model building process
become evident. People automatically and subconsciously apply their accumulated concepts
and theories to the world in order to understand their experience. In software development,
the subconsciously applied concepts and theories are made explicit and captured during the
requirements/analysis stage of the process. They are then converted into a collection of
constructs and connections that can be precisely specified and implemented during the
design/implementation stage. However, the process of creating a useful analysis model and
the transformation of that analysis model into a design model is quite complex. The solution
embodied in the analysis model is the developer’s theory for explaining the problem and that
theory is not completely specified until it is implemented in code. However, it may take a
long period of interacting with the problem before a satisfactory explanatory theory can be
generated that cannot be falsified. Indeed, it may not be until the design is in the
implementation stage that anomalies between the requirements and the explanatory theory
become apparent. However, when successfully utilised collections of concepts and theories
have been used to capture the understanding of a problem, and those concepts and theories are
known to be implementable in the constructs of software and hardware, they can be made
explicit for use by other developers. Moreover, those concepts and relationships can be
represented at a higher-level of abstraction to make them applicable to analogous problem
situations. Software patterns provide a format for capturing those higher-level concepts and
relationships. They do not capture naturally occurring aspects of an objective reality. They
capture successfully used ways of understanding a subjective reality that are known to be
implementable in software and hardware constructs. To reiterate, people naturally explain the
situations they encounter in terms of concepts and theories they have used before and modify
those concepts and theories according to the new context. Software patterns make explicit and
capture aspects of the natural thought processes of human understanding.

3.3. Software Architecture.
The last issue to be examined concerns software architecture, specifically, software
architecture views. Many anomalies exist between the practice of software architecture and
the theories provided by software architecture research. Those anomalies exist because of the
prevailing influence of the artefact engineering view of software development. However, they
can be explained by changing to a model building view. During the software development
process, the designer must create an initial conceptual model that makes explicit the concepts
and relationships, the explanatory theory, which the designer believes explains the problem.
That conceptual model can consist of many different types of concepts and relationships, at
many different levels of generality, and are limited only by the designer’s experience and
imagination. However, to implement that conceptual model, the collection of concepts and
relationships must be transformed into a collection of constructs and connections provided by
the implementation medium. Those constructs and connections may have the same labels as
the concepts and relationships in the conceptual model, however the philosophical
foundations of the model building view show that one is not simply a refinement of the other.
The types of concepts and relationships are fundamentally different. As stated previously, one
set of concepts is the fuzzy, theory-dependent concepts used in human understanding
(concepts1). The other set of concepts is the formally specified, context-independent concepts



of software implementation (concepts2). Finally, to realise the required system, a computer
must execute the implemented constructs. That implementation can exist across many
different machines, many different processes, and may include many different instantiations
of the one software system.

The model building view of software development suggests three different types of high-level
system representation are required during the development process. Those different types of
representation are not different abstractions, or subsets, of the complex implementation detail.
They are fundamentally different and are required because of the unique nature of software
systems. First, representations of the conceptual model are required. These are produced as
the initial step in the design process and represent the model that is to be implemented as a
solution to the problem. They consist of the concepts and relationships that constitute the
designer’s explanatory theory for the problem. Second, representations of the static
implementation are required. These depict the implementation of the system in terms of
software and hardware constructs and their dependencies. They represent the structural form
of the implemented system but do not contain enough explicit information to depict the
control flow through the executing system. While the constructs in the static implementation
may appear similar to the concepts in the conceptual model representations, they are
fundamentally different and one is not merely a refinement of the other. Third, representations
are required to represent the dynamic operation of the system. These depict the behaviour of
the system and may consist of concepts from the conceptual model, concepts from the static
implementation model, concepts used by the computer in the execution of the system, and
concepts depicted to the user such as user interface constructs. Each of these types of high-
level system representation are fundamentally different and those differences can be only be
satisfactorily explained by rejecting the prevailing artefact engineering view of software
development and accepting a model building view. See [17] for more detail.

4. Conclusion
This paper has provided an overview of the some of the software engineering research being
performed at the Norwegian Computing Center. That research is focussing on the role of
modelling in software development and how it can be improved using relevant research from
fields such as philosophy and psychology. As an overview, this paper has touched on many
areas while providing little detail and has also omitted some areas of interest. Moreover,
because it describes a research direction rather than a set of research results there still remain
many unresolved issues and points of contention. Nevertheless, we believe the direction is
worth pursuing and can result significant improvements in the way people understand and
subsequently build software systems. Finally, we would like to point out that while this
direction may appear to contradict some existing software engineering theories, we believe
our approach can be complementary and welcome the opportunity to working with others in
the field.

5. References.
1. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Developent Process.

1998: Addison Wesley Longman.
2. Bruegge, B. and A.H. Dutoit, Object-Oriented Software Engineering: Conquering

Complex and Changing Systems. 1999: Prentice Hall.



3. Larman, C., Applying UML and Patterns: an introduction to object-oriented analysis
and design. 1997.

4. Oestereich, B., Developing Software with UML: Object-oriented analysis and design
in practice. Object Technology Series. 1999: Addison Wesley Longman.

5. Pooley, R. and P. Stevens, Using UML: software engineering with objects and
components. Object Technology Series. 1999: Addison Wesley Longman.

6. Kaindl, H., Difficulties in the Transition from OO Analysis to Design. IEEE Software,
1999(September/October).

7. Hatton, L., Does OO Sync with How We Think? IEEE Software, 1998(May/June): p.
46-54.

8. Fowler, M., Analysis Patterns: reusable object models. Object Technology Series.
1997: Addison-Wesley. 355.

9. NATO, Report on a Conference Sponsored by the NATO Science Committee.
Garmisch Germany, Oct 7-11 1968., in Software Engineering Concepts and
Techniques: proceedings of the NATO conferences, P. Naur and B. Randell, Editors.
1976, Mason/Charter.

10. Brooks, F.P., No Silver Bullet. IEEE Computer, 1987. 20(4): p. 10-19.
11. Brooks, F.P., The Mythical Man-Month: Essays in Software Engineering. 1975:

Addison-Wesley Publishing.
12. Mili, A., et al., Toward an Engineering Discipline of Software Reuse. IEEE Software,

1999(September/October).
13. Baragry, J., Understanding Software Engineering: from analogies with other

disciplines to a philosophical foundation. PhD thesis Dept of Computer Science and
Computer Engineering, La Trobe University. Australia. p. 350. Available from the
author.

14. Baragry, J., Is Software Development Analogous to Traditional Engineering? A
Comparison Of Designs for Automotive Cruise Control. Submitted to IEEE
Transactions on Software Engineering., 2001.

15. Alexander, C., The Origins of Pattern Theory: the future of the theory and the
generation of a living world. IEEE Software, 1999(September/October): p. 71-82.

16. Alexander, C., Notes on the Synthesis of Form. 1964: Harvard University Press.
17. Baragry, J. and K. Reed. Why We Need a Different View of Software Architecture. in

The Working IEEE/IFIP Conference on Software Architecture (WICSA). 2001.
Amsterdam, The Netherlands.


	Do We Think In Terms Of Objects and What Are The Consequences For Software Reuse, Architecture and Patterns?
	Abstract.
	1. Introduction.
	2. What are conceptual models how do we build them?
	3. The Consequences for Software Engineering.
	3.1. Software Reuse.
	3.2. Software Patterns.
	3.3. Software Architecture.

	4. Conclusion
	5. References.

