
Semantics of UML Statecharts in PVS
Demissie B. Aredo

Norwegian Computing Center
P. O. Box 114 Blindern, N-0314 OSLO, Norway.

E-mail: aredo@nr.no

ABSTRACT

In this paper, we propose formal semantic definition for
UML statecharts in the PVS specification language. Based
on the semantic definitions, we develop a general frame-
work for translating UML statechart diagrams into PVS
specifications, and show how the resulting specification can
be model-checked by using the PVS toolkits. This work is
a part of a long-term vision to explore how the PVS for-
malism can be used to underpin practical tools for checking
correctness of UML models, and it contributes to the on-
going effort on providing precise semantic definitions for
UML notations with the aim of clarifying the language as
well as supporting the development of semantically based
tools.

Keywords: Formal Semantics, UML, PVS, Method Inte-
gration, Statecharts

1 INTRODUCTION

The Unified Modeling Language (UML) [13] is an in-
dustrial standard for object-oriented modeling languages
that was standardized by the Object Management Group
(OMG). It is a collection of several description techniques
which are suitable for modeling different aspects of soft-
ware systems. Compared to other object-oriented model-
ing languages in software engineering, UML is more pre-
cisely defined and contains a great deal of formal specifica-
tion notations, e.g. the use of Object Constraint Language
(OCL) [17] for specifying constraint. However, semantic
definitions for UML notations are not precise enough to
support rigorous reasoning - a limitation that hampers its
application to rigorous system development.

In the sequel, we propose formal semantics for the UML
statecharts. Our aim is to achieve two goals. Firstly,
we provide semantic model for basic modeling elements
of UML statecharts using the PVS specification language
[14]. This consists of formal representation of the abstract
syntax and the well-formedness rules, and model-checking
the resulting specification. Secondly, we propose a general
scheme for translating UML statecharts into PVS specifi-
cations. This results in semantic models that are amenable
to rigorous analysis. Using PVS tools such as the theorem-
prover and model-checker, we rigorous reason about the
resulting semantics models.

Several works have been undertaken to provide mathe-
matical basis to the concepts underlying object-oriented
(OO) models using different approaches and semantic
foundations. In general, formalization approaches can be
categorized into three: [5]: supplemental, OO-extension
and method-integration. In the supplemental approach in-
formal modeling notations are replaced by more formal
constructs. The work of Moreira et. al. [12] is based on
this approach and involves the LOTOS and the syntropy

notations. The OO-extension approach extends existing
formal methods by OO features thus making them more
compatible with the concepts of object-orientation. For
example, VDM++, Z++, and Object-Z are based on this
approach. Even though a rich body of formal notation re-
sults from supplemental and extension approaches, the re-
sulting semantic domain is more complex and suffers from
lack of tool support [1],[3]. Moreover, users have to deal
directly with a certain amount of formal artifacts. This
is one of the major barriers for whole-scale utilization of
formal methods due to their esoteric nature.

The method-integration [15] approaches makes OO no-
tations more precise and amenable to rigorous analysis by
integrating them with suitable formalism(s) [4]. It is a
more workable and commonly used approach to formal-
ization of OO modeling notations. The OO notation and
a carefully chosen formalism, and their respective CASE
tools are integrated allowing developers to manipulate the
graphical models they have created without having an in-
depth knowledge about the formal specifications that are
processed at the back-end [3]. Our work is based on the
method-integration approach and provides semantic def-
initions for UML statecharts using the specification lan-
guage of PVS as underlying semantic foundation.

The rest of the paper is organized as follows: In Sec-
tion 2, a brief overview of the PVS specification language
is presented with emphasis put on concepts and notations
that will be encountered in later sections. In Section 3,
mail concepts of UML statecharts are discussed. In Sec-
tion 4, semantic definitions for the basic concepts of UML
statecharts are proposed. Finally, in Section 5, we draw
some conclusions and discuss future works.

2 THE PVS ENVIRONMENT

PVS [14] is a formalism for design and analysis of system
specifications. It consists of a highly expressive specifi-
cation language tightly integrated with a type-checker a
theorem-prover, and other tools. A strength of PVS is
its capacity to exploit the synergy between the specifica-
tion language and its tools, e.g. the type-checker uses the
theorem-prover. The theorem-prover allows construction
of proofs interactively and rerun them automatically after
minor changes.

The PVS specification language (PVS-SL) provides a
very general semantic foundation based on the classical
higher-order logic. Its type system consists of basic types
such as boolean, integer, real, and constructors for set, tu-
ple, record, and function types. A record type consists of a
finite set of fields R:TYPE= [# a1 : T1, . . . , an : Tn#] where
ai’s are accessor functions and Ti’s are type expression.
Given a record r:R, a function application-like term ai(r),
is used to access the ith field of r. Tuples have similar
structures except that the order of fields is significant in



tuples. A function type is specified as F:TYPE= [D → R]

where D and R are type expressions denoting domain and
range of the functions. For a given type T, the type of sets
of elements of T is specified using one of the constructs
pred[T] or setof[T], each of which is a shorthand for the
predicate [T → bool]. For a given set s:setof[T] and
t:T, membership of t in s is determined by the truth value
of member(t,s), or s(t).

The type system of the PVS-SL has been augmented by
predicate subtyping and dependent typing mechanisms and
supports a richer type system than the classical higher-
order logic. Subtyping makes type-checking more powerful
and allows stronger checks for consistency and invariance
in a uniform manner [2]. However, it renders type check-
ing undecidable as a result of that the type-checker gener-
ates proof obligations called Type Correctness Conditions
(TCC’s). A great deal of TCC’s are discharged automat-
ically, whereas more involved ones require interactive use
of the theorem-prover. Predicate subtypes can be speci-
fied in two different ways. Given a type T and a predicate
p on elements of T, a predicate subtype of T with respect
to p, can be specified as either S:TYPE= {t:T | p(t)} or
S:TYPE= (p). When the expression of the predicate is not
explicitly given, we can specify S as uninterpreted subtype
of T, symbolically S: TYPEFROM T.

The PVS prover provides primitives to perform induc-
tive reasoning, rewriting, and model checking. These fea-
tures simplify the proof process as mechanical aspects can
easily be automated. quite easily [8]. Specifications in
PVS are organized into hierarchies of theories. A theory
may contain type, variable, and constant declarations, def-
initions, axioms, and theorems. Modularity and reusabil-
ity are captured by parameterized theories that specify
generic elements that are instantiated by theory abbrevia-
tion construct. Predicates, usually known as assumptions,
are used to constrain the parameters of a generic theory.
PVS-SL includes a library of an extensive set of built-in
constructs known as preludes, that provides several useful
definitions and lemmas.

A detailed presentation of the PVS environment is be-
yond the scope of this paper. For a more complete and
detailed discussion, interested reader may refer to [14].

3 UML STATECHARTS

UML statecharts [13] are primary modeling elements for
construction of executable models that capture complex
dynamic behavior of reactive systems. A statechart de-
scribes an abstract machine that defines a set of existence
conditions, called states, a set of behaviors or actions that
can be performed in each of those states, and a set of
events that may cause state transitions according to a set
of well-defined rules.

A statechart describes a model element in isolation in
terms of its interaction with the rest of the world by re-
sponding to certain events. A response of an object to an
event, and the action that may ensue as a result depend on
the current state of the object and the event that occurs.
This may possibly result in performance of an action and
a transition into another state. An event may cause a fir-
ing of a transition, and execution of a sequence of actions
associated with the transition. When the object modelled
by the state machine is in a given state, it reacts only to
certain events by performing the corresponding actions,

and may transform into a subset of the set of states.

UML statecharts are object-oriented variants of the clas-
sical statecharts first conceived by Harel [7]. The main
difference between the UML statecharts and the classical
ones is that the former specifies behavior of types whereas
the latter specifies behavior of processes. In fact, the no-
tion of process is not supported in the UML. The classical
statecharts assume zero-time transition, whereas a transi-
tion may take some time in the UML statecharts; events
are not broadcasted in UML, but they may be sent to a set
of objects. For a detailed comparison between UML state-
charts and the classical statecharts, interested readers may
refer to chapter 2 page 157 in the standard document of
UML version 1.3 [13].

In the context of object-oriented modeling techniques,
elements that can have dynamic states are objects. Ob-
jects have both structural and behavioral properties.
Static structural aspects of objects are described by UML
class diagrams, whereas behavioral aspects can be cap-
tured by statechart and interaction diagrams. A state ma-
chine is associated to a specific modeling element, usually
an object or an interaction, and specifies complete dynamic
behavior of the modeling element by describing its reaction
to events. The associated modeling element determines the
context of a state machine. A typical instance is the use of
state machines to model the behavior of reactive objects
by describing their complete life cycle.

[b+a>0]/b=b+a−f

deposit(a)/b=b+a

else/b=b+a−f

withdraw(a)

[b−a<0]/b=b−a else/b=b−a
debit

credit

deposit(a)

p

q

Fig. 1. UML statechart for an Account Class

An example of a UML statechart diagram shown in Fig-
ure 1 specifies a complete life cycle of an account ob-
ject. An account can be either in the debit or the credit

state depending on the value of its attribute balance b.
The banking system allows customers to withdraw a given
amount of fund in debt, subject to fixed fee f, hence the
introduction of the debit state of the account. When an
object is in the debit state, deposit(a) is the only opera-
tion allowed. At junction p, a guard condition [a+b>0] is
evaluated to check the amount against the balance b. Note
that the balance b is less than zero when the account is in
the debit state, and hence the deposited amount must be
compared to -b. If the guard condition [a+b>0] is true,
the account is transformed into the credit state, otherwise
it remains in the debit state. In any case, the balance is
updated by computing b:=b+a-f, where f is some constant
fee charged when the account is in debit state. When an
account object is in the credit state, the deposit(a) event
increases its balance by, and leaves its state unaltered. An
occurrence of a withdraw(a) event when the account is in
credit state, may transform it into the debit state or leave



it in the same state depending on the truth value of the
guard condition [b-a<0] at junction q. In either case, the
balance is updated with the result of b:=b-a.

4 SEMANTICS OF UML STATECHARTS

In this section, we provide semantic definitions for UML
statecharts by transforming them into appropriate enti-
ties in the PVS specification language. We encode the
abstract syntax of UML statecharts, and associated well-
formedness requirements. Note that the PVS-SL is used
as underlying semantic foundation and not as a descrip-
tion language and hence users are not expected to have
an in-depth knowledge about neither the PVS-SL nor its
proof system. We define semantic models for statecharts
using bottom-up approach, i.e. starting with semantic def-
initions of basic model elements such as states, transitions,
events and actions we provide semantic definition for stat-
echarts as an appropriate composition of semantic defini-
tions of its components. We treat the informal semantics
descriptions provided in UML version 1.3 standard docu-
ment [13] as a requirement specification on which the for-
mal semantic models will be based. Some constraints on
UML models may involve dynamic information, e.g. the
number of objects created could only be available during
run time.

We specify a parameterized theory that defines a pred-
icate on sets of elements of a type given as parameter of
the theory. The predicate optional?() filters the empty
set and singleton sets of elements of the type.

optional[T : TYPE] : THEORY

BEGIN

x, y : VAR T; s : VAR set[T]

singleton?(s):bool= EXISTS(x:(s)):

FORALL (y:(s)): y=x

optional?(s):bool= (empty?(s) OR singleton?(s))

END optional

Given a type T and a set s of elements of T, (s) de-
notes a subtype of T containing exactly the elements of
s. For every type (class in the UML vocabulary) involved
in optional multiplicity, a new theory is instantiated from
the generic theory optional with the type as a parame-
ter using the PVS construct known as theory abbreviation.
For instance, for the type T, a theory optional[T] is de-
fined as an instance of theory optional. The expression
optionalT.optional? provides access to the predicate
optional?.

optionalS : THEORY = optional[T]

s : (optionalT.optional?)

4.1 Abstract Syntax of UML Statecharts

We start by representation of the notions of model element,
action, signal, and operation as uninterpreted types in the
PVS specification language. The ModelElement is a root
class from which every class in UML metamodel inher-
its. The details of these model elements are intentionally
avoided since such details are irrelevant at the level of ab-
straction we are working.

ModelElement : TYPE+

Action,Signal,Operation: TYPE FROM ModelElement

Next, we discuss notions of states, transitions and stat-
echarts, and formally represent them.

States: A state is a specification of a snapshot of values
of program variables or behavior of an object that satisfies
some, usually implicit, invariant conditions. Objects of
a given class that are in the same state have the same
qualitative responses to an occurrence of the same event.
That is, they react to events in the same way, and execute
the same sequence of actions, and may undergo the same
set of transitions (apart from non-determinism).

A state vertex is an abstraction of a node in a state-
chart diagram. In the UML meta-model, state is a direct
subclass of the class ModelElement and hence we repre-
sent it as a subtype of the type ModelElement. In gen-
eral, a state vertex can be a source and target of any
number of transitions. In the record type State, the field
asModelElement captures properties inherited from the su-
perclass ModelElement.

StateVertex : TYPE FROM ModelElement

The class StateVertex can be specialized into the
following four kinds of states: State, PseudoState,

StubState, and SynchState. A synchronous state is used
to synchronize concurrent regions of a state machine.
Pseudo states are vertices in the state machine that are
used to connect multiple transitions into a transition path.
A stub state appears within a submachine to refer to the
actual subvertex contained within the referenced state ma-
chine. A state may have an entry action - the first action
that takes place when the state is entered, a set of inter-
nal transitions and associated actions, and an exit action
- the last action that takes place when the state is exited.

Usually, an event that does not enable a transition is
discarded. However, it is sometimes useful to keep this
event waiting until the next state. A set of events to
which a state machine does not react while it is in a given
state is described as a set of ”deferable” events - the field
deferable captures a set of such events. Note that we
declare variables only once and use them in the later sec-
tions.

T: TYPE; x, y: VAR T; s : VAR set[T]

optionalAction : THEORY = optional[Action]

State: TYPE =

[# asStateVertex: StateVertex,

entry: (optionalAction.optional?)),

doActivity: (optionalAction.optional?)),

exit: (optionalAction.optional?)),

deferable: setof[Event]#]

PseudoStateKind:TYPE= {initial,deepHist,join,
shallowHist,fork,junction,choice}

PseudoState:TYPE=[# asStateVertex: StateVertex,

pseudoKind: PseudoStateKind #]

StubState:TYPE= [# asStateVertex: StateVertex,

refState: String #]

SynchState:TYPE= [# asStateVertex: StateVertex,

bound: nat #]

The class State is further specialized into SimpleState,

CompositeState, and FinalState which we represent as
subtypes. A composite state can be concurrent or sequen-
tial.

v : VAR StateVertex

SimpleState : TYPE FROM State



FinalState : TYPE = {v | outgoing(v) = ∅}
CompositeState : TYPE =

[# asState : State,

isConcurrent : bool,

dsubstate : fin set[StateVertex] #]

container : [StateVertex → CompositeState]

The container function returns the smallest compos-
ite state (if any) that contains a state vertex. The field
dsubstate captures the set of direct sub-states of a state.
It is used to define the function subvertex() which returns
the set of all sub-states of a given composite state. The
subvertexInc() returns the set of sub-states of a state in-
cluding the state itself. When applied to the top state of a
state machine, subvertexInc() returns the set of all state
vertices in the state machine by recursive application of
dsubstate() to the vertices.

contains(v,cs): bool = CompositeState(cs) ∧
member(v, dsubstate(cs))

subvertex(cs): RECURSIVE setof[StateVertex]=

union(dsubstate(cs),⋃
v∈dsubstate(cs) subvertex(v))

MEASURE (LAMBDA cs: dsubstate(cs) 6= ∅)

subvertexInc(cs): setof[StateVertex] =

union({cs},subvertex(cs))

If an event is deferred in a given composite state, then
it is deferred in any substate of that state. We add the
axiom deferax given below to captures this notion.

v,v′: VAR StateVertex; cs: VAR CompositeState

deferax: AXIOM (v∈subvertexInc(cs)) ⇒
(deferable(cs) ⊆ deferable(v))

Transitions: A transition in UML statecharts models a
change in object behavior from one state to another state
(not necessarily distinct) as a result of a response to a
reception of an event. The set of transitions specifies a
reaction of an object to events, or the action carried out
by its methods in response to occurrence of the event. In
other words, an object in a given state, called the source of
transition, evolves into another state, called target state,
when a specific event occurs and a guard condition is sat-
isfied, and perform a sequence of actions.

A transition in a statechart may be labelled by a string
of the form e[c]/sa, which means that the occurrence of
event e, when the guard condition c is true, triggers the
firing of the transition, as a result of which the object
performs sequence of actions sa. The UML standard [13]
also allows triggerless transitions, called completion tran-
sitions. They have implicit triggers, i.e. completion event,
which are generated when all transitions, entry actions and
activities in the currently active state are completed.

To define semantics of a transition, we need the types
Event, Action, and Guard, and instances of the theory
optional instantiated with these types. Then, the notion
of transition is captured by a record type with appropriate
set of fields.

Event : TYPE FROM ModelElement

Guard : TYPE = [# asModelElement: ModelElement,

expression: BoolExpression #]

optionalEvent : THEORY = optional[Event]

optionalGuard : THEORY = optional[Guard]

optionalAction : THEORY = optional[Action]

Transition: TYPE =

[# asModelElement : ModelElement,

source : StateVertex,

trigger : (optionalEvent.optional?),

guard : (optionalGuard.optional?),

effect : (optionalAction.optional?),

target : StateVertex #]

We define some operations that specify associations be-
tween states and transitions. The functions incoming()

and outgoing() defined on StateVertex return, respec-
tively, the set of transitions entering and leaving the ver-
tex. A transition connects exactly one source state and
one target state, which are retrieved by applying the ac-
cessor functions source and target respectively, to the
transition record.

incoming : [StateVertex → setof[Transition]]

outgoing : [StateVertex → setof[Transition]]

State Machines: A state machine can be described com-
pletely by a top state, i.e. a composite state at the root
of the state containment hierarchy, and a set of transi-
tions. Given the top state of a state machine and the set
of its transitions, all the remaining states can be retrieved
by traversing the state containment hierarchy starting at
the top state. Application of the subvertexIncl() func-
tion described above to the top state of a state machine
returns the set of all state vertices in the state machine.

Semantics of a state machine is defined as a record type
whose set of fields contain the top state vertex, and the set
of transitions. Symbolically,

StateMachine: TYPE =

[# asaModelElement: ModelElement,

top: StateVertex,

transitions: setof[Transition]

context: ModelElement] #]

context : [StateMachine → Context]

The function context() determines the model element
whose behavior is captured by the state machine. A model
element can be described by several state machines, but a
given state machine describes at most one model element.
The specification of function context() ensures that this
requirement is fulfilled.

The SubmachineState defined below is a syntactical
convenience that facilitates modularity and reuse, and is
semantically equivalent to a composite state. It is a place-
holder for a state machine that is referenced by another
state machine. The submachine() function defined below
determines the state machine for which a submachine state
stands in a given composite state. The stateMachine()

function returns the state machine to which a transition
belongs.

SubmachineState : TYPE FROM CompositeState

submachine: [SubmachineState,CompositeState→
StateMachine]

stateMachine : [Transition → StateMachine]



4.2 Well-formedness Requirements

In this section we formalize well-formedness requirements
(WFRs) on some of the modeling elements described
above. The well-formedness rules can be defined in the
same theory as the model elements they constrain or in
a separate theory and imported. We follow the latter op-
tion since this approach matches the informal descriptions
given in the standard document of UML v1.3 [13]. The
WFRs are labelled with the labels in the UML standard
document [13] suffixed with the initial letter of the model
element they constrain. For instance, ruleCS1 corresponds
to the first well-formedness rule for composite state.

s : VAR State; c1 : VAR CompositeState

v : VAR StateVertex; m : VAR StateMachine

ps: VAR PseudoState; t : VAR Transition

WFRs of Composite States: The following WFRs ap-
ply to CompositeState. A composite state can contain at
most one vertex of each of the pseudostate of initial, deep-
Hist, and shallowHist kind.

ruleCS1(cs): bool =

optional?({ps|ps∈subvertex(cs) ∧
pseudoKind(ps) = initial})

∧ optional?({ps|ps∈subvertex(cs)∧(ps)=deepHist})
∧ optional?({ps|ps∈subvertex(cs)∧

PseudoKind(ps)=shallowHist})

A concurrent composite state must have at least two
direct subvertices each of which is a composite state.

ruleCS2(cs): bool = isConcurrent(cs) ⇒
((‖subvertex(cs)‖ ≥ 2) ∧

(subvertex(cs) ⊆ CompositeState))

where ‖.‖ is a function that returns the cardinality of a
set. A given state vertex can be a part of at most one
composite state.

ruleCS3(v): bool =

(v∈substate(cs) ∧ v∈substate(c1)) ⇒ cs=c1

WFRs of Transitions: A fork segment should not have
guards or triggers:

ruleT1(t): bool= (PseudoState(source(t))

∧ PseudoKind(source(t))=fork)⇒
(guard(t)=∅ ∧ trigger(t)=∅)

A join segment should not have guards or triggers.

ruleT2(t): bool= (PseudoState(target(t))

∧ pseudoKind(target(t))=join)⇒
(guard(t)=∅ ∧ trigger(t)=∅)

A fork segment should always target a state:

ruleT3(t): bool= (stateMachine(t) 6=∅
∧ PseudoState(source(t))

∧ PseudoKind(source(t))=fork)⇒
State(target(t))

A join segment should always originate from a state:

ruleT4(t): bool= ((stateMachine(t) 6= ∅ ∧
PseudoState(target(t)) ∧
pseudoKind(target(t)) = join)

⇒ State(source(t))

Transitions outgoing from a pseudostates may not have a
trigger:

ruleT5(t): bool = PseudoState(source(t))⇒
trigger(t) = ∅

Join segments should originate from orthogonal states:

ruleT6(t): bool= (PseudoState(target(t)) ∧
pseudoKind(target(t))=join)

⇒ isConcurrent(container(source(t)))

Fork segments should target orthogonal states:

ruleT7(t): bool= (PseudoState(source(t)) ∧
pseudoKind(source(t))=fork)

⇒ isConcurrent(target(t))

An initial transition at the topmost level may have a trig-
ger with the stereotype ”create”. An initial transition
of a StateMachine modeling a behavioral feature has a
CallEvent trigger associated with that BehavioralFeature.
Apart from these cases, an initial transition never has a
trigger:

CallEvent : TYPEFROM Event

stereotype : [ModelElement → ModelElement]

ruleT8(t): bool= (PseudoState(source(t)) ∧
kind(source(t))=initial)

⇒(trigger(t) = ∅
∨ (container(source(t))=top(stateMachine(t))∧

name(stereotype(trigger(t)))="create")

∨ (BehavioralFeature(context(stateMachine(t)))∧
CallEvent(trigger(t))∧
operation(trigger(t))=context(stateMachine(t))))

WFRs of State Machines: A state machine is aggre-
gated either within a classifier or a behavioral feature.
The context of a state machine should be an object or a
behavior as specified by the well-formedness requirement
ruleSM1 given below.

ruleSM1(m): bool= Classifier(context(m)) ∨
BehavioralFeature(context(m))

The following three expressions specify the facts that the
top state of a state machine is always a composite state,
the top state doesnot have a container state, and it cannot
be the source of a transition.

ruleSM2(m): bool= CompositeState(top(m))

ruleSM3(m): bool= container(top(m)) = ∅
ruleSM4(m): bool= outgoing(top(m)) = ∅

If a state machine describes a behavioral feature, it con-
tains no trigger of type CallEvent, apart from the trigger
on the initial transition.

ruleSM5(m): bool = BehavioralFeature(context(m))

⇒ (∀ t: t∈transitions(m) ∧
NOT (PseudoState(source(t)) ∧
pseudoKind(source(t)) = initial)

⇒ trigger(t) = ∅)

4.3 Semantic Definitions

Once the abstract syntax of basic elements of UML state
machines, and well-formedness requirements are precisely
encoded in the PVS specification language, providing se-
mantic definitions for more complex model elements is eas-
ier. Formalizing semantics concepts of UML state ma-
chines paves a way for specifying important properties ex-
hibited by the system and for rigorous reasoning about
their correctness.



In general, for a UML model M, whose abstract syntax is
encoded in the PVS-SL as SyntaxM and its weel-formedness
requirements as predicates ruleM1, ..., ruleMk, its se-
mantics SemM is the predicate subtype of SyntaxM with re-
spect to the conjunction of its well-formedness predicates.
For instance, semantics of the state machine is defined as
follows:

SemStateMachine : TYPE=

{m| ruleSM1(m) ∧ ...∧ ruleSM5(m)}

A state is said to be active when it is entered as a result
of transition and becomes inactive when it is exited. A
state can be thought of as a predicate on the set of pro-
gram variables. The state is active when this predicate
returns value true. For a composite state that is active,
and non-concurrent, exactly one of its substates is active.
If a composite state is active and concurrent, then all of
its substates are active.

active: [StateVertex → bool]

activeAx1: AXIOM (active(c) ∧
NOT isConcurrent(c) ∧
v∈subvertex(c)) ⇒

‖{v:(dsubstate(c))|active(v)}‖ = 1

activeAx2: AXIOM (active(c) ∧ isConcurrent(c) ∧
v ∈subvertex(c)) ⇒

(FORALL (v:(dsubstate(c))) : active(v))

If a give simple state is active, then every composite
state containing the state, directly or transitively, is also
active. Since some of the composite states may be con-
current, a current active state is represented by a tree
of states, called state configuration, starting with the top
most composite states down to individual simple states at
the leaves.

configuration : [StateMachine → setof[State]]

configuration(sm) = {s | s∈subvertex(top(sm)) ∧
active(s)}

More advanced semantic concepts such as conflicting
transitions, firing priorities, etc. can similarly be formal-
ized in terms of the basic concepts of UML statecharts
defined above.

5 CONCLUSIONS

We have proposed semantic definitions for UML state-
charts using the PVS specification language as underlying
semantic foundation. The main objective of the work is to
give a precise and equivocal description of the UML state-
charts. Such a precise description is required as a reference
model for implementing tools for code generation, simula-
tion and verification of UML statecharts. The framework
integrates a UML CASE tool and the PVS toolkit result-
ing in heterogeneous platform that combines the strengths
of a semi-formal graphical modeling notation and a formal
verification environment. Other benefits of transforming
the UML statecharts into the PVS-SL include the ability
to produce precise and analyzable specifications, and the
availability of PVS toolkit that supports rigorous reason-
ing about the resulting semantic models.

Several semantics for statecharts have been proposed in
the literature [7],[6],[9],[16]. Most of them are concerned
with defining semantics of the classical Harel’s statecharts

[7]. For instance, Harel et al.[7],[6] present semantics of
classical statecharts in the STATEMATE system. Mikk et
al.[11] propose formal semantics of UML statecharts based
on hierarchical automata. The representation in hierar-
chical automata is not suitable for tool development [10].
It does not directly support transition across compound
states, and the hierarchical structure must be flattened
before using it in a model checker. The work presented in
the sequel is similar to the work presented in [16], yet this
work is more detailed.

This work contributes to the ongoing effort to provide
formal standard semantic definitions for UML notations,
with the aim of clarifying and disambiguating the lan-
guage as well as supporting the development of seman-
tically based tools. It is a part of our long-term vision to
explore how the PVS tool set could be used to underpin
practical CASE tools to analyze UML models.

Acknowledgements

I would like to thank Prof. Olaf Owe, Dr. Wenhui
Zhang, and Dr. Issa Traore for their invaluable comments.
This work was funded by the Research Council of Norway
through the ADAPT-FT project.

REFERENCES

[1] J.-M. Bruel and Robert B. France. Transforming
UML Models to Formal Specifications. In the Proc.
of the OOPSLA’98 Workshop on Formalizing UML.
Why? How?, Vancouver, Canada, October 1998.

[2] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Sri-
vas. A Tutorial Introduction to PVS. In WIFT’95:
Workshop on Industrial-Strength Formal Specification
Techniques, Boca Raton, Florida, USA, April 1995.

[3] A. Evans. Reasoning with UML Class Diagrams. In
the Proc. of WIFT’98. IEEE Press, 1998.

[4] R. B. France, J.-M. Bruel, and M. M. Larrondo-
Petrie. An Integrated Object-Oriented and Formal
Modeling Environment. Journal of Object-Oriented
Programming (JOOP), 10(7), December 1997.

[5] R. B. France, A. Evans, K. Lano, and B. Rumpe.
The UML as a Formal Modeling Notation. Computer
Standards & Interfaces, 19:325–334, 1998.

[6] D. Harel and A. Naamad. The STATEMATE Seman-
tics of Statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, October
1996.

[7] D. Harel, A. Penueli, J. P. Schmidt, and R. Sherman.
On the Formal Semantics of Statecharts. In the Proc.
of the 2nd IEEE Symposium on Logic in Computer
Science, pages 54–64, New York, USA, 1987. IEEE
Press.

[8] P. Krishnan. Consistency Checks for UML. In the
Proc. of the Asia Pacific Software Engineering Con-
ference (APSEC 2000), pages 162–169, December
2000.

[9] D. Latella, I. Majzik, and M. Massink. Towards a
Formal Operational Semantics of UML Statechart Di-
agrams. In the Proc. of FMOODS’99, Florence, Italy.
Kluwer, February 15-18, 1999.

[10] J. Lilius and I. P. Paltor. The Semantics of UML
State Machines. Technical Report No. 273, May 1999.
Turku Centre for Computer Science, Finland.

[11] E. Mikk, Y. Lakhnech, and M. Siegel. Hierarchi-



cal Automata as Model for Statecharts. In K. Ueda
R. K. Shyamasundar, editor, the Proc. of Asian Com-
puting Science Conference (ASIAN’97), volume 1345
of LNCS, pages 181–196. Springer Verlag, December
9-11 1997.

[12] A. Moreira and R. Clark. Combining Object-oriented
Analysis and Formal Description Techniques. In the
Proc. of ECCOP’94, LNCS, volume 821, Bologna,
Italy, 1994. Springer-Verlag.

[13] The OMG. OMG Unified Modeling Language Speci-
fication, version 1.3, June 1999. OMG standard doc-
ument.

[14] S. Owre, N. Shankar, J. Rushby, and D. W. Stringer-
Calvert. PVS Language Reference, version 2.3,
September 1999. Computer Science Laboratory.

[15] M. Shroff and R. B. France. Towards a formalization
of UML Class Structures in Z. In the Proc. of the
COMPSAC’97, 1997.

[16] I. Traore. An Outline of PVS Semantics for UML
Statecharts. Jounal of Universal Computer Science,
6(11):1088–1108, 2000.

[17] J. B. Warmer and A. G. Kleppe. The Object Con-
straint Language: Precise Modeling with UML. Addi-
son Wesley Longman Inc., 1999.


