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Abstract

We do history matching in a fluvial oil reservoir by using Metropolis-
Hastings algorithm and a genetic algorithm.

1 Introduction

History matching with uncertainty quantification is a very hard problem. The
goal is to sample from the posterior distribution for the reservoir characteris-
tics, that is, sample the reservoir conditioned on prior knowledge, well data and
production history. Many methods are proposed, with varying results, see for
example [1], [6], [8] and [7]. By Metropolis-Hastings [5], [2], simulation it is
in theory possible to sample correctly from the posterior distribution for reser-
voir characteristics. However, this is usually too time consuming in practice,
unless the proposal function is cleverly chosen. An approximate method based
on Metropolis-Hastings is proposed in [4]. In the references mentioned above,
reservoir characteristics are modeled by discretized Gaussian random fields or
other pixel based models. In this article we focus on object models for the reser-
voir characteristics. We model a fluvial reservoir consisting of high permeable
channels and low permeable background. We will do history matching both by
Metropolis-Hastings (MH) algorithm and a genetic algorithm.

Genetic algorithms are efficient optimization methods which can be used in op-
timization problems with multi-modal objective functions or where traditional
analytical methods fail. The steady state genetic algorithm starts by initializing
a population of N individuals. In each generation a fixed fraction of the popu-
lation is selected for mating using fitness as a selection criterion. This produces
a number of offsprings which are added to the population. The population is
then cut back to its original size by removing the least fit individuals. Through
Darwinian ‘survival of the fittest’, the fitness of the population increases.



Figure 1: The channels in the true reservoir.

2 Description of test case

We generate a realization from the prior model for the reservoir characteristics
which we will use as the “true” reservoir. Production data are generated from the
“true” reservoir, and we will do history matching on these data. In the following,
the prior model for reservoir characteristics and the production likelihood model
are described.

We use the Fluvial module of STORM to simulate the reservoir. See [3] for a
description of Fluvial. In Fluvial, the Metropolis-Hastings algorithm is used to
simulate size and location of channels in a background. The reservoir consists of
high permeable sand channels in a background of low permeable shale. The sand-
gross is set to 0.22. The size of the reservoir is 2000 x 2000 x 20 m3. The channels
are distributed according to a Poisson model; there is no interaction between
objects. The number of channels in the true reservoir is 15. The prior model gives
between 8 and 15 channels in most cases. The channels of the “true” reservoir
are shown in Figure 1. Permeability and porosity in channels and background are
modeled as log-Gaussian and Gaussian random fields, respectively, on a 100 x
100 x 50 grid. The reservoir is up-scaled to a 20 x 20 x 10 grid. Reservoir
simulation is performed by the More reservoir simulator.

Eight wells are drilled in the reservoir. There are four production wells in the
east of the reservoir and four injection wells in the west. Production simulation
is run for 3000 days. The production history data to be matched are production



— and injection rates and water cut on 100 equally spaced days.

The available well data are permeability and porosity values, plus information
about where the channels hit the wells. Observations in different wells are said
to be coupled if they belong to the same channel. Coupling between wells are
unknown.

The production likelihood function is a product of Gaussian independent func-
tions, and can be written as

n

L(d|f,p) = C x exp(= Y _(d; — w(f,p):)*/})

=1

where C'is a normalizing constant, d are production data, w(f, p) is the result of
the production simulator with fluvial realization f and petrophysics p, and o7 are
variances. They are estimated from 10 samples of permeability and porosity fields
added to the true fluvial realization. In Figure 2 production from five of these
samples are plotted. If the goal is to match total oil production, the standard
deviation from wells with low production should be upweighted compared to wells
with high production. The number of observations n is equal to 4 x100+4 x 200 =
1200. (Four injectors where water injection is observed at 100 time steps, four
producers where oil production and water cut is observed at 100 time steps.)
Note that the log-likelihood can be written as a sum of components from the
eight wells. In this way, wells with bad match can be identified. The negative
exponent of the likelihood function is called the potential function. We have a
good match to the production data if the potential function is low.

3 Simulation methods

We start by focusing on matching the history by placing the channels as “correct”
as possible. At the beginning, we do not match with respect to petrophysics.
Therefore the petrophysics is generated by kriging instead of the Gaussian model
used in the “true” reservoir. Kriging is an interpolation of the well data.

In the Metropolis-Hastings algorithm, it is crucial for the speed of convergence to
choose the proposal function in a clever way. We generate proposals by changing a
small proportion of the channels. The channels to change are picked according to
the size of the component of the likelihood function in the wells hit by the actual
channel. In this way, channels in wells with bad match are proposed changed
more often than channels in wells with good match. The new proposed channels
are taken from a realization generated from the prior model, conditioned to well
data, and with petrophysical values generated by kriging. This realization may
have couplings different from the current state. Therefore channels are grouped
according to well observations, and either the whole group or no members of the
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group are changed. The probability of changing a group of channels is given as

_ 02221 Di
mzy:l pz

where C' is a constant, m is the number of channels in the group, p; is the
potential for the wells hit by channel number i, and n is the total number of
channels observed. The constant C' is adjusted by trial and error such that the
number of changed channels is not too big and not too small. After all observed
channels are generated, unobserved channels are kept with probability 1—( = 0.9
and changed with probability () = 0.1, until correct net gross is reached. The
rest of the unobserved channels are removed. If net gross is too low, unobserved
channels from the prior realization are added. The transition probability is given
as

Q

N

%ij = HQz [Ta-@) (1)

i—1

where n. is the number of changed channel groups and n, is the number of
unchanged channel groups. The acceptance probability is calculated in Appendix
A. A start realization is generated from the prior model conditioned to well data,
and petrophysical values are generated by kriging.

The genetic algorithm (GA) is defined as follows. A population of 50 individuals is
used. The start population is generated in the same way as the start realization
for the MH-algorithm. To decide whether a new individual is going into the
population, the potential function is used. If the potential of the new individual is
less than the maximum potential of the population, it is taken into the population.

New individuals are created by choosing some channels from the mother, some
from the father, and some from a mutation. The mutation has the same couplings
as the mother, but the channels have different size, and the number of unobserved
channels may differ from the mother. Parents are chosen from the population
with probability proportional to the inverse of the potential function.

The channels are grouped according to couplings in the wells, and channels be-
longing to the same group are chosen from the same individual. A group is chosen
from the father if the father has lowest potential in the wells hit by the group.
If the mother has lowest potential, the group is chosen from the mutation with
probability

Prutation ~ U(O, 03)

and otherwise from the mother. Unobserved channels are added until the sand
gross is high enough. The same probabilities as above are used, except that we
use the total potential for the mother and father.



3.1 Matching petrophysics

We also did some tests including petrophysics. For these tests, petrophysics
were generated for the true reservoir from a prior distribution. The porosity and
permeability values at the well locations were then used as conditioning data.

Reservoir modeling is usually done in stages, where facies and petrophysics are
modeled in two different stages. In order to get this approach to work when
conditioning to production history, each step needs to be correctly conditioned
to these data. Although the approach described earlier gives reasonable facies
realizations, they are not from the correct distribution for a stepwise process.

Therefore, two different approaches were tried. One approach simulates both
facies and petrophysics simultaneously, and should be statistically correct. In this
approach, we used a burn-in phase, where only facies was changed, and the kriged
petrophysics were used. Then we generated a petrophysics realization conditioned
to the facies and well observations, and used this as our initial petrophysics. In
subsequent iterations, we simulated new petrophysics for each channel that was
changed in an iteration. MH was still used as simulation algorithm.

The other approach uses the traditional two-step approach. Although this is
only an approximation, convergence should be more easily obtained, as the state
space for each step is much smaller. In this approach, we first generate a facies
realization as described previously. Petrophysics are then generated by changing
one channel in each step. The background petrophysics are held constant. More
details on the statistics are found in Appendix B.

4 Results and conclusions

If we take the true fluvial realization, and generate petrophysical values by krig-
ing (conditioned to well data), the potential function (negative exponent of the
likelihood function) becomes 1207. This means that we have achieved satisfac-
tory match when the potential is of this size. If we want better match, we have to
change the petrophysical values, altering channels will probably not be enough.
We expect that this is best done by changing petrophysical variables. We also
want to check prediction of total oil production after 5000 days for the history
matched reservoirs. All results are shown in Table 1. We perform 315 iterations
with both the MH and GA algorithm, and generate two samples with each of the
methods in order to estimate uncertainties. Uncertainty is given as one standard
deviation. The potential for the start realization in MH in the first sample is
777279. In the start population for the GA algorithm, used in both samples, the
potential ranges from 8003 to 3.462760 x 10°. After 315 iterations, the lowest
potential in the population is 1104 and the highest is 1677 in the first run. In
Figure 3, the logarithm of the potential is plotted against number of iterations



Truth MH GA
Potential 1207 969 + 43 939 + 233
Pred. oil after 5000 days | 7.211x10%m3 | 6.180 % 0.07 * 10°m3 | 6.981 4 0.31 * 10°m3
Number of channels 15 9 9
Tot. time spent 73.5h 31.5h
Time spent pr it. 14min 6min

Table 1: Results from the history matching.
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Figure 3: Logarithm of potential plotted against number of iterations for MH
(solid line) and GA (dotted line).

for the two methods. For the GA we have plotted the smallest potential in the
population, and therefore the start value is much smaller than for MH. In MH,
the start value is based on one random sample from the prior, the minimum
potential in the GA population is based on 50 samples from the prior.

The two history matched reservoirs have in common that all net-gross is contained
in channels observed by wells. Therefore the number of channels in the history
matched reservoirs differ considerably from the truth. This is also the case for
many realizations if we generate realizations from the prior conditioned to well
observations.

Although the MH algorithm is much slower than the GA, we feel that the com-
parison based on number of simulations is fair, because MH could be coded in a
more effective way by including history matching directly into the MH loop that
is used for fluvial sampling. The difference in computing time is that for each MH
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iteration we run Fluvial, which takes about 8 minutes. This is avoided for the
GA algorithm because the mutation has the same couplings as the mother. Sam-
pling petrophysical values and upscaling takes about two minutes, the reservoir
simulator takes four minutes for each iteration.

In Figure 4, the production data from the true reservoir and the matched reser-
voirs after 315 iterations are plotted for 5000 days. Note the scale on the y-axes.
Figure 5 shows the history matched reservoirs. If we compare these to the true
reservoir, Figure 1, we see that they all have three groups of channels, but the
number of channels in the groups differs.

There is not much difference in the history match performed with the two meth-
ods. By the MH-algorithm we sample correctly from the posterior distribution,
while GA is a pure optimization technique. Therefore MH is preferable if uncer-
tainty in prediction should be estimated.

Earlier attempts with the same methods on another test case with higher net-
gross and the same expected channel-size, were not as successful as the experi-
ment described here. A too high net-gross seems to make trouble for the history
matching with our methods. With fewer channels, the localization of each channel
becomes more critical.

The upscaling is critical. Using a too coarse grid gives large problems because
the channels become “invisible”.

4.1 Matching petrophysics

An attempt was made to simulate both channels and petrophysics simultane-
ously while conditioning to history, as described in Section 3.1. In this case, the
standard deviations in the potential function were divided by two, since these
should be smaller when also petrophysics is taken into account. The residuals
now corresponds to measuring errors and errors in the reservoir simulator. The
new potential function is equal to four times the original potential function. Af-
ter running 100 “burn in” iterations with kriging and about 400 iterations with
Gaussian petrophysics, the new potential function becomes 3178. This is about
the same match as we got by the earlier described attempts using kriged petro-
physics.

The potential is decreasing very slowly towards the end of these iterations, indi-
cating that no large improvements can be hoped for using this algorithm. This
means that the simultaneous approach for facies and petrophysics is not feasible
without better algorithms.

Instead, we tried changing only the petrophysics in channels, and held the facies
realization constant. This is not statistically correct to do, see Appendix B, but
the history match was improved. The potential now goes down to 1729 after
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Figure 5: History matched reservoirs from MH (left) and GA (right).

another 570 iterations. The total predicted oil after 5000 days is now 6.7 % 105m?>.
A plot of the predicted and true production data for 5000 days is shown in Figure
6.
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A Acceptance rates for Metropolis-Hastings

Let the current state consist of the realization ¢ and a “mutation” realization 7’
generated from the prior. The new proposed state consists of realizations j and
j'. Two alternating steps are performed:

1. Update the realization: j is a combination of 7 and #'. ;' is the channels
contained in 4 or i but not in j.

2. Update “mutation”: j = ¢, the “mutation” j' is drawn from prior.

We assume no interaction, and do not take net gross into account. Then the
likelihood for a realization is the product of the likelihoods for all the channels.
The acceptance probability then becomes

N (O YL YER XD
TR FG)FGN f(dld)al, ], 57)

where f(-) is the prior distribution, f(d|-) is the likelihood function, and g is the

transition probability. In case one, we have that f(i)f(:') = f(j)f(j'), and « is

a function of f(d|-) and ¢, where ¢ is given by Equation (1). In the second case,

i=17,q(4,7',17) = f(4") and q(3,4'|7, ") = f(i'), which gives that oo = 1.
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B Simultaneous versus two-step simulation of
facies and petrophysics

Let f be a facies realization, p a petrophysics realization, d the production data
and ¢ represent various likelihood functions. Our objective is to sample from the
distribution g(f, p|d). First, note that

g(f,pld) = C x g(p|f,d)g(f|d)

which gives the partial likelihoods in a two-step approach. The first term is
simple; the problem lies with the second term, g(f|d). Using

g(f,pld) = C x g(d|f, p)g(p|f)g(f)

gives
g(fld) = / (f, pld)dp 2)
- ngf/gdlfp (vl dp (3)
= O x g(E,(9(dlf.p)) ()

This expectation is difficult to compute. In the two-step approach, we approxi-
mate it by computing the likelihood for the kriged petrophysics field, and com-
pensate by using larger standard deviations. This means that the true state space
is most probably a subspace of the one we get.

As it is an expectation value, it is simple to make unbiased estimators of it. How-
ever, each computation of g(d|-) requires a reservoir simulation, so the number
of points used for estimation must be small. The simplest solution would be to
use a single petrophysics; however, this would give convergence problems. If the
petrophysics drawn gave a high likelihood, it would be very improbable to move
out of this state, even though the state may have a low likelihood. Using a few
points and averaging will not help much, as the variance is large, so the mean for
small samples is the largest value divided by the sample size.
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