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Abstract. A modification to the standard cokriging approach using impe-
dance as a covariate to porosity is presented. To consider the inherent
low vertical and lateral resolution of seismic data, the observed seismic
impedance is assumed to be a noise corrupted version of the smoothed
porosity field. Some approximations for efficient computing is also pre-
sented.

1. Introduction

The introduction of widely used 3-D seismic data and the increased quality
of such data has boosted the attempts for using seismic data to improve
reservoir characterization. The inherently low vertical and lateral resolu-
tion of such data makes the extracted parameters such as travel times and
impedances uncertain. Moreover, the link to geological and petrophysical
properties such as zone boundaries, facies distributions, and porosities, is
not unique. However, the superior lateral coverage as opposed to well ob-
servations makes seismic data a valuable source of information.

Several suggestions to how seismic post-stack data can be utilized in
reservoir characterization has been proposed. Most geostatistical attempts
seek to find empirical correlations between a seismic parameter and poros-
ity. The geostatistical attempts to utilize seismic data group into two major
categories: Those using techniques related to cokriging and those using in-
dicator kriging. Here we pursue the use of cokriging but relax the common
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assumption of using the same correlation function for porosity and seis-
mic parameter. The inherent smoothing effects of post-stack seismic data
is considered explicitly so that the different support volumes for seismic
data and porosity data are handled properly.

2. Position of the problem

2.1. SEISMIC PARAMETERS

The seismic parameters considered in the literature are, velocities (not
stacking), travel times, amplitudes, and inverted impedances. All these pa-
rameters are to a certain extent linked to porosity. Using velocities or travel
times however, implicitly requires that the thickness of the reservoir zone
is known since otherwise varying travel time could be explained by vary-
ing thickness. Moreover, there is no direct physical link between amplitude
at a certain location and porosity at the same location. Therefore, condi-
tioning porosity directly on amplitude is questionable. This leaves us with
inverted impedances which is difficult to obtain since the inversion process
is ambiguous without imposing restrictions on the solution.

Seismic amplitudes are linked to reflection coefficients which is related
to impedance contrasts. Seismic inversion or deconvolution of post-stack
traces are used to extract impedance data from the traces. The result is
2-D impedance maps or 3-D impedance cubes. The impedance is the prod-
uct of the pressure wave velocity and the density of the rock. The relation
between velocity and density to porosity, is not unique and no simple re-
lationship exist. Therefore most approaches take an empirical approach
utilizing the statistical correlation found between seismic parameters and
well observations of the rock parameter considered.

2.2. GEOSTATISTICAL METHODS

Several geostatistical methods for mapping porosities using seismic post-
stack data have been applied:

Cokriging assumes that the seismic parameter is a covariate with its own
stochastic properties. Covariance functions for the porosity field and the
seismic parameters must be established and the cross-covariances between
porosity and the seismic parameters must be obtained. There are severe
restrictions on the relationship between these three covariance functions
to guarantee a solution to the kriging system. Therefore, it is common to
use the same correlation function for the porosity field and the seismic
parameter. The cross-covariance function is then chosen to have the same
form with an additional nugget effect.
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The first attempt to integrate seismic data (transit travel-time) and
porosities from well logs within a cokriging framework is reported by Doyen
(1988) and Western Geophysical Company (1988). Verly (1993) used nor-
mal score transformed impedances for porosity prediction. Burns, Cooper,
den Boer, Doyen & Smart (1993) linked porosity directly to post-stack
amplitudes using cokriging. Gorell (1995) applies sequential Gaussian sim-
ulation guided by synthetic velocities to obtain porosity maps.

A significant problem using cokriging is the enormous amount of seismic
data entering the cokriging system. A simplified technique called collocated
cokriging (Xu, Tran, Srivastava & Journel 1992) retains only the closest
data. Collocated cokriging has been applied by Bashore, Araktingi, Levy
& Schweller (1993) using impedances and Almeida, Tran & Balin (1993)
using seismic velocities.

Universal kriging or ‘kriging with a trend’ uses a linear trend to establish
the relationship between the seismic parameter and porosity. Araktingi,
Bashore, Hewett & Tran (1990) compares universal kriging to indicator
kriging with the Markov Bayes assumption. Chambers (1993) uses reflection
amplitudes as an explanatory variable. Kjellesvik (1993) relates porosity to
inverse impedance (Pickett 1963) using Bayesian kriging. Universal kriging
with is closely related to cokriging conditioned on a dense grid of covariates.

Indicator kriging accepts any marginal distribution but requires a dis-
cretization of the continuous field. The porosity values are coded as indi-
cators for a chosen set of threshold values. Simulation from the indicator
kriging formalism is done using the SIS algorithm (Journel & Alabert 1990).
Seismic information is coded as ‘soft’ indicators in the range [0,1] (Jour-
nel 1986). Thadani (1993) use this approach to relate amplitude data to
porosities. The problem of estimating the variograms and co-variograms of
the indicators are simplified by adopting the Markov Bayes formalism (Zhu
& Journel 1993). The Markov Bayes approach has been used by Araktingi
et al. (1990) and Araktingi & Bashore (1992) to obtain porosities from
impedances.

3. Stochastic Models

3.1. POROSITY — &(x)

The porosity is modeled as a Gaussian random field
®(x) = pa(x) + €a(x), x € R?,

with expectation E{®(x)} = pe(x) and covariances Cov{®(x),®(y)} =
Cov{€a(x),€a(y)} = Ca(x,y).
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3.2. ACOUSTIC IMPEDANCE — Z(x)

The resolution of the seismics suggests that it is related to a smoothed
version of the petrophysical field. The vertical resolution is limited by the
seismic wavelength, and the lateral resolution is limited by the Fresnel zone,
migration, and the stacking of CMP gathers.

Consider a smoothed version of ®(x) defined by the convolution

B (x) = w(x) *x P(x) = . O(t) w(x; t) dt; x,t € R?,

where [, w(x)dx = s is a scaling factor.

The smoothed porosity, ®(x), is also a Gaussian random field with ex-
pectation and covariances

B{B(x)} = pz(x) = w(x) * pa(x),
Cov{B(x),B(y)} = Cz(x,y) = w(x) xw(y) « Ca(x,y),
Cov{B(x),8(y)} = Cgq(x,y) = w(x) * Ca(x,).

Assume that the function w(-) can be chosen so the convolution re-
sembles the real smoothing in seismics. Then the impedance, Z(x), can be
written:

Z(x) = 81 + ®(x) + €4(x); x € R?,

where the residual € z(x) is independent of ®(x) and ®(x) and s, is a shift
parameter. The residual is interpreted as zero mean noise and modeled as a
Gaussian variable with covariances Cov{€z(x),€z(y)} = Cg,(x,y). Then,
Z(x) will be a Gaussian random field with moments

E{Z(x)} = pz(x) = 51 + w(x) x pe(x),
Cov{Z(x),Z(y)} = Cz(x,y) = C5(x,y) + Ce, (x,y) ,
COV{Z(X)7 (I)(Y)} = C@Z(Xa y) = C@@(Xa Y) .

A stochastic model linking the petrophysical parameter, ®(x), and the

seismic parameter Z(x) has been established. The strength of the link is de-
termined by the variance of the seismic noise, €7 (x) relative to the variance

of ®(x).
4. Estimation

There are several parameters in the stochastic models which need to be
estimated or specified. The scaling parameter, sy, and the shift parameter,
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s1, can be estimated by simple linear regression of ® on Z. The shift pa-
rameter is the intercept while the scaling parameter is the slope. Spatial
correlations should in principle be considered for optimal estimates but the
difference is usually possible to ignore for large datasets.

The shape of the filter w(-) is difficult to estimate. Some tests using
maximum likelihood estimation for the filter width failed to give unique
answers. The shape of the filter must therefore be determined from geo-
physical knowledge.

The covariance function of ®(x) must be estimated from bore-hole
data while the covariance function of Z(x) can be estimated from the
impedances. A problem however, is that the covariance function of Z(x) is
assumed to consist of two parts, a contribution from ®(x), and a contri-
bution from the residual noise €(x). For a known smoothing filter and a
given covariance function for ®(x), an estimate for C¢_(x,y) can be calcu-
lated as: @gz (x,y) = Cz(x,y) — Cg(x,y). Some precautions to guarantee
positive definiteness must be made.

5. Conditional fields

Consider the situation where the impedances are observed (inverted) in

a dense grid. Denote these observations Z = {Z(x{),...Z(x%, } where
xZ € R3 for all i. Moreover porosities are measured along bore-holes in
several wells. Denote these observations ® = {®(x}),... ®(x},} where

x? € R? for all j.

The porosity field, ®(x), conditioned to both sets of observations is
sought, i.e. ®(x)|Z, ®. To obtain the conditional field, the set of observa-
tions may either be used simultaneously or sequentially using the equiva-
lence

(1) (x)|Z, ® = (®(x)|Z)|(®|Z).
Both alternatives are presented below.

5.1. SIMULTANEOUS CONDITIONING.

The porosity at x and the observations ® and Z belong by assumption to
a common 1 + Ng + Nz-dimensional Gaussian distribution:

®(x) s (X) 03(x) kg(x) kgz(x)
® | ~ Niyngtn, By |, | ke(x) Ko o7 :
Z By kez(x) Koz Kz

Covariances are given by the covariance functions Cz, Cg, and Cgz. Stan-
dard formulas for conditional expectation and variance for multi-Gaussian
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distributions provide

(2a)
E{®(x)|® = ¢,Z = 2} = oo 2(X)
_ / 1 [P — pe
— () + KK |07 o]
(2b) Var{®(x)|Z, @} = 04, ,(x) = 03(x) — K'(x) K™"k(x),
where

<00 = o] K=l K]

These are the predictor and prediction error for ®(x) given the data. The
problem however is the size of K. For any realistic dataset, the size will be
to large for inversion. Thus, some alternative approaches for approximating
these equations are necessary.

5.2. SEQUENTIAL CONDITIONING

Instead of conditioning ® on both sets of observations simultaneously, it is
possible to do this in a two step approach based on Equivalence (1). First
®(x)|Z is considered. Again a multi-normally vector is constructed:

72 (5L 120 7))

The moments of the field ®(z)|Z are again given by standard formulas:

(3a) E{®(x)|Z = 2} = poz(x)
= p1a(x) + Ky, (x)K5" [2 — p5]
(3b) Var{®(x)|Z} = 03(x)

= 03(x) — ko z(x)K7 ke (%),
(3¢) Cov{®(x)|Z,2(y)|Z} = Cqjz(x,y)
= Ca(x,y) — koz(¥) K7 kaz(x).
The observations of the porosity field are now introduced remember-

ing (1). The moments are again found by considering the multi-normally
distributed vector

[@((Ifc'gz] ~ Nip g ([”Z;S)] ’ llfizz(();)) ki}él(: )D '
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The covariance of the field ®(x)|Z which is used in both k|7 and Kgz is
given by (3c). The conditional moments are

(42)
E{(®(x)/(2))|(@|Z) = ¢} = pa/a.2(x)

= pa7(x) + Ko s (K3, [& = ha 5] |
(4b)  Var{(@(x)|Z)|(®|Z)} = 035 (x)

= U<21>|Z(X) - &\Z(X)K;ﬂzkélz(x)-

Note that these moments are identical to (2a) and (2b).

The benefit of the sequential conditioning approach is that the two
sources of data are introduced in two separate operations. This will be
exploited below when we introduce several possible approximations to make
computations feasible.

5.3. APPROXIMATIONS

Neither of the two algorithms to find ®(x)|®,Z are applicable because of
the vast amount of observations which requires inversions of correspond-
ingly large matrices. A straight forward approach is to use neighborhoods.

5.3.1. Neighborhoods
Since the seismic is observed in all the grid-nodes, N is a very large number
and K in (3a) to (3c) will be a matrix too large to invert. A reasonable
approximation is to condition ®(x) to those observations within a window
around x. Note that the covariance matrix and residual observations vector
become location dependent. For a stationary field however, the location
dependence disappear and a significant reduction in computations is gained.
In the sequential algorithm, the covariances for the field ®(x)|Z, given
by (3c), are needed to evaluate kg7 (x) and Kg|; in (4a) and (4b). Since
two locations are involved, the union of the two neighborhoods must be
used. This will give a variable sized matrix K. The next approximation is
intended to remove this problem.

5.3.2. Approzimations to Ce|z(X,y)
Consider the general form of a covariance function:

(5) Caz(X,y) = 0412(X)052(¥) paiz(X,Y)-

The expression for 04|z(x), given by (3b), can be approximated using a local
neighborhood. The expression for pgz(x,y) however, includes Kg ; which
requires the use of Cg 7 given by (3c). Since Cyp|z includes two locations the
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Figure 1. Cross section of porosity (solid Figure 2. Cross section of smoothed poros-
line) with trend (dashed line). ity field. Smoothed version of solid line in
Figure 1.

union of two neighborhoods must be considered and the size of K in (3c)
will depend on the two locations. To circumvent this problem pgz(x,y) is
approximated by ps(x,y) in (5):

(6) Caz(X,y) =~ 082(X)0a)2(¥)pa(X,y)

Thus, local neighborhoods can be applied without considering variable sized
K ; matrices.

5.3.3. Summary of approximations
The approximation of Equations (2a) and (2b) is done in the following
steps:
1. Calculate pg|z(x) and 03, (x) using the local neighborhood approxi-
mations for k.z(x) and Kz in (3a) and (3b).
2. Calculate pige,7(x) and 034 ,(x) using pis)z(x) and 03, ,(x) and the
approximation (6) in (4a) and (4b).

6. Examples

To demonstrate the properties of the convolution and the approximation a
one dimensional example is given. The solid line in Figure 1 illustrates a
cross-section of the porosity (arbitrary units). The dashed line is the trend,
ito. By smoothing the porosity using a triangular filter with half-width 10,
the smooth curve in Figure 2 appears.

6.1. DECONVOLUTION

First assume that £z vanish, that is, the impedance is a pure convolution
of the porosity. The predictor E{®(x)|Z = z} given by (3a) is illustrated in
Figure 3 as a solid line whereas the true porosity from Figure 1 is shown
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Figure 3. Deconvolution of smoothed porosity; Cross section of deconvolved porosity
from Figure 2 (solid line) compared to ‘true’ porosity from Figure 1 (dashed line).
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Figure 4. Cross section of seismic noise, Figure 5. Cross section of impedance,

Ez. Z=®+E4.

as a dashed line. The predictor is a deconvolution of the smooth curve
given in Figure 2. It is seen that the predictor (3a) gives a very detailed
and accurate description of the porosity. This is of course not a realistic
situation but it illustrates the deconvolution properties of cokriging with a
smoothed covariate. When introducing noise in the seismic observations the
situation changes. There becomes a competition between the deconvolution
to exaggerate small fluctuations, and averaging to reduce noise.

6.2. CONSEQUENCE OF APPROXIMATION OF CORRELATION
FUNCTION

Figure 4 is a cross section of the seismic noise €. By assumption the
impedance, illustrated in Figure 5, is obtained by adding this noise to ®
in Figure 2. Three porosity data locations have been selected. These are
marked by a small dot in the following figures. Four different predictors
and prediction errors are compared:

1. Conditioning on porosity data alone; see Figure 6.
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Figure 6. Cross section of porosity pre-
diction conditioned on porosity data (solid
line). ‘True’ porosity (dashed line).
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Figure 8. Cross section of porosity

prediction conditioned on porosity and
impedance data (solid line). ‘True’ poros-
ity (dashed line).
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Figure 7. Cross section of porosity predic-
tion conditioned on impedance data (solid
line). ‘True’ porosity (dashed line).
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Figure 9. Cross section of porosity

prediction conditioned on porosity and
impedance data using approximation (6)
(solid line). ‘True’ porosity (dashed line).

2. Conditioning on impedance data alone using (3a) and (3b); see Fig-

ure 7.

3. Conditioning on all data using the exact expressions (2a) and (2b); see

Figure 8.

4. Conditioning on all data using (4a) and (4b) with approximation (6)

for Coz(x,y); see Figure 9.

The figures shows that using approximation (6) has minor influence on the

predictor.

Figure 10 contains prediction errors for Cases 1. and 2., whereas Fig-
ure 11 contains prediction errors for Cases 3. and 4., The solid line in
Figure 11 is the correct prediction error when using both sources of data.
The dashed line, obtained using approximation (6), shows a to large influ-
ence form the porosity observations. The introduction of densely sampled
impedance data screens the influence of point observations and this effect

is ignored in the approximation.
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Figure 10. Cross section of prediction er- Figure 11. Cross section of prediction er-
rors. Solid line is conditioned on impedance rors conditioned on both impedance and
data alone. Dashed line is conditioned on porosity data. Dashed line obtained by us-
porosity data. ing (4b) with approximation (6).

7. Closing remarks

A modification to the standard cokriging approach to using impedance data
for improving prediction of porosities has been developed. The difference
to previous techniques is the introduction of a smoothing filter so that the
inherent poor lateral and vertical resolution of the seismic signal can be
handled properly.

Moreover, a two step approach for prediction has been introduced to
speed up calculations. First, the expectation and variance of the porosity
field given impedance data is calculated. Finally data from the porosity field
itself is introduced. To simplify the calculations in the final step an approxi-
mation to the spatial correlation function is introduced. This approximation
has minor influence on predictions, but prediction error becomes to small.
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