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Traffic statistics is a key parameter for operation and development of road networks. Vehicle
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1 Introduction

Road networks are resources of major importance for the society. Operation and development
of road networks is a central activity for several public institutions, such as the Norwegian
Public Roads Administration (Statens Vegvesen Vegdirektoratet, SVV). Traffic statistics is a key
parameter for this activity. The primary source of traffic statistics today is ground based counts
generated using various types of equipment mounted in or close to the road. Such equipment,
e.g., induction loops or pressure sensors, counts the number of cars passing a given location on
the road during a period of time. Important statistics describing traffic can be derived from
these counts, most importantly the so-called AADT, i.e., the Annual Average Daily Traffic,
which is the average number of vehicles passing a given location during one day, taken as an
average over a year. In Norway AADT is estimated using ground based vehicle counts in
combination with statistical tools developed at the Norwegian Computing Center (Norsk
Regnesentral, NR).

For fairly large parts of the Norwegian road network AADT is still unknown. The reason is that
installation and operation of measurement equipment for ground based counts are both
difficult and expensive, hence there are relatively few counting locations as seen in a
geographical scope. Especially, AADT is missing for most roads with low traffic density on
national basis.

Over the last few years, very high resolution satellite sensors have opened up for alternative
means of traffic monitoring. Vehicle counts based on automated satellite image analysis can
provide useful additional information to traditional traffic surveillance. A significant advantage
of satellite based technology is that it does not require installation of equipment in the road,
thus maintenance demands are no longer an issue. Moreover, a satellite image can cover large
geographical areas and in principle this allows for AADT estimation of all the roads in the
region, as opposed to only a few roads, as one is restricted to using ground based
measurements.

In 2006-2007 NR conducted the European Space Agency project “Road Traffic Snapshot” (see
http://dup.esrin.esa.it/projects/summaryp92.asp) in cooperation with SVV and Institute of
Transport Economics (Transportekonomisk Institutt). Fundamental algorithms for vehicle
detection using satellite images was demonstrated in the project. In the following project
“SatTrafikk”, begun in the summer of 2007 and funded by SVV and the Norwegian Space
Centre (Norsk Romsenter, NRS), the detection algorithm was further developed and optimized.
In 2008 the methods were validated on a large data set containing a variety of road conditions

from different parts of the country. While the original methods were developed using satellite
images covering the urban area of Oslo, this larger data set contained images from Sennalandet,
Bodg, Kristiansund, Osterdalen, Eiker and Sollihegda (see Figure 1.1). These images revealed
different types of challenges when it comes to automatic vehicle detection in different parts of
the country, and especially there are differences between urban and rural areas.
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Figure 1.1. Locations of image acquisition for the 2008 QuickBird data set.

In 2008 we also conducted research on how good AADT estimates can be expected using
today’s statistical model (the basis curve method), given the availability of one or a few satellite
images per year. For roads with relatively large AADT as seen in a national context (i.e., AADT
>20,000 vehicles) the results were promising (absolute error less than 20% given two satellite
images a year), with the precondition that the vehicle detection algorithm is more or less
completely accurate. For roads with smaller AADT (<20,000 vehicles) the corresponding
average error was around 25%. With AADT less than 1,000 vehicles, even larger error can be
expected, although, as traffic statistics hardly exist for such roads, there was no data evidence to
verify this.

On the background of the mentioned experiences, the focus of the SatTrafikk project in 2009 has
been directed towards relatively low traffic density roads, mainly located in rural areas. Large
parts of the previously suggested methods have been replaced or modified to meet the specific
challenges related to vehicle detection under these conditions, and to optimize the detection
strategy in general. This report desribes the work that has been done to improve the methods,
as well as the final algorithm, including experimental results.
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2 Satellite data

In order to experimentally test our algorithm we used QuickBird satellite imagery, which has a
ground resolution of 0.6m in the panchromatic band. Road masks are applied to the images in
order to restrict vehicle detection to roads. The road masks are manually constructed for this
study. Areas covered by clouds or heavily influenced by cloud shadows are excluded.

The image data consists of 6 QuickBird satellite images from three different locations in
Norway:

Osterdalen, a long valley in the middle of the country, with only sparse settlemens. Most of
the road in this area is located close to forest and has very low traffic density.

Kristiansund, a city on the north-west coast. The extracted roads are located outside the city
in a rural area with a few suburban settlements.

Sollihegda, in the south eastern part of the country. A multi-lane highway pass through this
area, which has higher traffic density than the other two locations. For experiments, we
extracted only a smaller part of this highway, lying in an area where it is reduced to one-
lane highway.

Table 2.1 presents an overview of the data. Throughout this report the image ID numbers in the
first column of the table will sometimes be used as reference to the image when discussing
experimental results. The number of sub images for each scene refer to how many sub images
was extracted from the total scene and used for processing. Each sub image contains a road
segment of roughly 1-3 km. The extracted road length equals the sum of the road lengths in the
processed sub images. To give an impression of the given conditions, some sample image sub
sections are shown in Figure 2.1.

Date . Image Extracted Traffic Number
Image . Road Time .
D Location D (mm.dd. (UTO) area road density of sub
yy) (km?2) length (vhcls/km) images
(km)
1 Osterdalen RV3 08.10.04 10:39 59 31.0 1.4 20
2 Osterdalen RV3 09.06.09 10:29 59 17.1 1.3 13
3 Kristiansund ~ RV70 06.19.04 10:56 29 5.8 5.7 5
4 Kristiansund ~ RV70, 07.08.08 10:57 64 11.6 41 8
EV139
5 Sollihegda EV16 05.10.02 10:32 52 3.1 29 1
6 Sollihegda EV16 08.21.08 10:48 64 3.1 84 1

Table 2.1. Satellite image data.

&
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Figure 2.1. These sample images show sections of road extracted from the satellite scenes of (from above left) Krisitansund
(image 3, road RV70), Kristiansund (image 4, road EV139), @sterdalen (image 1, road RV3), and Sollihegda (image 6, road
EV16), cf. Table 2.1.
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3 Segmentation strategies

Two different segmentation strategies were developed and tested in 2009. The first strategy is
related to the thresholding technique used earlier in the project, see [1], while the second is a

filtering technique which represents a completely different way of thinking when it comes to
segmentation.

3.1 Strategy 1: Morphological contrast enhancement followed by
local thresholding

The previously suggested segmentation approach (see [1]) consisted in a modified version of

Otsu’s method for automatic threshold selection and was based on global thresholding of the

image. The success of the approach relied on certain assumptions about the image histogram

which did not hold in the general case, and failed to capture local contrast variations.

In 2009, a first attempt to improve the segmentation strategy was the following. Instead of
considering the whole image when the threshold is selected, we focus on a small region of the
road at the time. This is necessary since we will perform detection in a large area (several
kilometers of road), and the local illumination conditions can vary considerably from one
location to another within the same image. Furthermore, the local conditions on the road will
usually differ throughout the image, due to variations in road surface conditions, road
markings, asphalt color, etc. Before thresholding, we perform morphological operations that
enhance the visibility of the vehicles. More specifically, we perform gray tone dilation with a
structuring element that represents a line, oriented in the same direction as the road, to enhance
bright vehicles. Similarly, we perform gray tone erosion to enhance dark vehicles. We then
traverse the road along the midline, extract sub images that represent 40-50 m road segments,
and assume that the direction of the road is constant within a sub image. We calculate the Otsu
threshold for the dilation and erosion results separately. If the separation between the classes
exceeds a preset limit, we binarize the image using the Otsu threshold and extract the
foreground segments. Tree shadow segments are excluded by rejecting segments that extend
outside the road mask. See Figure 3.1 for some examples.

3.2 Strategy 2: Elliptical blob detection using a Laplacian of
Gaussian filter
The second segmentation strategy represents a different way of approaching the problem:
instead of separating bright and dark intensity levels in the image directly, a small image filter
which resembles the kind of objects we are interested in is used to search through the image.
Locations where the filter in some sense matches the underlying image are marked as candidate
locations for possibly interesting objects. In a second step, object regions must be defined at the
locations that were marked during the first filtering step.

3.2.1 Extraction of elliptical blob locations (filtering)

The scale-space representation of an image is a family of successively smoothed images derived
from the original image with the intention to represent the original data at multiple scales. It
was first introduced by Witkin [3], as an answer to the problem of deciding which
neighbourhood size is correct for describing image features. Treating scale as a continuous
parameter, a family of smoothed images is derived by smoothing the signal with a mask (filter)
of variable size (scale). A common choice is the Gaussian convolution. It appears that features of
a given size in the original image become further enhanced at the corresponding scale in scale-
space.
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Figure 3.1. The segmentation process illustrated. The columns show three cases of segmentation.Upper row:
panchromatic images. Middle row: dilated (left column) and eroded (middle and right column) images. Lower row:
segmentation result images. The contour of the road mask is overlaid on the segmentaiton result. The segments (tree
shadows) in the right column are discarded since they extend outside the road mask.

The scale-space is formally defined as the solution to the diffusion equation with the original
image as initial condition (see e.g. [4]). The solution is equivalent to convolution of the image
with the Gaussian kernel

2, 2

1 Xty
X, y;t)= exp| — ,
8t yi1) 270 P[ 202 ]

(e}

where 02 is the scale parameter, which here equals the squared standard deviation of the
Gaussian filter.

Our approach can be seen as a generalization of the disk detection approach presented by
Blostein and Ahuja in [5]. They use a region detector derived from properties of a Laplacian of
Gaussian (V2G) scale-space. Circular image regions of uniform gray level are found based on
the image response to convolution with first derivative Gaussian filters over a range of scales.
The size and location of best fitting disks to such regions are estimated from the observed
response of the V2G operator across the image and across scales using an analytic expression
for the response of V2G to disks. They also use a o-differentiated Laplacian of Gaussian filter
((0/00)V2G ) to analyze the behaviour of images across scales. With these two measurements
(the image responses to convolution with V2G and (0/00)VV2G) both disk radius and disk
contrast can be estimated, based on derivation of the expected values of these two
measurements for an ideal circular disk of constant gray level in the continuous case. Candidate
locations for disks in the image correspond to local extrema in scale-space. A candidate blob is
accepted only if the diameter is close to the diameter of the center lobe of the filter.

12 m% SatTrafikk project report 2009



The image features of our interest are vehicles, which are characterized in the image as
rectangular regions that are brighter or darker than the local background. However, due to the
barely sufficient resolution of the satellite images for this application, the corners of the
rectangular vehicles appear smoothed in the image, thus the interesting features can loosely be
described as elliptical blobs whose gray level stand out from the surroundings. We find
elliptical image regions of uniform gray level by convolving the image with V2G filters over a
range of scales, and comparing the convolution result to that expected for an ideal elliptical
region of constant gray level.

We use an unnormalized, negated Gaussian of two variables, x and y, centered at the origin,
and aligned with the coordinate axes

2 2
G(x, y) = — exp| - 2"—+y— i

2 2
o, 20,

such that the expression for the V2G filter is given by

VZG(x,y): i(a,f—x2)+o_—14(o-z—yz) exp| - x + y2
y

4 y 2 2
; 20, 20,

Equation 3-1

Here, we must define two scale parameters, i.e., the standard deviation in the x and y directions,
ox and oy, respectively.

The V2G filter is expected to give a strong positive/negative response at bright/dark elliptical
blobs that have roughly the same size and orientation as the filter. We can estimate the contrast
C and scale factor S of the elliptical blobs, meaning the numbers C and S such that the ellipse
can be written on the form

2 2
C for x—2+y—2£52,
I(x,y)= o oy

0 otherwise.
Equation 3-2
Thus, we look for elliptical blobs of a given ellipticity (shape) ox/oy, but unknown size. In order

to estimate both the contrast and the scale of the ellipse, two measurements must be made over
the image. In addition to the V2G filter, we can use the first derivative with respect to o, i.e.,

2, 2 2, 2 3, 3 2
1, 1 4 o0y+0, ,, S0,+0; , Soy+0, , 2(O'x +0'y) x y
TTX 7Y T3 t—% 2 ¥ 25 Y 33 |9P|7| 52752
log o, 0,0, 0,0, 00, 050y 207,
Equation 3-3
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A closed-form solution to the integrals defining the convolution of an ideal ellipse image (as
given in Equation 3-1) with the filters (as given in Equation 3-2 and Equation 3-3) can be
derived analytically, using polar coordinates. Performing these calculations it can be shown that
at the center of the ellipse (x,y)=(0,0) the responses are given by the following two expressions:

2
(VZG * 1): ﬂCSZO'xO' [0_—12+in exp[— S?],

X O-y

Equation 3-4
and
0 0 2 ﬂ'CSz 3 3 3 1 2 3 3 SZ
[[—ao_x + _60'y JV G=* I]:—o-foyf ((Z(O'x +o, )+ Zaxay(ax + Gy) S5c-2 (O'x +o, ) exp| — By
Equation 3-5

Using Equation 3-4 and Equation 3-5 to solve for the scale parameter S and contrast C we find

that
[(£+%JVZG*IJ 2, 2 3, 3
S= ’ V2G+I Gxay(ax +0y)+8(0x +O'y)
3(05’ +o, )+ o0, (o'x+o-y) ,
Equation 3-6
and

(V 2Gx I)o-x o, exp(— Szzj

C=

2( 2, 2
S (O'x +0'y)

Equation 3-7
To summarize, we locate blobs by performing the following steps:
1. Rotate the panchromatic sub image so that the road is (and thus the vehicles are)

horizontally oriented in the image.

2. Convolve the rotated image I with the V2G and (0/00) V2G filters defined in Equation 3-1
and Equation 3-2.

3. Find the locations of local extrema in the V2G convolution response.

4. Compute the scale factor S and contrast C at the local extrema, using Equation 3-6 and
Equation 3-7, and compare the resulting S and C to the corresponding parameters of the
filter used for convolution.
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Step 3 require some further comments. Since we are going to compare the scale factor of the
blob found in the image to the scale factor of the V2G filter, we need to know how we can
define the latter. The main lobe of the V2G filter is the ellipse that satisfies the equation

ENEMC Y >]

o, oy

Rewriting this expression to standard form, the main lobe ellipse is given by

x_z y—z—l,where a——,/o- +o- and b— G +G

Equation 3-8

Here a and b represent the lengths of the principal axes, i.e., the ellipticity a/b is 0/ 0,2
However, the formulas for the scale and contrast of an ideal elliptical blob was derived for an
image of an ellipse with ellipticity ox/ oy. In order to compare the filter ellipse to the elliptical
blob in the image we therefore want to find the ox/ gy-ellipticity ellipse that best fits the main

lobe of the filter. This can be expressed as finding the scale S which makes an ellipse of the form

2 y2 R

—t+t 5 = S?, or, equivalently,

oy o,
x y A A
—+ +=> =1 where a=So, and b:SO'V,
a bZ 1

Equation 3-9

best fit the ellipse given in Equation 3-8.

This optimization problem can be solved by using the following parametrization for a general
2 2
. x° oy
ellipse —+=-=1:
P a®  b?

1

r(0;a,b)= , 0¢elo0,2x]

\/12cosz ¢9+i25in2 o
a b

The optimal scale S is found by minimizing the objective function

J(S)= ”H %x o2 102, \/o' o J Ho;50.,50 )rde

This minimization problem can be solved numerically for given values of ox and ay. The

%

resulting §=argmin J(S) will be uniquely determined given the ratio 0+/ oy. Now, the scale factor
S of a blob candidate can be compared to the corresponding S. In order to make the comparison
more intuitive, we actually compare the estimated length of the major principal half axis of the
elliptical blob, given by Sox, to the major principal half axis of the ox/ oy-ellipticity ellipse that

best fits the main lobe of the filter, given by S ox, and the blob is kept only in the case that the

absolute difference between Sox and S 0, is less than 25% of S o
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When it comes to the estimated contrast C of the elliptical blob, we require C>1. We also apply
an amplitude threshold to the V2G convolution response in order to avoid local extrema that
only represent noise in the data. Furthermore, if there are overlapping blobs, we keep only the
blob with the strongest amplitude.

3.2.2 Definition of object regions

Once the blob locations have been marked in the image, we must define the extension of each
blob. We use a simple region growing technique, where all neighbouring pixels that pass an
intensity threshold are added to the blob region.

This intensity threshold was set based on trial and error. For bright blobs, the best result is
obtained using a local threshold, based on the road intensity values in the panchromatic image.
More specifically, the bright threshold furigit is defined as

tbright = [.,lloc, road-veg + 1.5(7106, road-veg,

where Lo, road-veg is the mean intensity of the pixels that are included in the local road mask and at
the same time not included in the vegetation and vegetation shadow mask (see Section 4.1), and
Oloc, rond-veg 1S the standard deviation of the same pixels.

For dark blobs, a suitable threshold in most cases is
tdarid = [Uglob, road — Oglob, road,

where pgiob, rond is the mean intensity of all the pixels in the global road mask and ggiob, read is the
corresponding standard deviation. The exceptions (where fun! is not suitable) are local areas
where the road cover is darker than usual, e.g., when the road is apparently newly coated with
asphalt. We make a test to check if the local mean intensity is darker than usual:

loc, road < lob, road — 05(7 lob, road,
8 & 7

where Lo, rad is the mean intensity of the pixels within the local road mask. In cases where the
inequality holds, we apply a local threshold given by

tdark? = (yloc, road + mi?’lloc, road )/2,

where mintio, road is the minimum intensity of the pixels within the local road mask.
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4 Tree shadows

A frequently encountered problem is tree shadows in the road, cast from vegetation along the
side of the road. If we restrict region growing (cf. Section 3.2.2) to the road, we get many tree
shadow segments that are easily confused with dark vehicles, depending on the shape of the
part of the shadow that lies wihin the road. At the same time, some dark vehicles appear so
close to a tree shadow that the vehicle can not be separated from the shadow based on intensity
features alone, see Figure 4.1. To solve this dilemma, we do not restrict region growing to the
road, but let it also grow in the south-east direction, to see whether it enters a vegetation
shadow area. If this happens, the region is checked to find out whether it is a tree shadow, or a
combination of vehicle and tree shadow. We will first describe how the vegetation and
vegetation mask is defined, and then how we can separate a vehicle from the tree shadows
when the vehicle seems to be connected to the shadow.

i

Figure 4.1. Tree shadows in the road. Note that in the left image, one of the dark vehicles is located so close to the tree
shadows that it can not be separated from it based on intensity alone. The reason why a human interpreter recognizes the
car is the shape of the region.

4.1 Vegetation and vegetation shadow mask

A vegetation mask is constructed from the NDVI (normalized difference vegetation index)
image, which is computed from the red and near-infrared bands of the multi spectral image,
after resampling to the resolution of the panchromatic image using cubic interpolation. The
appropriate theshold to separate vegetation from non-vegetation pixels is found from
application of Otsu’s algorithm to the NDVI image.

The combined vegetation and vegetation shadow mask is defined by repeatedly dilating the
vegetation mask, but for each dilation, only pixels that are below an intensity threshold tsadow
are added to the mask. The threshold is given by

tshadow = [,lglob, road — Oglob, road,
where pgiob, road is the mean intensity of all the pixels in the global road mask and oo, read is the

corresponding standard deviation (cf. Section 3.2.2). The structuring element used for dilation
is:
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i.e., it represents shadows lying north of the object, since in all the images in our data set, sun
light enters the scene from the south/south-east.

4.2 Separation of tree shadows and dark vehicles

When a dark object region appears to be located partly inside and partly outside the road and it
overlaps the vegetation shadow mask, we must closely study the shape. The implemented
approach can briefly be described as follows. We first extract the contour (border) of the region
and estimate its curvature. Then, we start at a point of the contour lying inside the road and
traverse the contour in both directions, looking for points of strongly negative curvature, and
where the normal direction of the contour agrees with the orientation of the road, i.e., the
normal direction of the contour is parallell to the road direction. If points of negative curvature
are found close to the road border and in both directions, with opposite contour normal
directions, parallell to the road direction, then the region is clipped along the straight line
connecting the two points (Figure 4.2). After clipping, the segment inside the road is kept, while
the outside part is thrown away. The extracted segments are then carried on to the classficiation
stage of the vehicle detection processing chain.

Figure 4.2. Upper image: panchromatic image, overlay: green point=blob center, green outline=contour of the corresponding object
region. (The contour has been smoothed using splines). Left below: black contour=contour of the object region, green point=start point
for search along the contour, red stars=points with strongly negative curvature and opposite normal directions, both parallell to the road
direction. Right below: red contour=contour of the new region.
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5 Feature extraction and classification

The whole idea of defining object regions during segmentation is that we can calculate features
that describe them — features which assume different values for different kinds of object, and
hence, features that can be used to discriminate vehicles from other types of objects.

In 2009, we have followed the same basic approach as previously, in that we extract features
and then classify the objects based on some selected feature set. However, some features have
been added, and the classification method is new.

5.1 Feature extraction

Using the segmentation strategy described in Section 3.2, some of the features are actually
extracted before the region definition, i.e., we save some features related to the blob location.
The rest of the features are extracted from the object regions.

5.1.1 Complete list of features
Features extracted from the blob center locations:

1. contrast
The estimated contrast C, as defined in Equation 3-7.
2. LoG amplitude
The amplitude of the image response to the V2G filter at the scale of the detected blob.

3. 0-LoG amplitude

The amplitude of the image response to the (0/00)V2G filter at the scale of the detected
blob.

4. estimated major principal half axis

The estimated size of the major principal half axis of the blob, i.e., the estimated
2 2

e . x
parameter a4, when writing the blob ellipse on standard form —-+ Z—z =1. More
specifically, a = Sox, where S is the estimated scale parameter as defined in Equation 3-6,
and ox is the parameter used for constructing the filter at the size corresponding to the scale

of the detected blob.

5. estimated minor principal half axis

The estimated parameter b, cf. the previous point of this list, b = Soy.

6. longitudinal contrast 1 and 2

As explained in Section 3.2.1, the panchromatic image is rotated so that the road is
horizontally oriented prior to filtering, i.e., the orientation of the road is parallell to the
orientation of the major principal axis of the filter. For a bright blob, the contrast between
the blob centers and a point outside the blob ellipse is expected to be positive, and vice
versa for a dark blob. We define the contrast in the longitudinal direction as the intensity
difference (in the rotated panchromatic image) between the blob center and the point lying
1.5 times the length of the major principal half axis of the main lobe of the filter, to the
left/right. See Figure 5.1.
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Figure 5.1. lllustration of points used for estimating contrast in the longitudinal direction. The contrast is the difference
between the intensity in the blob center location and the longitudinal contrast point 1 or 2. (mla = the length of the major
principal half axis of the main lobe ellipse)

Features extracted from the object regions:

7.

10.

11.

12.

13.

14.

20

width

Width of the bounding box of the object region - after rotation so that the orientation of
the region is aligned with the coordinate axes.

length

Length of the bounding box of the object region - after rotation so that the orientation is
aligned with the coordinate axes.

area
Number of pixels in the object region.

spread

A measure of the spread of the object region, defined using the region’s second order
central moments: (pl2o0 + o2)/(area?)

area ratio

The ratio between the area of the object region and the bounding box.
elongation

The ratio between the width and length of the object region.

road angle deviation

The absolute difference between the angle of the road and the orientation of the object
region.

boundary count

The number of pixels on the boundary of the region. The boundary is defined using
dilation of the object region with a 3x3 flat structuring element.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

road edge overlap

The number of object region pixels lying on the boundary of the road mask. The
boundary of the road mask is defined using erosion of the road mask with a 3x3 flat
structuring element.

third order moments

The third order central moments of the object region: uso, pos, pai, piz.

vegetation distance

The distance (measured in pixel units) to the vegetation mask measured from the point
on the road edge lying closest to the object region centroid.

distance from midline

The distance (measured in pixel units) between the centroid of the object region and the
closest point on the midline of the road.

distance to road edge

The distance (measured in pixel units) between the centroid of the object region and the
closest point on the road edge.

mean pan intensity

The mean intensity (in the panchromatic image) of the pixels of the object region.

pan standard deviation

The standard deviation of the intensity values of the pixels of the object region.

local pan mean

The mean intensity of the pixels of the object region after local intensity normalization.
The local intensity normalization is performed by subtracting the mean and dividing by the
standard deviation of the intensities within the road mask, not including pixels in the
vegetation and vegetation shadow mask.

deviation from global intensity

The deviation between the mean pan intensity of the object region and the global mean
intensity of the road pixels in the image, measured wrt. the global standard deviation of the
intensity values.

region sobel gradient

The mean absolute value of the Sobel gradient of the pixels of the object region.

5.1.2 Feature selection
The list above is a complete list of features that were examined. Not all of these features were

used for classification in the end. The optimal set of features for classification was selected using
so-called feature selection methods, which are designed to loop through various combinations
of features and test the performance of some given classifier for each combination. We used
some of the feature selection methods integrated in the Pattern Recognition Toolbox PRTools [6]
in Matlab.
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The feature selection is performed using the entire data set, but for bright and dark objects
separately. The criterion (mapping) used for feature selection is the same as the classification
method, which is described in Section 5.2. The chosen set of features is:

for bright objects: contrast, elongation, pan standard deviation, region sobel gradient.

for dark objects: LoG amplitude, longitudinal contrast 1, length, area, road angle deviation,
boundary count, road edge overlap.

5.2 Classification

In the previous stage of the project we used a maximum-likelihood classifier and we assumed
that the objects could be grouped into six classes (bright car, dark car, bright truck, bright,
vehicle fragment, vehicle shadow, and road mark), each class normally distributed in feature
space, with general covariance matrices. This type of classification requires the estimation of
parameters for the probability density distributions and the performance relies on whether a
high number of training samples is available, not to mention whether the assumption about the
type of distribution is true. We experienced that many of the test samples did not belong to any
of the six defined classes.

Based on these experienced, we decided to take a different approach to classification. First of all,
we use a K-nearest-neighbour classifier, which does not assume anything about the shape of the
distribution of the features. Instead, this classifier bases the decision to classify a new sample on
how similar the new sample is to samples exisiting in a training set, i.e., a set of samples with
known class labels. The K nearest neighbours in the training set each give a “vote” to the
corresponding class, and the new sample is classified to the class getting the highest number of
votes. The best results were obtained using K=3. Prior to classification, the mean of the feature
space is shifted to the origin, and the features are scaled to unit total variance, neglecting class
relationships.

Secondly, we split the objects into two sets: bright and dark objects are classified separately.
This is done because the features that are best suited to describe bright objects are not the same
features that are optimal for dark objects. Thirdly, we use only two classes: vehicle and non-
vehicle.
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6 Results and discussion

6.1 Segmentation results

The first segmentation strategy was tested on images 1, 3, 4, 5, and 6. The segmentation result
was manually inspected and compared to the marked vehicle positions. Based on this
inspection we found that 94% of the vehicles were satisfactorily segmented, i.e., 6% were either
lost during segmentation, or combined with a non-vehicle object into a joint segment. The total
number of segmented objects was approximately eight times that of the total number of
vehicles.

The second segmentation strategy was tested on all the images (1 through 6). Based on manual
inspection (as in the previous case) we found that 98% of the vehicles were satisfactorily
segmented, while 2% were either lost or the region was grown into other objects, resulting in an
unrecognizable object. The total number of segmented objects was approximately three times
that of the total number of vehicles, thus the number of objects is significantly reduced
compared to the first strategy. Leaving out image 2, we can compare the success rate of the
second strategy with that of the first. More specifically, going from the first to the second
segmentation strategy, the number of successfully segmented vehicles in images 1, 3, 4, 5 and 6
increased from 94% to 97%.

In the remainder of this document we will report results from classification and the total
detection chain assuming the second strategy, i.e., the elliptical blob detection approach, was
applied for segmentation, since this strategy gave the best results.

6.2 Classification results

Initially, all the objects in all the images were manually labeled as vehicle or non-vehicle, except
apparent outlier or doubt objects. Objects that represent car shadows were considered to belong
to the vehicle class, as they share similar geometrical and spectral properties as dark vehicle
segments. Testing was performed at the sub images (see

Table 2.1), one at the time, leaving the objects from the relevant sub image out of the training set
(leave-one-out approach). Weighted by the number of objects in the sub image, this gave a
classification error of 0.6% for bright objects and 4.6% for dark objects.

6.3 Final detection results

The final results are found by looking at the number of vehicles reported as detections at the
end of the processing chain, and the frequency of false alarms. Since a bright vehicle may be
represented by a bright and/or a dark object (the vehicle shadow), the classification output
images must be inspected.

The final result image is constructed by adding the bright and dark object regions classified as
vehicles, and counting the number of final vehicle objects. To ensure that bright vehicles are not
counted twice (the vehicle plus its shadow), bright object regions are dilated in the direction of
the expected shadow, i.e., given the known position of the sun in the sky at the moment of
image acquisition, in order to ensure overlap of the segments. As pointed out before, the sun
angle is approximately the same in all the images in our data set (the sun enters the scene from
the south/south-east), and the structure element used for dilation of bright vehicles is:

SatTrafikk project report 2009 m?“; 23



1100000
0110000
0111000
0001000
00000O00O
0000000

000000 O

The final detection results are given in Table 6.1. Intermediate segmentation results are also
reported in this table. The detection rate (the fraction of vehicles that are detected) is 94.5%,
while the false detection rate (the number of false alarms divided by the number of vehicles) is
6.0%.

Image Correctly  Correctly False Correct False
8 Location Vehicles segmented detected detection detection
ID . . alarms

vehicles vehicles rate rate

1 Osterdalen 44 44 43 4 97.7% 9.1%
2 Osterdalen 23 23 23 2 100.0% 8.7%
3 Kristiansund 33 32 30 1 93.8% 3.0%
4 Kristiansund 47 44 42 2 89.4% 4.3%
5 Sollihegda 9 9 9 0 100.0% 0.0%
6 Sollihegda 26 26 25 2 96.2% 7.7%
SUM 182 178 172 11 94.5% 6.0%

Table 6.1. Final detection results

6.4 Discussion

As seen in Table 6.1, the detection rate ranges from 89.4% to 100% among the six images. The
performance also vary with the location. For example, all the segmentation errors occured in
images 3 and 4 - the Kristiansund images. These images contain more clutter than the images
from the other locations. The Jsterdalen images have more false alarms compared to the
number of vehicles than the images from the other two locations. A fair explanation is that the
traffic density is lower in Jsterdalen. Actually, the average number of false alarms per km is
0.12 in Psterdalen, while it is 0.17 and 0.32 in Kristiansund and Sollihegda, respectively.

False alarms are caused by e.g. vehicle shadow, trailor wagon (counted in addition to the

vehicle pulling it), tree shadow, or spots in the road surface. All the false alarms are shown in
Figure 6.1.
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.bright object classified as vehicle bright object classified as non-vehicle

dark object classified as vehicle dark object classified as non-vehicle

Figure 6.1. False alarms. The classification result is shown below the corresponding panchromatic image, the color of the
object region in the classification image indicates which class it was classified to. In each of the examples in the upper row
there is one false alarm. Each of the vehicles in the lower row have been counted twice, causing 1 false alarm per vehicle.

There are six false alarms caused by vehicles counted twice, as a result of vehicle shadows or
trailor wagons being counted in addition to the actual vehicle.

Two false alarms are caused by tree shadows — one of which represent a tree shadow region
whose shape resembles that of a vehicle. The fact that there are so few errors caused by tree
shadows is a significant and important improvement compared to previous results.

The cases where segmentation failed (using the second strategy) are shown in Figure 6.2. As can
be seen here, three out of four failed segmentation examples are caused by the object region
growing too big. In only one case, there is no object at all, meaning, no blob was located at this
vehicle location.

SatTrafikk project report 2009 m% 25



)
]

Figure 6.2. Failed segmentation examples. The segmentation result is shown below the corresponding panchromatic
image. Dark object regions are colored green. In the first three examples, the region growing failed, and the resulting object
is unrecognizable. In the last example, no blob was found at all. The first example is from image 3, the three remaining
examples are from image 4 (thus, all examples are from the Kristiandsund scenes).

All the vehicles that were missed becaused of classification error are shown in Figure 6.3. The
misclassified dark vehicles in these images typically represent “ugly” object regions, i.e., it can
be discussed whether it is actually the region growing step of the segmentation routine that
failed, and not the classification. In one case, a bright vehicle with poor contrast to the local
background was misclassified.

.bright object classified as vehicle bright object classified as non-vehicle
dark object classified as vehicle dark object classified as non-vehicle

Figure 6.3. Classification errors. The classification result is shown below the corresponding panchromatic image, the color of the
object region in the classification image indicates which class it was classified to.
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7 Summary and conclusions

In this report we have presented our latest approach for vehicle detection using very high
resolution satellite imagery. The development of this methodology is the main activity of the
project SatTrafikk, which has been running for three consequtive years now, and is funded by
the Norwegian Space Centre and the Norwegian Public Roads Administration. In 2009, we have
achieved major improvements concerning vehicle detection rates. We have focused the
attention to smaller highways representing typical Norwegian road conditions, i.e., relatively
narrow roads, low traffic density, located in mostly rural areas, where roads are often partially
covered by tree shadows, as seen from the satellite. The processing chain starts with a
panchromatic satellite image and a corresponding road mask, and consists of the steps
segmentation, feature extraction and classification, as before. However, especially the
segmentation and classification stratgies have been changed compared to our previous work.

The proposed segmentation strategy is based on a so-called Laplacian of Gaussian filter which
is used to search through the image for elliptically shaped “blobs”, i.e., regions of relatively
constant intensity that is brighter or darker than the local background. The size of the elliptical
main lobe of the filter corresponds to the size of typical vehicles, and the orientation
corresponds to the orientation of the road, hence the vehicles, in the image. Interesting locations
in the image can be extracted from the image response to the filter. Although this approach is
robust towards local contrast changes, and extract nearly all the vehicle positions in the image,
it also finds many candidates representing other kinds of objects. We are able to get rid of most
of the non-vehicle candidates using estimates of blob size and contrast, derived from
mathematical formulas. The remaining candidates are sent to the feature extraction and
classification steps, after a region growing step where the extention of the object region
(initialized at the blob candidate location) is defined using a region growing technique.

Variuos features are used to describe the object regions, which are separated into two sets:
bright and dark objects. The features describe the intensity, shape and context of the objects.
Next, the objects are classified using a K-nearest-neighbour approach (with K=3). This
classification approach is different from the previously applied maximum-likelihood classifier
in that it does not assume anything about the shape of the distribution of features within a class,
and does not require the estimation of parameters.

The entire processing chain was validated using QuickBird images from three different
locations (Jsterdalen, Kristiansund and Sollihegda) in Norway (two images from each
location). Comparing the result to the manually marked vehicle positions in the images, we
found that 94.5% of the vehicles were detected, and the false alarm rate was 6%.

Compared to our previous studies, the detection rates have been significantly improved, and
may in many cases now be considered acceptable for operational use. However, there are still
some aspects that should be adressed.

First of all, the approach to handle tree shadows is new, and may need some adjustments. It
should therefore be validated on a larger set of images.

Secondly, false alarms due to double count of the same vehicle should be avoided. The vehicles
should be classified into groups based on size, e.g., car, van, and truck/bus/trailor wagon.
Objects regions that are located close to eachother must be seen in context to determine whether
they belong to the same vehicle.
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Third, image areas containing heavy clouds or cloud shadows have not been used for algorithm
development so far. Although clouds prevent optical imaging, it may still be possible to get
information from areas affected by cloud shadows. However, the method must be adjusted
since the contrast is very different in these areas. Furthermore, the localization of clouds and
cloud shadows in the image should be performed automatically, hence, methods for
construction of cloud masks must be developed.

Finally, for operational use, the roads must be automatically localized in the satellite image. The
position of the mid line of the road is available as vector data together with rough estimates of
road width. However, in order to construct a road mask, these data must be co-registered with
the satellite image. As of today, this requires a considerable amount of manual labor. It is
therefore necessary to develop algorithms for automatic rectification of the road mask to match
the satellite image.
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