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SUMMARY

We have done a geostatistical inversion of seismic data to fa-
cies probabilities. As a first step, we invert the seismic data for
elastic parameters using the Bayesian AVA inversion method
of Buland et. al. (2003). Next, we use an analysis of the
uncertainty in the posterior distribution to filter the elastic pa-
rameters given in well logs. By comparing these filtered well
logs with facies logs, we establish a relationship between fa-
cies and seismic data. This relationship is combined with the
elastic parameters from the inversion to estimate facies proba-
bilities for the entire volume.

INTRODUCTION

Seismic inversion is commonly done to obtain elastic param-
eters. This is natural, since the seismic response is defined by
these parameters. However, they are useful only through their
relation to reservoir parameters, such as porosity, fluid or fa-
cies. In this paper, we use the the Bayesian linearized AVA
inversion method by Buland et. al. (2003) to obtain a dis-
tribution for the elastic parameters. Based on well logs, this
distribution is then mapped to facies probabilities.

In the Bayesian inversion method, the earth model
`
lnVp, lnV s,

lnρ) is given by a multi-normal distribution with spatial cou-
pling imposed by correlation functions. A prior model for the
earth model is set up based on well logs. Linearization of the
relationship between the earth model parameters and the seis-
mic data allows analytical computation of the posterior distri-
bution. Facies probability volumes are obtained from the pos-
terior distribution using relationships between elastic parame-
ters and facies obtained from well logs. From the stochastic
inversion, we have the uncertainty of the inverted parameters,
and use this when computing the probabilities. The result is fa-
cies probability cubes, intended for use in lithology prediction
and geomodeling.

A classic problem when predicting facies from elastic param-
eters obtained by seismic inversion is how to associate facies
and elastic parameters. One approach is to sample the inver-
sion into the well, and associate facies and inverted values. But
since the well logs are in depth and the inversion is in time,
time to depth conversion errors will have large influence here.
Another approach is to use frequency-filtered well logs of the
elastic parameters, and assume that these are representative for
the inversion, but this will tend to be too optimistic. Our ap-
proach is to use a filter obtained from the seismic inversion,
which defines what information the inversion has captured.
This gives accurate probabilities from the inversion, provided
the well-tie is good.

We have used this approach on the Snorre field (see Figure 1).
The Snorre field, which was proven in 1979, is about 191km2

Figure 1: The Snorre Field and its neighbor fields. [Ref.: NPD
- Norwegian Petroleum Directorate]

in extent and located in the Tampen area in the northern North
Sea. The reservoir section, more than 1000m thick, consists
of complex submarine-fluvial channel systems with sequences
of sandstone and shale at depths of 2.5 km, mainly terrestrial
deposits. Individual sandstones and shales are relatively thin
compared to the seismic resolution. The rotated structure com-
bined with later uplift results in several tilted fault blocks.

THEORY

Bayesian inversion
We have treated the earth as an isotropic, elastic medium. Such
a medium can be modeled by the elastic parameters, which de-
pend on the lateral position and vertical seismic travel time
only. The inversion method uses the weak contrast approx-
imation of the PP reflection coefficient by Aki and Richards
(1980)), in which we replace the Vs/Vp ratio, wherever present,
by a constant. The seismic data is modeled as the convolu-
tion of the wavelet with the reflectivity coefficient plus an error
term. After discretization the earth model reads

m =
ˆ
lnVp, lnVs, lnρρρ

˜T
. (1)

where Vp is the pressure-wave velocity, Vs is the share-wave
velocity, and ρρρ is the density. With the assumptions given
above the seismic data becomes

d = Gm+ e, (2)

where d are the seismic data, m is the earth model and e is
the noise. The matrix G contains both the convolution and
the transformation from earth model to reflectivity coefficients.
The wavelet depends on the angle and is assumed to be station-
ary within a certain limited target window.

Using multi-normal distributions, the earth model m and error
e can be written as

m∼N (µµµm,Σm) (3a)

e∼N (0,Σe) , (3b)



where µµµm is the expectation vectors of the logarithm of the
elastic parameters, and Σm is their covariance. The expectation
vectors are normally referred to as the background model. For
the error model we use zero-mean Gaussian noise which is
assumed independent of m. The error covariance Σe consists
of both a white noise part and a coherent noise part.

From Eq. 2, the seismic data are linked to the earth and er-
ror models through linear operations only. Hence, the seismic
data will also be multi-normal, that is, d ∼N (µd ,Σd). This
implies that the simultaneous distribution for both m and d is
multi-normal, and the posterior distribution for m given d can
be obtained, straight-forwardly, as

µµµm|dobs
= µµµm +Σ

T
d,mΣ

−1
d (dobs−µµµd) (4a)

Σm|dobs
= Σm−Σ

T
d,mΣ

−1
d Σd,m, (4b)

where Σd,m is the cross-covariance between logarithmic pa-
rameters and observations. To avoid the time-consuming cal-
culation of Σ

−1
d , Eqs. 4a and 4b are solved in the Fourier do-

main, by assuming that the seismic residuals are second-order
stationary Gaussian fields (see Buland et. al. (2003)).

Facies prediction
To obtain facies probabilities, we use a point-wise approach
where we predict the facies probability in one location from
the inverted parameters in that location. The facies probability
in spatial location i = (i1, i2, i3) is given by a standard Bayesian
updating,

P( fi = k|m̂i) =
p(m̂i| fi = k) · p( fi = k)P
j p(m̂i| fi = j) · p( fi = j)

, (5)

where p( fi = k) is the prior probability for a facies k in location
i, and p(m̂i| fi = k) is the distribution for the inverted elastic
parameter given facies k in location i.

In this presentation we use a constant prior probability, that
is, p( fi = k) = p0

k , but this could easily be substituted with a
spatially varying probability. The constant prior probability is
obtained from the well logs in the region in study.

In our approach, we model the distribution of facies relative to
the background model µµµm,i, that is

p(m̂i| fi = k) = gk(m̂i−µµµm,i) (6)

This means that the distribution of inversion parameter for a
given facies has the same shape in all spatial locations, but it
is shifted relative to a background model. The distributions
gk are not known and must be estimated. We estimate these
from filtered well logs. We extract all values that correspond
to a given facies from the filtered well logs, and use 3D kernel
estimation to obtain an approximation of the density.

The filter F that is applied to the well logs is computed based
on the difference in the prior and posterior covariances. This
filter defines the information content the inversion has cap-
tured, and is defined such that the frequency content in the
filtered well logs is equal to that of the inverted parameters.
Formally, this may we written

m̂ = Fm. (7)

Note that the filter is applied to all three parameters in the well
logs simultaneously such that it also captures the interactions
of the parameters in the estimation.

THE TEST CASE

Prior model
The prior model for the inversion consists of the expectation
values µµµm and the covariance Σm. The expectation values
constitute the background model for the inversion. The back-
ground model was obtained from well logs by filtering elastic
parameter raw logs to high-cut frequency 6 Hz. From these fil-
tered logs we estimated a vertical trend and added local varia-
tion correction around each well using kriging. For the kriging
we used an isotropic, exponential correlation function with a
range of 3.5km in the north-west to south-east direction and a
range of 2.5km perpendicular to this.

The prior covariance was decomposed into a 3×3 parame-
ter covariance matrix that was estimated from wells logs, a
parametric, lateral correlation function with ranges 800m and
400m and the same anisotropy angle as above, and a temporal
correlation function estimated from well logs.

For the likelihood, the covariance was decomposed similarly.
The covariance matrix was constructed using signal-to-noise
ratios obtained during the wavelet estimation, the lateral corre-
lation was set equal to that of the prior model, and the temporal
correlation was computed from the wavelet. To allow errors on
all frequencies, 10% white noise was added.

Wavelet estimation
The wavelets, which are displayed in Figure 2, were estimated
independently for each angle using a standard tapering ap-
proach (see White (1984)). Wavelet estimates from different
wells were peak aligned and a common scale was selected to
minimize the residuals. In order to enhance the visibility of the

Figure 2: The estimated wavelet for different angular stacks.

area of interest, the wavelets were estimated using the reservoir
interval only, with a taper zone slightly above and below.

INVERSION RESULTS

The inversion interval was defined by two smoothed, inter-
preted surfaces, taken to represent the major correlation di-
rections in the reservoir structure. The inversion grid had a



lateral resolution of 25m× 25m and a sampling density better
than 4.0ms. For the inversion grid this amounted to 230 mil-
lion grid cells, and the complete facies probability estimation
required some 40 minutes using a modern Linux PC. This in-
version employed three AVA stacks (near, near-mid and mid)
and six vertical wells.

Figure 3: Cross sections of the predicted AI. Also shown are
two AI well logs filtered to 40 Hz.

Figure 4: The background model for AI. Also shown are two
AI well logs filtered to 6 Hz.

In Figure 3, we show a cross section of the acoustic impedance
(AI). Also shown are two 40 Hz high-cut filtered AI well logs.
The prediction shows good agreement with the well logs. For
comparison, the background model for AI is given in Figure 4.
For the background we have used a continuous color scale to
maintain the smoothness in the plot.

Facies probabilities

In Figure 5, we have given a facies log for one well with the
probability for sand calculated both with and without this well.
This blind test shows that we are able to predict the major
sands and shales, but also that there are some alignment prob-
lems in the center part of the log.

To identify the amount of facies information that may be ex-
tracted from the seismic data, we have plotted AI vs. Vp/Vs
ratio for raw logs (Figure 6) and logs filtered to seismic res-
olution (Figure 7). In both cases we use the resolution of the
inversion grid and give the axes in logarithmic scale and rel-
ative to the background. The plot with raw logs shows that

Figure 5: Probability of sand (black curve) against facies in
well log (green=shale, orange=sand, brown=crevasse). The
shown facies log was included in the calculation of facies prob-
abilities for the right plot but was excluded for the left.

Figure 6: Cross plots of AI versus Vp/Vs ratio from raw logs.

Figure 7: Cross plots of AI versus of Vp/Vs ratio from logs
filtered to seismic resolution.



shale and sand are fairly well separated whereas crevasse is
not. When we compare this plot with the plot where the logs
have been filtered to seismic resolution using Equation 7, we
see that even with three AVA stacks, the inversion does not give
much information about the Vp/Vs ratio. This means that the
facies prediction must be done mainly on acoustic impedance.

In order to check the quality of our result, we consider a predic-
tion ability measure: We look at the average probabilities for
facies in all cells that have the same facies in the well log. That
is, we first run through all cells where the well log shows shale,
and compute the average sand probability, crevasse probability
and shale probability. This is repeated for the cells where the
well shows crevasse, and finally for the sand cells. Perfect pre-
diction would occur if the shale probability was 1 when true
facies was shale, and so on.

The best prediction possible given the elastic parameter distri-
bution seen in raw well logs is a useful reference level. These
numbers are shown in Table 1.

Predicted True facies
facies shale crevasse sand
shale 0.713 0.350 0.288
crevasse 0.028 0.095 0.045
sand 0.259 0.555 0.667

Table 1: Probability table constructed from raw well logs.

As we see, the probability for sand is high when the truth is
sand or crevasse, and low when the truth is shale, whereas the
opposite is true for shale. From this table, we see that we can
not expect to get good probabilities for crevasse. The elastic
parameters for crevasse is too close to sand, and there is much
more sand than crevasse seen in the wells.

Predicted True facies
facies shale crevasse sand
shale 0.589 0.496 0.439
crevasse 0.036 0.103 0.038
sand 0.374 0.401 0.522

Table 2: Probability table constructed from filtered well logs.

In Table 2, we have done the same computation, but with fil-
tered well logs. This is what we can expect after inversion,
and the prediction is clearly weaker than in Table 1. The main
reason for this is that we after inversion have little useful in-
formation form the Vp/Vs ratio, as seen in Figures 6 and 7.
The prediction is still much better than a flat prior, however,
as the sand probability is 50% higher when the truth is sand
compared to shale.

In Table 3 we have computed the same numbers using the ac-
tual inversion instead of well logs. We are now getting close
to a flat distribution. In addition, there is now a small proba-
bility of undefined, which occurs when the elastic parameters
from the inversion are outside the range spanned by the filtered
well logs. The difference between Tables 2 and 3 is caused by
both time to depth conversion error of well-log and model er-
rors. The reservoir has thin facies intervals (see Figure 5) and

Predicted True facies
facies shale crevasse sand
shale 0.511 0.482 0.505
crevasse 0.036 0.023 0.037
sand 0.407 0.443 0.435
undef 0.045 0.051 0.024

Table 3: Probability table constructed from inversion results.

is therefore sensitive to time to depth conversion errors when
computing the performance statistics in Table 3. This type
of error is not present in Table 1 and 2 since these only re-
late to well log data. This may explain part of the flattening
of the distribution. A more detailed analysis of the well logs
and inverted facies cube shows that the prediction is better than
average in some zones. For example is the Dunlin formation
seen as a diagonal red line between two purple lines at the top
left in Figure 8 easy to identify. This might indicate that this is
a region where the model of relative deviations is good. Gen-
erally better predictions can be obtained if more information
regarding the relative behavior of sand and shale is used.

Figure 8: Cross section of the sand probability volume.

CONCLUDING REMARKS

We have shown how the Bayesian AVA inversion approach can
be useful in order to obtain facies probabilities for geomodel-
ing. In a complicated real world reservoir case, we see an in-
crease of 50% in sand probability in the cells where well logs
have sand compared to those with shale. A geomodel not using
seismic data would have the same probability in both cases, so
utilizing the seismic data in this way will have significant im-
pact on the sand configuration. The algorithm presented is fast,
and handles the uncertainty in the inversion correctly.
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