Contents

1 Introduction

2 Matrix and vector classes

2.1 General remarks L
2.1.1 Representation
2.1.2 Communication with C and FORTRAN subroutines

2.2 Baseclasses
2.2.1 BaseArray
2.2.2 BaselntArray

2.3 Double and integer vectors.o
2.3.1 nVector
2.3.2 nIntVector

2.4 Double matrices
2.4.1 nMatrix
2.4.2 SymMatrix
243 TriangMatrix L

2.5 Eigenvalues and singular values 0oL
251 Eigen . ..
2.5.2 Svd ..o

2.6 Simple arrays of matrices
2.6.1 VecSimplest(nMatrix) Lo
2.6.2 VecSimple(nMatrix)o
2.6.3 VecSimplest(nIntVector) Lo
2.6.4 VecSimple(nIntVector) Lo
2.6.5 ArrayGenSimplest(nMatrix) L Lo L
2.6.6 ArrayGenSimple(nMatrix) L oL

Least squares computations

3.1 Ordinary least squares
3.1.1 LeastSquaresQR

3.2 Generalized least squares
3.2.1 GenLeastSquaresQR

Random number generators

4.1 A stream of random numberso
4.1.1 RandomStream

4.2 Abstract base classes Lo
4.2.1 RandomGen
4.2.2 RandomCont
4.2.3 RandomDisc

4.3 Random number generators for different distributions
4.3.1 RandUnif

5.1

5.2

Al

A2

4.3.2 RandStdNormal

4.3.3 RandNormal
434 RandExp
435 RandGamma
4.3.6 RandPoisson
5 Some general tools
Functionso
5.1.1 nfac
5.1.2 binCoef
5.1.3 dnfac
5.1.4 dbinCoef
5.1.5 countNumbers
Abstract base class for datasets
5.2.1 DataSet
A Some functions and classes from Diffpack
Boolean variables
A1.1 BooLean
Simple vector templates
A2.1 VecSimplest
A22 VecSimple

A3

Index

A.2.3 ArrayGenSimplest
A.2.4 ArrayGenSimple
Error handling functions
A3.1 errors

i

Chapter 1

Introduction

This note is the documentation of version 2.0 of the NUTILITY package, which contains basic
tools for statistical computations. The work is supported by The Research Council of Norway
through the research program no. STP 28402 “Toolkits in Industrial Mathematics”, where the
Norwegian Computing Center (NR) is one of three participants, the other two being SINTEF
Oslo and the University of Oslo (UiO).

The routines are implemented in C++, and the module is organized in class hierarchies to sim-
plify addition of new models and methods. Version 2.0 contains implementation of matrix and
vector operations, least squares algorithms, and random number generators for several proba-
bility distributions. The class documentations do not include descriptions of private members,
protected members, and member functions considered as implementation details, unless these
descriptions are required for clarification of the functionality.

The note is organized in four chapters following this introduction. Chapter two contains the
documentation of the matrix and vector classes. Some general remarks about the matrix- and
vector-hierarchy are given in section 2.1. Chapter three contains the documentation of the classes
for least-squares computations, and chapter four the documentation of the random number
generators. The random number generators are organized in a class hierarchy with base classes
RandomGen, RandomCont and RandomDisc, documented in section 4.2.

Routines for computing the factorial and binomial functions, and a function counting the number
of entries on a file, are documented in chapter five. This chapter also includes documentation of
a base classes for sets of data.

Some of the classes and functions make use of basic tools implemented in the module Diffpack,
developed at SINTEF Applied Mathematics and University of Oslo, Department of Mathematics
and Department of Informatics. Diffpack is released as public access software, that is public
domain software for non-commercial use. Parameterized classes for simple vectors are used to
implement vectors of matrices, and the classes in NUTILITY make extensive use of a set of error
handling functions, as well as an implementation of boolean variables. Documentations of these
classes and functions from Diffpack are included in appendix A.

Differences between versions 1.0 and 2.0.

In version 2.0, errors are corrected, and adjustments due to experience with using the library are
performed. The matrix multiplication and decomposition of rectangular matrices are made more
efficient. The random generators for the Poisson and gamma distributions are reimplemented.
Some general base classes included in version 1.0, considered to be closely related to specific
methods, are not included in the new version.

Chapter 2

Matrix and vector classes

2.1 General remarks

2.1.1 Representation

The matrix and vector classes in the NUTILITY package are especially designed for use in
solution of statistical problems. They are derived from two base classes BaseArray and Ba-
seInt Array, which implements representations of double and integer arrays, respectively.

The representation includes a copy counting mechanism. If an object in the matrix/vector
hierarchy is copied, no new memory is allocated, so that several matrices or vectors are sharing
the same representation in memory. When an object is changed, it is detached from the shared
representation. The copy count mechanism keeps account of the number of objects sharing the
same memory location, so that the memory is not freed until the last object goes out of scope.

Separate classes are implemented for symmetric and triangular matrices, taking advantage of
the fact that only the elements on and below the diagonal need to be stored. These classes are
derived from the class for rectangular double matrices, nMatrix. As a result of the differences
in representation, some member functions of the base class nMatrix should not be invoked
for objects of the derived classes TriangMatrix and SymMatrix. Such functions are made
virtual, and the implementation of those functions in the derived classes consists of an error
message stating that the function call is illegal.

The arithmetic operations (multiplication, addition and subtraction of matrices) are imple-
mented for all combinations of the different matrix classes.

2.1.2 Communication with C and FORTRAN subroutines

In NUTILITY, both vectors and matrices are dynamically allocated and stored as one-dimensional
arrays. The matrices are stored row by row. The classes BaseArray and BaseIntArray are
equipped with member functions that returns a pointer to the first (or second) element of a
floating point array or integer array. These functions can be used when a matrix or vector
object is to be transferred to a C-function or FORTRAN subroutine. FORTRAN relies on ar-
rays beeing allocated in one bunch of storage. By representing matrices as well as vectors as
a one-dimensional array, this requirement is met. Since multidimensional arrays in FORTRAN
are stored columnwise, the representation of the transpose of the matrices should be used when

calling FORTRAN subroutines.

2.2 Base classes

2.2.1 BaseArray

NAME

BaseArray - a base class for double arrays

INCLUDE

include "matrix.h"

SYNTAX
class BaseArray{
protected:
struct vrepf{ // actual data, ref.count update instead of copy
BASE *v; // pointer to data
int n; // reference count
int len; // length of array

void init(int 1){
if (1<=0) errorFP('vrep::init (in BaseArray)",
"Illegal length %d.!\n",1);
n=1; v=new BASE[len=1];
if (v==NULL)
errorFP("vrep::init (in BaseArray)",
"Problems with allocation, using new. Length: %d.\n",1);
v--;
}
vrep(int 1) { init(1);}
vrep(){n=1; len=0; v=NULL; }
vrep(const vrep& q)
{
init(q.len);
for(int i=1; i<=len; i++)
v[il = q.v[il;

¥
“vrep(){ if (v!=NULL) { v++; delete v;}}
}
vrep* p;

virtual inline BASEZ iter(int& k) // returns elements in canonical order

{return p->v[k++];} // no index range check
virtual inline BASE iter(int& k) const
{return p->v[k++];} // no index range check

void detachIfMultiples();
// copies vrep into new vrep if multiple references exist

BaseArray(vrep*);

public:
BaseArray(int);
BaseArray() { p = new vrep();}
BaseArray(int,BASE);
BaseArray(int,BASE*);
BaseArray(const BaseArray¥);
virtual "BaseArray();

BaseArray& operator=(const BaseArray&);

Ot

BooLean operator==(const BaseArray&) const;

inline BaseArray& operator+(){return *this;};
BaseArray& operator-();

virtual BaseArray& operator+=(const BaseArray&);
virtual BaseArray& operator-=(const BaseArray&);

friend BaseArray& operator+=(BaseArray& ,BASE);
friend BaseArray& operator*=(BaseArray& ,BASE);
friend BaseArray& operator/=(BaseArray& ,BASE);

virtual BASE* ptrBaseO ();
virtual BASE* ptrBasel ();

// *** minimum, maximum and summary measures:

double maxval() const; // maximum of elements
double minval() const; // minimum of elements
virtual double sum() const; // sum of elements
virtual double mean() const; // mean of elements
}s;
KEYWORDS

array, double array

DESCRIPTION

The class is a base class for implementations of different kinds of arrays of elements of
type BASE. In the current revision, BaseArray is used as base class for double vectors and
matrices, and the macro BASE is set equal to double.

The class is primarily meant to be a base class for vectors and matrices, and not to be
used directly.

The array is represented by a C-array of elements, but the array is shifted so that the first
index is one. To prevent unnecessary copying of objects, a reference counter is implemented.
When a new object of a class in the hierarchy is created from an already excisting instance,
the objects will share the same memory location until one of the objects is changed. Then,
the object operated on will be detached from the shared representation.

CONSTRUCTORS AND INITTIALIZATION

The class has five public constructors, including a default constructor not allocating any
memory, and a copy constructor. The three other constructors all have an integer argument
indicating the length of the array. In addition, a BASE (in this revision double) value or a
pointer to a BASE C-array might be specified, giving initial values for the array elements.
It is assumed that the C-array has first index zero. By default, all elements of the array
are initialized to zero.

MEMBER FUNCTIONS

Most member functions are self explanatory, and their intended use and function should
be clear from the class declaration.

operator+ - unary + -operator

operator- - unary - -operator, overwrites the elements of the object with their negative
values.

ptrBase0 - returns the representation of the array as a pointer to a double C-array with
first index zero. If other objects share the same representation, the object is detached from
the shared representation. The function is useful for sending an object of a class in the
BaseArray hierarchy to a C-function requiring a pointer. Since the value returned is the
address of the first element of the actual array, this function can be used for sending the
contents of an object to a FORTRAN subroutine.

ptrBasel - similar to ptrBase0, except that the first index of the array pointed to is one.
The function is useful for sending an object of a class in the BaseArray hierarchy to a
C-function requiring a base 1 array.

FILES

base_array.C

EXAMPLE

See class nMatrix and class nVector.

SEEALSO

class nMatrix, class nVector

AUTHOR

Jon Helgeland, NR

2.2.2 BaselntArray

NAME

BaselntArray - a base class for integer arrays

INCLUDE

include "matrix.h"

SYNTAX
class BaseIntArray{
protected:
struct vrepf{ // actual data, ref.count update instead of copy
int *v; // pointer to data
int n; // reference count
int len; // length of array

void init(int 1){
if (1<=0) errorFP('vrep::init (in BaseIntArray)",
"Illegal length %d.!\n",1);
n=1; v=new int[len=1];
if (v==NULL)
errorFP("vrep::init (in BaseIntArray)",
"Problems with allocation, using new. Length: %d.\n",1);
v=-3
¥
vrep(int 1) { init(1); }
vrep(){ n=1; len=0; v=NULL; }
vrep(const vrep& q)

{
init(q.len);
for(int i=1; i<=len ; i++)
v[il = q.v[il;
¥
“vrep(){ if (v!=NULL) {v++; delete v;} }
¥
vrep *p;
virtual inline int& iter(int& k) // returns elements in canonical order
{ return p->v[k++];} // no index range check
virtual inline int iter(int& k) const
{ return p->v[k++];} // no index range check

void detachIfMultiples();
// copies vrep into new vrep if multiple references exist

BaseIntArray(vrep*);

public:
BaseIntArray() { p = new vrep();}
BaseIntArray(int);
BaseIntArray(int, int);
BaseIntArray(int, int*);
BaseIntArray(const BaseIntArray&);
virtual “BaseIntArray();

BaseIntArray& operator=(const BaseIntArray&);
BooLean operator==(const BaseIntArray&) const;

virtual BaselntArray& operator+=(const BaselntArray&);
virtual BaselntArray& operator-=(const BaselntArray&);
virtual BaseIntArray& operator*=(int);

virtual int* ptrBaseO ();
virtual int* ptrBasel ();

int maxval() const; // maximum of elements
int minval() const; // minimum of elements
int sum() const; // sum of elements
};
KEYWORDS

array, integer array

DESCRIPTION

The class is a base class for implementions of different kinds of integer arrays. It is primarily
not meant to be used directly. The array is represented by a C-array of elements, but the
array is shifted so that the first index is one. To prevent unnecessary copying of objects, a
reference counter is implemented. When a new object of a class in the hierarchy is created
from an already excisting instance, the objects will share the same memory location until
one of the objects is changed. Then, the object operated on will be detached from the
shared representation.

CONSTRUCTORS AND INITTIALIZATION

The class has five public constructors, including a default constructor, not allocating any
memory, and a copy constructor. The three other constructors all have an integer argument
indicating the length of the array. I addition, an integer value or a pointer to an integer
array might be specified, giving initial values for the array elements. It is assumed that the
C-array has first index zero. By default, all elements of the array are initialized to zero.

MEMBER FUNCTIONS

Most member functions are self explanatory, and their intended use and function should
be clear from the class declaration.

ptrBaseO - returns the representation of the array as a pointer to an integer C-array with
first index zero. If other objects share the same representation, the object is detached from
the shared representation. The function is useful for sending an object of a class in the
BaseIntArray hierarchy to a C-function requiring a pointer. Since the value returned is
the address of the first element of the actual array, this function can be used for sending
the contents of an object to a FORTRAN subroutine.

ptrBasel - similar to ptrBase0, except that the first index of the array pointed to is one.
The function is useful for sending an object of a class in the BaseIntArray hierarchy to a
C-function requiring a base 1 array.

FILES

base_array.C

EXAMPLE

See class nIntVector.

SEEALSO

class nIntVector

AUTHOR

Jon Helgeland, NR

10

2.3 Double and integer vectors

2.3.1 nVector

NAME

nVector - a class for double vectors

INCLUDE

include "matrix.h"

SYNTAX

class nVector:public BaseArray
{
int n; // length of vector

public:
nVector(int len)
BaseArray(len) ,n(len){}
nVector(int len, BASE value)
BaseArray(len,value),n(len){}
nVector(int len, BASE#* value)
BaseArray(len,value),n(len){}
nVector(const nVector& v)
BaseArray(v),n(v.n) {}
nVector()
BaseArray() ,n(0){}

// #*** operators:

nVector& operator=(const nVector);
nVector& setEqual (const nVector&); // operator= with index check

// subscript operators:

inline double& operator() (int);

inline double operator()(int) const;

inline double& el (int i) { detachIfMultiples(); return p->v[il;}
inline double el (int i) comst { return p->v[i];}

double normE() const; // Euclidean norm

BooLean redim(int);

nVector& operator+=(const nVector&); // overwrites the current object
nVector& operator-=(const nVector&); // overwrites the current object
int getLen() const { return n;} // returns length of vector
operator nMatrix() const; // converts to nMatrix object
nMatrix asColVector() const; // returns n x 1 matrix

nMatrix asRowVector() const; // returns 1 x n matrix

nVector preMult(const nMatrix& A) const; // Axb
nVector postMult(const nMatrix& A) const; // b’*A

nVector elMult(const nVector&) const; // elementwise multiplication
nVector elDiv(const nVector&) const; // elementwise division

11

void elop (double (*pf)(double));
// operates on each element with given function pointer,
// overuwrites the current object

SymMatrix diag() const; // generates diagonal matrix
// **x concatenation and extraction:

nVector concat(const nVector&) const;
nVector concat(double) const;

nVector subvector(const nIntVector&) const;
nVector subvector(int from, int to) const;
nVector excl(const nIntVector& ind) const;
// extracts vector excluding elements with indices ind

void setSubvector(int from, int to, const nVector&) const;
// #** minimum, maximum and summary measures:

double maxval() const { return BaseArray::maxval(); }
double minval() const { return BaseArray::minval(); }
double sum() const { return BaseArray::sum(); }

double mean() const { return BaseArray::mean(); }

double ss() const; // sum of squares
double var() const; // variance

// #** inner and outer products:

double innerProduct(const nVector& v) const;
nMatrix outerProduct(const nVector& v) const;

friend long double innerProduct(int m, int n,
const nVector%, const nVector&, long double ¢=0.0);

// #** input and output:

virtual void scan(Is is);
virtual void print(0s os) const;

friend Is& operator>>(Is& istr,nVector& a);
friend 0s& operator<<(0s& ostr,const nVector& a);

friend double relDiff(const nVector&, const nVector&);
friend double mahaDist(const nVector&, const nVector&, const SymMatrix&);

// *** friend classes:

friend class nMatrix;

friend class TriangMatrix;

friend class SymMatrix;
};
// *** arithmetic operations:
nVector operator+(const nVector& a,const nVector& b);
nVector operator-(const nVector& a,const nVector& b);
nVector operator*(BASE a,const nVector& b);

nVector operator*(const nVector& a,BASE b);
nVector operator/(const nVector& a,BASE b);

KEYWORDS

double vector, vector

12

DESCRIPTION

The class implements a double vector, represented by an array with first index one. The
class has several member functions implementing common operations on vectors, such as
subscripting, arithmetic operations and inner products, as well as functions for editing and
input and output of the contents of a vector.

The class is derived from class BaseArray, a common base class for vectors and matrices.

CONSTRUCTORS AND INITTIALIZATION

The class has five constructors, including a copy constructor and a default constructor not
allocating any memory. The three other constructors all take the length of the vector as
argument. By default, all elements of the vector are initialized to zero. Other values might
be specified by an argument of type BASE (all values equal) or BASE#* (a pointer to an
ordinary base 0 C-array of values), where the macro BASE equals double in this revision.

MEMBER FUNCTIONS

Many functions are self explanatory, and the intended use and function of member functions
not further documented, should be clear from the class declaration.

Subscripting:

The class has two pairs of subscript functions, each pair consisting of functions for const
and non-const objects. The overloaded operator () performs index checking, while the
member functions named el do not.

Input and output:

The functions for input and output of the contents of the vector, scan, print, and the
overloaded operators >> and <<, all use the classes Is and Os instead of the standard
istreamand ostream classes. These classes, implemented in Diffpack, offer more flexibility,
in that they provide a general interface to several sources of input and output. The following
calls to scan (and similar calls to print) are all legal:

scan(cin);
ifstream infile("input.file",ios::in); scan(infile);
scan("FILE=input.file");

This is obtained by automatic conversion from the standard input/output sources to Is/0s.

operator nMatrix() - user-defined conversion operator converting a nVector of length n to
an x 1 nMatrix. Note that in functions using reference arguments, nMatrix&, automatic
type conversion is not allowed because a temporary argument (nMatrix(nVector)) is
created, and changes done on this object within the function will not be visible outside.

asColVector - returns a nMatrix object with dimensions n by 1, representing the length
n vector as a column vector.

asRowVector - returns a nMatrix object with dimensions 1 by n, representing the length
n vector as a row vector.

concat - overloaded function returning a vector equal the concatenation of the vector
with another vector or a single double value. The function leaves the object unchanged.

13

elop - performs on each element the operation indicated by the function pointer.
The function overwrites the object for which it is called. The argument is a pointer to a
function of double returning double.

excl - returns the subvector corresponding to the vector for which the member
function is invoked, excluding elements with indices indicated by the nIntVector reference
argument.

normE - returns the Euclidean norm of the vector.

postMult - performs post-multiplication of the nVector object (b) with the matrix indi-
cated by the nMatrix reference argument (&), and returns the vector y=transp(b)*A.

preMult - performs pre-multiplication of the nVector object (b) with the matrix indicated
by the nMatrix reference argument (4), and returns the vector y=Ab.

redim - If the integer argument equals the old length, the function leaves the vector
unchanged, and returns dpFALSE. If not, the vector object is redimensioned, the element
values set to zero, and dpTRUE is returned.

setSubvector - replaces the elements of the subvector with indices in the interval [from,to],
by the elements of the nVector object entered as argument to the function.

subvector - overloded function returning the subvector corresponding to the indices in-
dicated by the nIntVector reference argument, or in the range [from,to] (including the
endpoints). The function leaves the object unchanged.

FRIEND FUNCTIONS

innerProduct - computes the inner product of two vectors a and b in the index range m
to n, with the offset c.

mahaDist - returns the Mahalanobis distance between two vectors a and b with the covari-
ance matrix S indicated by the SymMatrix reference argument. The Mahalanobis distance
is given by transp(a-b)*inv(S)*(a-b).

relDiff - returns the relative difference between two vectors a and b, given by the sum
over all elements i of abs(a(i)-b(i))/(1.0+0.5%abs(a(i)+b(i))).

FILES

vector.C

EXAMPLE

#include <matrix.h>
#include <stdlib.h>

main(int argc, char*x argv[])
{
int n=atoi(argv[1l); // length of vector

nVector vi(n);
vl.scan("FILE=input.file");

// computes (x_i-mean(x))~2/var(x), i=1 to n:

double mval = vl.mean();
nVector vscaled = (vi-nVector(n,mval))/sqrt(vi.var());

14

double maxv = vscaled.maxval();
double minv = vscaled.minval();

ofstream out("out.file",ios::out);
vscaled.print(out) ;
out << "\nMaximum and minimum values: " << maxv << " " << minv << "\n";
// weighted sum of elements:
nVector weights(n);
ifstream winput("weights.dat");
weights.scan(winput);
double wsum = vscaled.innerProduct(weights);
out << "\nWeighted sum: " << wsum << "\n';
// extract subvector with indexvector (1,3,5,...)
int m = n/2;
nIntVector indvec(m);
for (int i=1;i<=m;i++)

indvec(i) = 2*i;

nVector vexcl = vscaled.excl(indvec);

vexcl.print ("FILE=half.vector'");

SEEALSO

class BaseArray, class nMatrix

AUTHOR

Jon Helgeland and Turid Follestad, NR

2.3.2 nlIntVector

NAME

nIntVector - a class for integer vectors

INCLUDE

include "matrix.h"

SYNTAX

class nIntVector: public BaseIntArray
{
int n; // length of vector

public:

nIntVector() : BaseIntArray(),n(0){}

nIntVector(int len)
BaseIntArray(len),n(len){}

nIntVector(int len, int val)
BaseIntArray(len,val),n(len){}

nIntVector(int len, int* val)
BaseIntArray(len,val),n(len){}

nIntVector(const nIntVector& v)
BaseIntArray(v),n(v.n){}

// #*** operators:

nIntVector& operator=(const nIntVector& b);
nIntVector& setEqual(const nIntVector&); // operator= with index check

operator nVector(); // converts to nVector object
int getLen() const { return n;} // returns length of vector

// subscript operators:

inline int& operator()(int);

inline int operator()(int) const;

inline int& el (int i) { detachIfMultiples(); return p->v[i];}
inline int el (int i) comst { return p->v[il;}

void indexRangeCheck (int min, int max, char* errtext) const;
BooLean duplicateCheck ();

BooLean redim(int);

// *** concatenation and extraction:

nIntVector concat (const nIntVector&) const;
nIntVector concat (int) const;

nIntVector subvector(const nIntVector&) const;
nIntVector subvector(int from, int to) const;

nIntVector excl(const nIntVector& ind) const;
// extracts vector excluding elements with indices ind

void setSubvector(int from, int to, const nIntVector&) const;
// #** minimum, maximum and summary measures:
int maxval() const { return BaselntArray::maxval(); }

int minval() const { return BaselntArray::minval(); }

16

int sum() const { return BaseIntArray::sum(); }
// #** input and output:

void scan(Is is);
void print(0s os) const;

friend Is& operator>>(Is& istr,nIntVector& a);
friend 0s& operator<<(0s& ostr,const nIntVector& a);

KEYWORDS

index vector, integer vector, vector

DESCRIPTION

The class implements an integer vector, represented by an array with first index one. Index
vectors are typical objects of this class.

Included are routines for input and output, subscripting, and editing of vectors.

The class is derived from class BaseIntArray.

CONSTRUCTORS AND INITTIALIZATION

The class has five constructors, including a copy constructor and a default constructor not
allocating any memory. The three other constructors all take the length of the vector as
argument.

By default, all elements of the vector are initialized to zero. Other values might be specified
by an additional integer argument (all values equal) or a pointer to an ordinary base 0
C-array of integer values.

MEMBER FUNCTIONS

Many functions are self explanatory, and the intended use and function of member functions
not further documented, should be clear from the class declaration.

Subscripting:
The class has two pairs of subscript functions, each pair consisting of functions for const

and non-const objects. The overloaded operator () performs index checking, while the
member functions named el do not.

Input and output:

The functions for input and output of the contents of the vector, scan, print, and the
overloaded operators >> and <<, all use the classes Is and Os instead of the standard
istreamand ostream classes. These classes, implemented in Diffpack, offer more flexibility,
in that they provide a general interface to several sources of input and output. The following
calls to scan (and similar calls to print) are all legal:

scan(cin);
ifstream infile("input.file",ios::in); scan(infile);

scan("FILE=input.file");

17

This is obtained by automatic conversion from the standard input/output sources to Is/0s.

operator nVector() - user defined conversion operator converting an integer vector to
a double vector. Note that in functions using reference arguments, nVector&, automatic
type conversion is not allowed because a temporary argument (nVector(nIntVector)) is
created, and changes done on this object within the function will not be visible outside.

No arithmetic operations are implemented for the integer vector. If such operations are
needed, the integer vector should be treated as a double vector.

concat - overloaded function returning a vector equal to the concatenation of the vector
with another vector or a single integer value. The function leaves the object unchanged.

duplicateCheck - removes duplicate values, overwrites the object with the integer vector
without duplicates, keeping the first instance of duplicate value elements, and returns
dpTRUE if one or more duplicates are found.

excl - returns the subvector corresponding to the vector for which the member
function is invoked, excluding elements with indices indicated by the nIntVector reference
argument.

indexRangeCheck - returns dpTRUE if the integer arguments to the function are within
the index range of the nIntVector object. The char* argument is a string specifying the
name of the function from which the member function is invoked.

redim - If the integer argument equals the old length, the function leaves the vector
unchanged, and returns dpFALSE. If not, the vector object is redimensioned, the element
values set to zero, and dpTRUE is returned.

setSubvector - replaces the elements of the subvector with indices in the interval [from,to],
by the elements of the nIntVector object entered as argument to the function.

subvector - overloded function returning the subvector corresponding to the indices in-
dicated by the nIntVector reference argument or in the range [from,to] (including the
endpoints). The function leaves the object unchanged.

FILES

vector.C

EXAMPLE

See class nVector.

SEEALSO

class BaselntArray, class nVector

AUTHOR

Jon Helgeland and Turid Follestad, NR

18

2.4 Double matrices

2.4.1 nMatrix

NAME

nMatrix - a class for rectangular double matrices

INCLUDE

include "matrix.h"

SYNTAX

class nMatrix: public BaseArray

{

protected:
int m; // no. of rows
int n; // no. of columns

public:
nMatrix() : BaseArray(),m(0),n(0) {}
nMatrix(int rdim, int cdim);
nMatrix(int rdim, int cdim, BASE value);
nMatrix(const nMatrix& a);

nMatrix(char* filename, int rdim, int cdim, BooLean numbcheck=dpTRUE);
virtual String typeId() const { return "nMatrix"; }
// *** operators:

nMatrix& operator=(const nMatrix&);

nMatrix& operator=(const SymMatrix&);

nMatrix& operator=(const TriangMatrix&);

nMatrix& setEqual (const nMatrix&); // operator= with index check

virtual BooLean operator==(const nMatrix&) const;

// subscripting:
virtual double& operator() (int,int);
virtual double operator()(int,int) const;

virtual double& el (int i, int j)
{ detachIfMultiples(); return p->v[(i-1)*n+j];}
virtual double el (int i, int j) const { return p->v[(i-1)#*n+j];}

// arithmetic operations, overwrites the current object:
virtual nMatrix& operator+=(const nMatrix&);
virtual nMatrix& operator-=(const nMatrix&);
virtual nMatrix& operator*=(const nMatrix&);

int getRdim() const {return m;} // returns number of rows
int getCdim() const {return n;} // returns number of columns

virtual BooLean redim(int i, int j);

double normE() const; // Euclidean norm of elements
// (square root of sum of squares)
nVector diag() const; // returns diagonal

19

// *** conversion:

virtual nMatrix rectangular() const { return *this;}
operator nVector() const; // converts column vectors to type nVector

BooLean isSymmetric() const;
BooLean isLowTriangular() const;

nVector asVector() const; // returns m x 1 or 1 x n matrix as vector
SymMatrix asSymMatrix() const; // returns symmetric matrix
TriangMatrix asTriangMatrix() const; // returns lower triangular matrix

// *** special matrix multiplications, A=(#this):

virtual SymMatrix multAtA() const; // A’A, returns symmetric matrix
SymMatrix multAAt() const; // AA’, returns symmetric matrix
nMatrix mAAt() const; // AA°
nMatrix mAtA() const; // A’A
nMatrix multAB(const nMatrix& B) const; // AB

nMatrix multAtB(const nMatrix& B) const; // A’B
nMatrix multABt(const nMatrix& B) const; // AB’
nMatrix multAtBA(const nMatrix& B) const; // A’BA
nMatrix multABAt(const nMatrix& B) const; // ABA’

// *** get two-dimensional C-array representation:

double** ptr2dBasel (); // base 1, returns pointer to array of pointers
double** ptr2dBase0 (); // base 0O, returns pointer to array of pointers

// *** extract and insert rows, columns and submatrices:

virtual nVector row(int i) const; // returns row number i
virtual nVector col(int j) const; // returns column number j

// set rows of current object:
virtual void setRow(int i, const nVector& r); // sets row i to r
virtual void setCol(int j, const nVector& c); // sets column j to ¢

void setSubmatrix(const nIntVector&, const nIntVector&, const nMatrix&);
void setSubmatrix(int ril,int cl,const nMatrix&);

nMatrix rowConc(const nMatrix&) const; // stacks matrices
nMatrix colConc(const nMatrix&) const; // matrices side by side

// extract submatrix:

nMatrix submatrix(const nIntVector&, const nIntVector&) const;
nMatrix submatrix(int r1, int r2, int cl, int c2) const;
nMatrix submatrix(const nIntVector&, int cl, int c2) const;
nMatrix submatrix(int r1, int r2, const nIntVector&) const;

nMatrix rowExcl(const nIntVector&) const;
nMatrix colExcl(const nIntVector&) const;

// *** columnwise and rowwise operations:

nVector colSum() const;

nVector rowSum() const;

nVector colMean() const;

nVector rowMean() const;

nVector colSs() const; // column sum of squares
nVector rowSs() const; // row sum of squares

nMatrix rowAdd(const nVector& v) const; // add v to each row

20

nMatrix colAdd(const nVector& v) const; // add v to each column

nMatrix rowSub(const nVector& v) const; // subtract v from each row
nMatrix colSub(const nVector& v) const; // subtract v from each column

nMatrix rowMult(const nVector& v) const; // elementwise mult., each row
nMatrix colMult(const nVector& v) const; // elementwise mult., each column

nMatrix rowDiv(const nVector& v) const; // elementwise div., each row
nMatrix colDiv(const nVector& v) const; // elementwise div., each column

// *** elementwise operations:

nMatrix elMult(const nMatrix&) const; // elementwise multiplication
void elop (double (*pf)(double));
// operates on each element of the current object with given
// function pointer

// #** minimum, maximum and summary measures:

double maxval() const { return BaseArray::maxval(); }
double minval() const { return BaseArray::minval(); }
double sum() const { return BaseArray::sum(); }
double mean() const { return BaseArray::mean(); }
virtual double ss() const; // sum of squares
virtual double var() const; // variance

// #*** transpose:

virtual void mtotransp(); // overwrites the current object
virtual nMatrix transp() const;

virtual int rank() const; // rank of matrix
// #** determinant and trace, matrix square:

BooLean isQuadratic() comnst; // returns dpTRUE if matrix is square
virtual double det() const; // determinant, if matrix is square
double trace() const; // sum of digonal elements, if matrix is square

// *** decomposition and inverse of matrix, matrix square:

virtual BooLean mtodecomp(double& d1, int& d2, nIntVector& piv,
BooLean eflag=dpTRUE);
// LU-decomposition, returns determinant and overwrites
virtual void mtoinv(); // overwrites with inverse

virtual nMatrix decomp(double& di, int& d2, nIntVector& piv) const;
// LU-decomposition, returns determinant

virtual nMatrix inv() const; // inverse

virtual nMatrix geninv() const; // generalized inverse

// **x solution of AX = B:

virtual void solve(nMatrix& B);

// LU-decomposition of A and solution of A=XB
void solveLU(nMatrix& B, const nIntVector& piv) const;

// assumes (*this) is the LU-decomposition of A

// **x singular value decomposition:
nVector singVal() const; // singular values
Svd svd() const; // sing.val.decomp: A=Uxdiag(l)*transp(V)

Svd svdStrip() const; // sing.val.decomp, excluding negative singular
// values

21

// #** input and output:

virtual void scan(Is is);
virtual void print(0s os) const;

friend Is& operator>>(Is& istr,nMatrix& a);
friend 0s& operator<<(0s& ostr,const nMatrix& a);

// *** matrix multiplication:
friend nMatrix operator*(const nMatrix& a,const nMatrix& b);

// #** friend classes:
friend class nVector;
friend class TriangMatrix;
friend class SymMatrix;

};
// *** arithmetic operations on matrices:

nMatrix operator+(const nMatrix& a,const nMatrix& b);
nMatrix operator-(const nMatrix& a,const nMatrix& b);
nMatrix operator*(BASE a,const nMatrix& b);
nMatrix operator*(const nMatrix& a,BASE b);
nMatrix operator/(const nMatrix& a,BASE b);

// #x* deletion of two-dimension arrays representing matrices:

void delPtr2dBasel (double** arr, int m);
void delPtr2dBase0 (double** arr, int m);

KEYWORDS

double matrix, matrix, rectangular matrix, square matrix

DESCRIPTION

The class implements a rectangular double matrix, with first indices one. The class has
several member functions implemeting common operations on matrices, such as subscript-
ing, arithmetic operations, inversion and decomposition, as well as functions for editing
data matrices and input and output of the contents of a matrix.

The class is derived from class BaseArray, a common base class for vectors and matrices,
and the matrix elements are stored in a one-dimensional array, row by row.

If a class nMatrix object is to be used as input to a FORTRAN subroutine, the member
function ptrBase0 inherited from BaseArray could be used to get the C-array representa-
tion. Note that since the matrix is stored row by row, in contradiction to what is expected
by a FORTRAN subroutine, the function ptrBase0 should be applied to the transpose of
the matrix.

CONSTRUCTORS AND INITTIALIZATION

The class has five public constructors, including a default constructor not allocating any
memory, and a copy constructor.

The constructors take the row and column dimensions of the matrix as argument. By
default, all elements of the matrix are initialized to zero. Other values might be specified
by an argument of type BASE (all values equal), where BASE equals double in this revision.

22

One constructor reads the contents of the matrix from a file named filename. If the last
argument, numbcheck, equals dpTRUE, the number of elements on the file is counted, and
an error message is issued if this number not equals rdim*cdim.

Using the default constructor impiles that the row and column dimensions are set to zero.

MEMBER FUNCTIONS

Many functions are self explanatory, and the intended use and function of member functions
not further documented, should be clear from the class declaration.

General remarks:

For some matrix operations, two member functions are implemented. Functions with names
beginning with mto (move to) overwrites the object for which the member function is
invoked, while the corresponding function with no prefix creates a new nMatrix object,
leaving the current object unchanged.

Subscripting:

The class has two pairs of subscript functions, each pair consisting of functions for const
and non-const objects. The overloaded operator () performs index checking, while the
member functions named el do not.

Input and output:

The functions for input and output of the matrix, scan, print, and the overloaded op-
erators >> and <<, all use the classes Is and Os instead of the standard istream and
ostream classes. These classes, implemented in Diffpack, offer more flexibility, in that they
provide a general interface to several sources of input and output. The following calls to
scan (and similar calls to print) are all legal:

scan(cin);
ifstream infile("input.file",ios::in); scan(infile);
scan("FILE=input.file");

This is obtained by automatic conversion from the standard sources to Is/0Os.

asSymMatrix - returns a symmetric matrix as a SymMatrix object. If the matrix is not
symmetric, the SymMatrix object is created from the lower triangular part of the matrix,
and a warning message is issued.

asTriangMatrix - returns a lower triangular matrix as a TriangMatrix object. If the
matrix is not lower triangular, the lower triangular part is extracted, and a warning message
is issued.

asVector - returns am by 1 or 1 by n matrix as a nVector object with length m or n
respectively.

colExcl - extracts the columns indicated by the nIntVector reference argument, return-
ing the matrix made up by the remaining columns.

decomp - performs the same operation as mtodecomp, but a new matrix holding the
decomposition is created, and the function leaves the object for which the member function
is called, unchanged.

elop - performs on each element the operation indicated by the function pointer.
The function overwrites the object for which it is called. The argument is a pointer to a
function of double returning double.

23

inv - virtual function computing the inverse of a square matrix, by calling the member
function mtoinv for a copy of the object. The inverse is returned as a class nMatrix object
even if inv is called for an object of a derived class, implying that care should be taken
when calling this member function for a derived class object.

mtodecomp - virtual function that overwrites the object with a decomposition of the matrix.
The type of decomposition depends on the subclass for which the function is called. The
default, implemented for class nMatrix, is the LU-decomposition A=LU for a square matrix
A. L is stored in the lower triangular part of the object, and U, a unit diagonal, upper
triangular matrix, in the upper triangular part of the object, ommitting the diagonal.

The pivot vector piv keeps the interchanges made to the rows of A, such that the i-th row
and the piv(i)-th row were interchanged at the i-th step.

The member function is intended for use together with solveLU, when an equation system
AX=B is to be solved for the same matrix A, but different right hand sides B.

The procedure will fail if the matrix is singular or almost singular when the eflag given is
dpTRUE. If an eflag parameter of dpFALSE is given, the procedure will return dpTRUE
if it succeded, and dpFALSE if it failed.

The determinant of A can be computed from the double (d1) and integer (d2) reference
arguments as det = d1*2°d2

The function is adapted from the procedure unsymdet in J.H.Wilkinson and C.Reinsch:
”Linear Algebra”, Springer Verlag, Berlin Heidelberg New York, 1971, pp. 99-100.

operator nVector() - user-defined conversion operator converting a n x 1 matrix to a dou-
ble vector of length n. Note that in functions using reference arguments, nVector&, auto-
matic type conversion is not allowed because a temporary argument (nVector (nMatrix))
is created, and changes done on this object within the function will not be visible outside.
A warning will be issued in such cases.

ptr2dBase0l - returns the representation of the array as a pointer to a double C-array of
pointers, with first index zero. If other objects share the same representation, the object
is detached from the shared representation. The function is useful for sending an object of
a class in the BaseArray hierarchy to a C-function requiring a two-dimensional array.

ptr2dBasel - similar to ptrBase0, except that the first indices of the arrays pointed to
are one.

rectangular - virtual function that transforms the object to a rectangular matrix, of type
class nMatrix. This function is needed in classes derived from nMatrix, since the data
representations of the derived classes TriangMatrix and SymMatrix are not the same as
for nMatrix.

redim - If the integer arguments equal the old dimensions, the function leaves the matrix
unchanged, and returns dpFALSE. If not, the matrix object is redimensioned, the element
values set to zero, and dpTRUE is returned.

rowExcl - function extracting the rows indicated by the nIntVector reference argument,
returning the matrix made up by the remaining rows.

solve - virtual function that finds the solution of the equation system AX=B. The
member function mtodecomp is called, computing the LU-decomposition of the square
matrix A. The input to the function is p right hand sides, stored in the n x p matrix B. The
nMatrix reference argument is overwritten by the n x p solution matrix X. If the equation
system is to be solved for several different matrices B, the member funtions mtodecomp and
solveLU should be used, decomposing the square matrix A only once, and calling solveLU
for each B. The current object is overwritten by the LU-decomposition.

solveLU - function that finds the solution of the equation system AX=B for a square
matrix A. It is assumed that mtodecomp is called on beforehand, so that the object holds

24

the LU-decomposition of the square matrix A. The input to the function is p right hand
sides, stored in the n x p matrix B, and the pivot vector returned from the decomposition
as computed by mtodecomp. The nMatrix reference argument is overwritten by the n x p
solution matrix X.

setSubmatrix - overloaded function that sets the element values of a submatrix of the
nMatrix object. The submatrix is specified either by two nIntVector reference arguments,
that is expected to contain the p row- and q column indices of the elements to be replaced,
or by the starting points r1 and c1 of two index intervals.

The elements are replaced by the elements of the nMatrix object entered as argument to
the function.

singVal - returns a vector holding the singular values of the matrix.

submatrix - overloaded function extracting a submatrix of the nMatrix object. The func-
tion parameters indicates the row an column indices of the elements that are to be ex-
tracted, beginning with the row indices. The indices might be specified by an index vector,
represented by the nIntVector reference argument, or alternatively by two integer values
specifying the endpoints of an index interval.

svd - performs a singular value decomposition of the matrix, and returns the result
in an object of type class Svd.

svdStrip - performs a singular value decomposition of the matrix, excludes singluar values
less than zero, and returns the result in an object of type class Svd.

transp - virtual function computing the transpose of a matrix, by calling the member
function mtotransp for a copy of the object. The transpose is returned as a class nMatrix
object even if transp is called for an object of a derived class, implying that care should
be taken when calling this member function for a derived class object.

FILES

matrix.C, matrix_svd.C

EXAMPLE

#include <matrix.h>
#include <stdlib.h>

main(int argc, char* argv[])

{
//-—-=—==-—- Solution of equation system Y = XB:
int m=atoi(argv[1]); // number of rows
int n=atoi(argv[2]); // number of columns

nMatrix X(m,n);
X.scan("FILE=input.filel");

nMatrix Y("Y.dat",m,1); // checking no. of values on file
double di;

int d2;

nIntVector piv;

// LU-decomposition:

X.mtodecomp(dl,d2,piv);

25

cout << "Determinant: " << dil*pow(2,d2) << "\n";
// solution of X*B = Y:

X.solveLU(Y,piv);

cout << "Solution:\n" << Y;

// ——-————-= arithmetic operations

nMatrix M1(X); // copy comnstructor, Mi=X

nMatrix M2(m,n);
M2.scan("FILE=input.file2");

nMatrix M3 = M1+M2; // matrix addition

M3 .mtotransp(); // overwrite with transpose

nMatrix M4 = M3*Mi; // matrix multiplication

/] ———————=- elementwise operations:

M2.elop(&sqrt); // overwrites each element by its square root
/] - extracting submatrix/concatenation:

int p=n/2;

nIntVector indvec(p);

for (int i=1;i<=p;i++)
indvec(i) = 2*i;

// extract every second column of M2 (column 2,4,6,...,n (or n-1)):
nMatrix M5 = M2.submatrix(1,m,indvec);

cout << "submatrix:\n";
cout << M5;

// concatenate M2 and 2%M2:

M5 = M2.colConc(2%M2); // column concatenation (M2 | (2%M2))
// operator=: no dimension check

cout << '"\nConcatenation: " << M5;

SEEALSO

class BaseArray, class Svd, class nVector

AUTHOR

Jon Helgeland, Magne Aldrin and Turid Follestad, NR

26

2.4.2 SymMatrix

NAME

SymMatrix - a class for symmetric double matrices

INCLUDE

include "matrix.h"

SYNTAX

class SymMatrix: public nMatrix
{
public:
SymMatrix()
nMatrix()
{3
SymMatrix(int dim);
SymMatrix(const SymMatrix& S)
nMatrix(S.m*(S.m+1)/2,8)
{m = n = 8.m;}

SymMatrix(char* filename, int dim, BooLean numbcheck=dpTRUE) ;

SymMatrix& operator=(const SymMatrix&);
SymMatrix& setEqual(const SymMatrix&); // operator= with index check

BooLean operator==(const SymMatrix& m) const
{ return nMatrix::operator==(m);}

String typeId() const { return "SymMatrix"; }
// *** subscript operators:

double& operator() (int,int);
double operator() (int,int) const;

double& el (int i, int j)
{ detachIfMultiples();
return (i > j) 7 p->v[(i-1)*i/2+j] : p->v[(j-1)*j/2+il; }
double el (int i, int j) conmst
{ return (i > j) ? p->v[(i-D)*i/2+j] : p->v[(j-1)*j/2+i]l; }

nMatrix rectangular() const; // converts symmetric matrix to square matrix

SymMatrix& operator+=(const SymMatrix&);
SymMatrix& operator-=(const SymMatrix&);

// *xx § +=(-=) (#=) A (class nMatrix) illegal

nMatrix& operator*=(const nMatrix&)
{ errorFP("SymMatrix: :operator*=(const nMatrix&)",
"Illegal operation! Returns *this.\n"); return *this;}
nMatrix& operator+=(const nMatrix&)
{ errorFP("SymMatrix: :operator+=(const nMatrix&)",
"Illegal operation! Returns *this.\n"); return *this;}
nMatrix& operator-=(const nMatrix&)
{ errorFP("SymMatrix: :operator-=(const nMatrix&)",
"Illegal operation! Returns *this.\n"); return *this;}

double sum() const; // sum of elements

27

double ss() const; // sum of squares

// *** extract row and column:

nVector row(int i) const; // returns row i
nVector col(int j) const; // returns column j
SymMatrix mPow(double p) const; // matrix power

int rank() const;

void mtotransp() const {} // overwrites with transpose
void mtoinv(); // overwrites with inverse

BooLean mtodecomp(BooLean eflag=dpTRUE) ;

// overwrites with Cholesky decomposition
void mtosemidecomp(nIntVector& piv);

// overwrites with modified Cholesky decomposition
BooLean mtoreversedecomp(BooLean eflag=dpTRUE);

// overwrites with reverse Cholesky decomposition
SymMatrix semidecomp(nIntVector& piv) const;

// modified Cholesky decomposition

// *** solutions of SX = B:

void solve(nMatrix& B); // solves SX=B
void solveSemi(nMatrix& B); // solves SX=B, S almost singular
void solveLL(nMatrix& B) const;
// assumes that mtodecomp has been called
void solveLL(nMatrix& B, const nIntVector& piv) const;
// assumes that mtosemidecomp has been called

SymMatrix symtransp() const {return *this;}
SymMatrix syminv() const; // returns inverse

SymMatrix gensyminv() const; // returns generalized inverse

// **x eigenvectors and eigenvalues

nVector eigVal() const; // eigenvalues
Eigen eigen() const; // eigenvalues and eigenvectors
Eigen eigenStrip() const; // eigenvalues and eigenvectors

// stripped for eigenvalues appr.=0
Eigen eigenPos() const; // eigenvalues and eigenvectors

// stripped for eigenvalues <= 0
// *x* friend class:

friend class nMatrix;

};
// *** aritmetic operations:

SymMatrix operator+(const SymMatrix& a,const SymMatrix& b);
SymMatrix operator-(const SymMatrix& a,const SymMatrix& b);
SymMatrix operator*(BASE a,const SymMatrix& b);
SymMatrix operator*(const SymMatrix& a,BASE b);

nMatrix operator*(const SymMatrix& a,const nMatrix& b);

nMatrix operator+(const SymMatrix& a,const nMatrix& b);

nMatrix operator-(const SymMatrix& a,const nMatrix& b);

SymMatrix identity(int n); // returns the identity matrix I_n
// *** Cholesky factor:

TriangMatrix cholFactor(const SymMatrix&); // Cholesky decomposition
TriangMatrix cholFactorSemi(const SymMatrix&, nIntVector& piv);

// Cholesky decomposition
// for semidefinite matrices

28

KEYWORDS

double matrix, matrix, symmetric matrix

DESCRIPTION

The class implements a symmetric double matrix, with first indices one. The class differs
from its base class nMatrix in that only the diagonal and below diagonal elements of a
SymMatrix object are stored. A SymMatrix object might be transformed to a nMatrix
object by the member function rectangular.

CONSTRUCTORS AND INITTIALIZATION

The class has four constructors: a copy constructor, a default constructor not allocating
any memory, a constructor taking an integer argument specifying the number of rows (and
columns) of the symmetric matrix, and a constructor reading the contents of the matrix
from a file named filename. If the last argument of this constructor, numbcheck, equals
dpTRUE, the number of elements on the file is counted, and an error message is issued if
this number not equals rdim*cdim.

Using the default constructor impiles that the row and column dimensions are set to zero.

MEMBER FUNCTIONS

Many functions are self explanatory, and the intended use and function of member functions
not further documented, should be clear from the class declaration.

General remarks:

Note that several of the member functions of the base class nMatrix returns class nMatrix
objects. This applies to some virtual functions as well, a fact that might be undesirable in
some cases. For member functions where a SymMatrix return value is wanted, a function
with a different name than the base class virtual function is implemented. This applies to
the functions syminv and symtransp. So when a SymMatrix return type is desired, the
virtual mechanism should be avoided, and the alternative name functions used.

Subscripting:
The class has two pairs of subscript functions, each pair consisting of functions for const

and non-const objects. The overloaded operator () performs index checking, while the
member functions named el do not.

decomp - performs the same operation as mtodecomp, but a new matrix holding the
Cholesky decomposition is created, and the object for which the member function is called,
is left unchanged.

eigen - returns the eigenvalues and eigenvectors of the matrix as an object of type
Eigen. The computations of eigenvalues and eigenvectors are based on routines adapted
from Press, Flannery, Teukolsky and Vetterling: ”Numerical Recipes in C”, Cambridge
University Press, 1988.

eigenPos - computes eigenvalues and eigenvectors, removing negative eigenvalues and the
corresponding eigenvectors from the Eigen object that is returned.

eigenStrip - computes eigenvalues and eigenvectors, removing eigenvalues approximately
equal to zero and the corresponding eigenvectors from the Eigen object that is returned.

29

eigVal - computes the m eigenvalues of the matrix, returning the values as a vector of
length m.

mtodecomp - overwrites the object with the Cholesky decomposition, S = L¥Lt, where Lt
is the transpose of L, so that the lower triangular matrix L is stored in the lower triangular
part of the matrix.

It is assumed that the matrix is positive definite. The procedure will fail if the matrix
is not positive definite or almost singular when the eflag given is dpTRUE. If an eflag
parameter of dpFALSE is given, the procedure will return dpTRUE if it succeded, and
dpFALSE if it failed.

mtoreversedecomp - overwrites the object with the reverse Cholesky factor L, computed
from S=Lt*L. The lower triangular matrix L is stored in the lower triangular part of the
object. It is assumed that the matrix is positive definite.

mtosemidecomp - overwrites the object with a modified Cholesky decomposition, Pt*S*P
+ E = L*Lt, of an by n symmetric matrix S. Here, P is a permutation matrix made up from
the pivot vector piv from the decomposition, by

P(i,piv(i)) = 1.0 for all i in [1,n],

and

P(i,j) = 0.0 elsewhere.

This decomposition is intended for use when the symmetric matrix is expected to be almost
singular, or approximately semidefinite. At each step, an amount (E(i,1)) is added to the
diagonal if an ordinary Cholesky update would result in a negative value of the diagonal
element. The lower triangular Cholesky factor L is stored in the lower triangular part of
the matrix, and the pivots are returned by the nIntVector reference argument.

The member function is intended for use together with solveLL, when an equation system
SX=B is to be solved for the same matrix S, but different right hand sides B.

The function is based on the public domain FORTRAN routine modchl implemented by
Elizabeth Eskow and Robert B. Schnabel, obtained from NetLib.

rectangular - function that transforms a SymMatrix object to a rectangular matrix, of
type class nMatrix. This function is needed because the representation of symmetric and
rectangular matrices are not the same.

semidecomp - performs the same operation as mtosemidecomp, but creates a new matrix
holding the modified Cholesky decomposition and leaves the object for which the member
function is called, unchanged. The pivot vector from the decomposition is returned by the
nIntVector reference argument.

solve - function that finds the solution of the equation system SX=B for a positive
definite symmetric matrix S. The member function mtodecomp is called, computing the
Cholesky-decomposition S=LLt of S. The input to the function is p right hand sides, stored
in the n x p matrix B. The nMatrix reference argument is overwritten by the n x p solution
matrix X. If the equation system is to be solved for several different matrices B, the member
funtions mtodecomp and solveLL should be used, decomposing the symmetric matrix S
only once, and calling solveLL for each B.

It is assumed that the matrix is positive definite. The current object is overwritten by the
Cholesky-decomposition.

solveSemi - function that finds the solution of the equation system SX=B for an almost sin-
gular, or positive semidefinite symmetric matrix S. The member function mtosemidecomp
is called, computing the modified Cholesky-decomposition PtSP + E =LLt of S. The input

30

to the function is p right hand sides, stored in the n x p matrix B. The nMatrix reference
argument is overwritten by the n x p solution matrix X. If the equation system is to be
solved for several different matrices B, the member funtions mtosemidecomp and solveLL
should be used, decomposing the symmetric matrix S only once, and calling solveLL for
each B.

solveLL - overloaded function that finds the solution of the equation system SX=B. It is
assumed that mtodecomp or mtosemidecomp is called on beforehand, so that the object for
which this member function is called, holds the Cholesky decomposition S=LLt, or PSPt =
LLt in the semidefinite case, of the n x n matrix S. The input to the function is p right
hand sides, stored in the n x p matrix B, and, if mtosemidecomp is called, the pivot vector
returned from that function. The nMatrix reference argument is overwritten by the n x p
solution matrix X.

syminv - returns the inverse of a positive definite symmetric matrix, leaving the object
unchanged. The inverse is computed using the Cholesky decomposition of the symmetric
matrix. The function is introduced because calling the member function inv inherited
from class nMatrix, results in returning a class nMatrix and not SymMatrix object.

The member function inv should be used if the matrix is not positive definite.

symtransp - returns the transpose of the symmetric matrix, leaving the object unchanged.
The function is introduced because calling the member function transp inherited from
class nMatrix, results in returning a class nMatrix and not SymMatrix object.

gensyminv - returns the generalized inverse of the symmetric matrix, leaving the object un-
changed. The function is introduced because calling the member function geninv inherited
from class nMatrix, results in returning a class nMatrix and not SymMatrix object.

GLOBAL FUNCTIONS

cholFactor - computes the Cholesky factor L of the symmetric matrix S entered as argu-
ment to the function, so that S=LLt. It is assumed that the symmetric matrix is positive
definite. If the matrix is almost singular, the function cholFactorSemi could be used.

cholFactorSemi - computes the Cholesky factor L for a semidefinite or almost singular
symmetric matrix, S. The function has two arguments, a SymMatrix holding the matrix
to be decomposed, and an nIntVector reference argument, returning the pivot vector
piv from the decomposition. If P is the permutation matrix with ones at the elements
(i,piv(i)) and zeros elsewhere, the decomposistion can be written PtSP+E=LL%.

The decomposition is done by a call to the member function mtosemidecomp of class
SymMatrix.

FILES

spec_matr.C, matrix_eigen.C

EXAMPLE

// Decomposition of an almost singular matrix
#include <matrix.h>
#include <stdlib.h>

main(int argc, char* argv[])

{
int n = atoi(argv[1]l);

31

SymMatrix S1(n);
S1.scan("FILE=input.file");

SymMatrix S2(S1); // copy constructor
nIntVector piv;
S2.mtosemidecomp(piv); // modified Cholesky decomposition

nMatrix Y(n,1); // response variables

Y.scan("FILE=response.dat");
S2.solveLL(Y,piv); // solves S2*%X = Y; Y overwritten by X

cout << "Solution\n:";
Y.print(cout);

SEEALSO

class Eigen, class nMatrix, class TriangMatrix, class nVector

AUTHOR

Jon Helgeland, Magne Aldrin and Turid Follestad, NR

32

2.4.3 TriangMatrix

NAME

TriangMatrix - a class for lower triangular double matrices

INCLUDE

include "matrix.h"

SYNTAX

class TriangMatrix: public nMatrix
{
public:
TriangMatrix()
nMatrix()
{2
TriangMatrix(int dim);
TriangMatrix(const TriangMatrix& T)
nMatrix(T.m*(T.m+1)/2,T)
{m =n=T.m;}
TriangMatrix(const SymMatrix& S) // extracts lower triangle of §
nMatrix(S.getRdim() *(S.getRdim()+1)/2,8)
{m = n = S.getRdim();}
TriangMatrix(char* filename, int dim, BooLean numbcheck=dpTRUE) ;

TriangMatrix& operator=(const TriangMatrix&);
TriangMatrix& setEqual(const TriangMatrix&); // operator= with index check

BooLean operator==(const TriangMatrix& m) const
{ return nMatrix::operator==(m);}

String typeId() const { return "TriangMatrix"; }
nMatrix rectangular() const; // converts triangular matrix to square matrix

// special inner products:
long double innerColCol(int,int,int,
const nMatrix&,int,long double = 0.0) const;
long double innerRowCol(int,int,int,int,long double = 0.0) const;
// inner product of row and column
long double innerColCol(int,int,int,int,long double = 0.0) const;
// inner product of column and column

// *** subscript operators:

double& operator() (int,int);
double operator() (int,int) const;
double& el (int i, int j)
{ detachIfMultiples();
return (i > j) 7 p->v[(i-1)*i/2+j] : zero;}
double el (int i, int j) conmst
{ return (i > j) ? p->v[(i-1)*i/2+j] : zero;}

// *** arithmetic operations:

TriangMatrix& operator+=(const TriangMatrix&); // overwrites current object
TriangMatrix& operator-=(const TriangMatrix&); // overwrites current object

// *** Illegal operations, functions inherited from class nMatrix:

nMatrix& operator*=(const nMatrix&)

{ errorFP("TriangMatrix::operator*=(const nMatrix&)",
"Illegal operation! Returns *this.\n"); return *this;}

nMatrix& operator+=(const nMatrix&)

{ errorFP("TriangMatrix::operator+=(const nMatrix&)",
"Illegal operation! Returns *this.\n"); return *this;}

nMatrix& operator-=(const nMatrix&)

{ errorFP("TriangMatrix::operator-=(const nMatrix&)",
"Illegal operation! Returns *this.\n"); return *this;}

// *** extract or reset row and column:

nVector row(int i) const;
nVector col(int j) const;

// set rows of current object:
void setRow(int i, const nVector& r);
void setCol(int j, const nVector& c);

double det() const;

void mtoinv();
TriangMatrix trianginv() const;

void solve(nMatrix& B) const;
void transpSolve(nMatrix& B) const;

SymMatrix multAtA() const;
// *** friend class:

friend class nMatrix;

};

// *** arithmetic operations:

TriangMatrix operator+(const TriangMatrix&

1/
1/

1/

//

1/

//

1/

//

1/

returns row i
returns column j

sets rows i to r
sets column j to c
returns determinant

overwrites with inverse
returns inverse

solves LX=B
solves L’X=B

returns A’A

a,const TriangMatrix& b);
TriangMatrix operator-(const TriangMatrix& a,const TriangMatrix& b);
TriangMatrix operator*(BASE a,const TriangMatrix& b); // BASE = double
TriangMatrix operator*(const TriangMatrix& a,BASE b); // BASE = double

nMatrix operator*(const TriangMatrix& a,const nMatrix& b);
nMatrix operator+(const TriangMatrix% a,const nMatrix& b);
nMatrix operator-(const TriangMatrix% a,const nMatrix& b);

KEYWORDS

double matrix, lower triangular matrix, matrix, triangular matrix, square matrix

DESCRIPTION

The class implements a lower triangular double matrix, with first indices one. The class
differs from its base class nMatrix in that only the diagonal and below diagonal elements of
the matrix are stored. A TriangMatrix object might be transformed to a nMatrix object

by the member function rectangular.

CONSTRUCTORS AND INITTIALIZATION

The class has five constructors, including a copy constructor and a default constructor. One
constructor takes an integer argument specifying the number of rows (and columns) of the
triangular matrix, one of the constructors extracts the lower triangular part of a symmetric
matrix, and the last one reads the contents of the matrix from a file named filename. If
the last argument of this constructor, numbcheck, equals dpTRUE, the number of elements
on the file is counted, and an error message is issued if this number not equals rdim*cdim.

By default, the row and column dimensions are set to zero, and no memory is allocated.

MEMBER FUNCTIONS

Many functions are self explanatory, and the intended use and function of member functions
not further documented, should be clear from the class declaration.

General remarks:

Note that several of the member functions of the base class nMatrix returns class nMatrix
objects. This applies to some virtual functions as well, a fact that might be undesirable
in some cases. For member functions where a TriangMatrix return value is wanted, a
function with a different name than the base class virtual function is implemented, as is
the case with the function trianginv. So when a TriangMatrix return type is desired,
the virtual mechanism should be avoided, and the alternative name function used.

Subscripting:

The class has two pairs of subscript functions, each pair consisting of functions for const
and non-const objects. The overloaded operator () performs index checking, while the
member functions named el do not.

rectangular - function that transforms a TriangMatrix object to a rectangular matrix,
of type class nMatrix. This function is needed because the representation of triangular
and rectangular matrices are not the same.

mtoinv - overwrites the object with the inverse of the triangular matrix.

trianginv - returns the inverse of the triangular matrix. The function is introduced
because calling the member function inv inherited from class nMatrix, results in returning
a class nMatrix and not TriangMatrix object.

solve - function that finds the solution of the equation system LX=B by foreward
substitution. The input to the function is p right hand sides, stored in the n x p matrix B.
The nMatrix reference argument is overwritten by the n x p solution matrix X.

transpSolve - function that finds the solution of the equation system LtX=B by backward
substitution. The input to the function is p right hand sides, stored in the n x p matrix B.
The nMatrix reference argument is overwritten by the n x p solution matrix X.

FILES

spec_matr.C

EXAMPLE

[sk sk s o R R R ok R K R R R ok s o R R R ok sk ko o o Kk ok sk KRk ok koK
/* Computation of a=y’inv(S)y, where S is a symmetric matrix, avoiding the */
/* direct computation of the inverse of S. */

35

/* */

/* Using the Cholesky decomposition S = LL’, a can be written as: */
/¥ a = ylinv(L’)inv(L)y = x’x, where x = inv(L)y */
/* */
/* a is computed by solving Lx=y, and computing the inner product x’x */

/***/

#include <stdlib.h>
#include <matrix.h>

main(int argc, char* argv[])

{
int n=atoi(argv[1]);
// read rom files, including counting the number of entries:
SymMatrix S('input.file',n); // symmetric matrix S
nMatrix y("Y.dat",n,1); // right hand side

TriangMatrix L = cholFactor(S); // Cholesky factor of S

L.solve(y); // solves Lx=y, using nMatrix and not nVector because
// of the nMatrix reference argument in function solve.
// y is overwritten by x

double a = 0.0;

for (int i=1;i<=n;i++)

at=y(i,1)*y(i,1);

cout << "Result:\t" << a << "\n";

SEEALSO

class nMatrix, class SymMatrix, class nVector

AUTHOR

Jon Helgeland and Turid Follestad, NR

36

2.5 Eigenvalues and singular values

2.5.1 Eigen

NAME

Eigen - a class containing eigenvalues and eigenvectors

INCLUDE

include "matrix.h"

SYNTAX

class Eigen
{
private:
nVector lambda; // eigenvalues
nMatrix Gamma; // eigenvectors
public:
Eigen(int m) : lambda(m), Gamma(m,m) {};
Eigen(const Eigen& d) : lambda(d.lambda), Gamma(d.Gamma) {};
Eigen() : lambda(), Gamma() {};

BooLean redim(int m);

nVector getLambda() const {return lambda;}
nMatrix getGamma() const {return Gamma;}

friend class SymMatrix;

KEYWORDS

eigenvalues, linear algebra, matrix, spectral theorem

DESCRIPTION

The class contains the eigenvalues and eigenvectors of a symmetric matrix, calculated by
the functions eigen, eigenPos or eigenStrip of class SymMatrix.

The relation between the symmetric matrix A and the eigenvalues lambda and the matrix
of eigenvectors Gamma is given by

A=Gamma*diag(lambda)*Gamma.transp().

CONSTRUCTORS AND INITTIALIZATION

The class has one constructor taking the number of eigenvalues, m, as input, a copy-
constructor, and a default constructor not allocating any memory.

37

MEMBER FUNCTIONS

The get-functions returns the data members.

redim - redimensions the members according to the new number of eigenvalues, m, if this
number is different from the old one, returning dpTRUE if redimensioning is done.

FILES

matrix_eigen.C

EXAMPLE

#include <matrix.h>

main()

{
int n=3;
SymMatrix A(n);

A(L,1)=1;
A(2,1)=2;
A(3,1)=3;

// computes eigenvalues and eigenvectors of A:
Eigen eig=A.eigen();

// prints eigenvalues and eigenvectors to standard output:
eig.getLambda() .print (cout);

cout << endl;

cout << endl;

eig.getGamma() .print(cout);

SEEALSO

class SymMatrix, class Svd

AUTHOR

Magne Aldrin, NR

38

2.5.2 Svd

NAME

Svd - a class containing the result of a singular value decomposition

INCLUDE

include "matrix.h"

SYNTAX

class Svd

{

private:
nMatrix U;
nMatrix 1;
nMatrix V;

public:
Svd(int m, int r, int n) : U(m,r), 1(r,1), V(n,r) {};
Svd(const Svd& d) : U(.U), 1(d.1), v(d.V) {};
Svd() : UO, 10, VO {3;
BooLean redim(int m, int r, int n);
nMatrix getU() const {return U;}
nMatrix getL() const {return 1;}

nMatrix getV() const {return V;}

friend class nMatrix;

KEYWORDS

linear algebra, matrix, singular values, singular value theorem

DESCRIPTION

The class contains the result of a singular value decomposition of a matrix, calculated by
the functions svd or svdStrip of class nMatrix.

The singular decomposition of the matrix 4 is given by

A=Uxdiag(1l)*V.transp().

CONSTRUCTORS AND INITIALIZATION
The class has one constructor taking the number of singular values, r, and the dimensions

of the matrix A, m and n, as input, a copy-constructor, and a default constructor not
allocating any memory.

39

MEMBER FUNCTIONS

The get-functions returns the data members.

redim - redimensions the members according to the new number of singular values, r,
and the new matrix dimensions m and n, if these values are different from the old ones,
returning dpTRUE if redimensioning is done.

FILES

matrix_svd.C

EXAMPLE

#include <matrix.h>

main()

{
int m=4, n=3;
nMatrix A(m,n);

A(L,1)=1;
A(2,1)=2;
A(3,1)=3;
A(4,1)=4;

// computes the singular value decomposition of A:
Svd svdA=A.svd();

// prints the singular value decomposition to standard output:
svdA.getL().print(cout);

cout << endl;

svdA.getU(Q) .print(cout);

cout << endl;

svdA.getV() .print(cout);

SEEALSO

class nMatrix, class Eigen

AUTHOR

Magne Aldrin, NR

40

2.6 Simple arrays of matrices

2.6.1 VecSimplest(nMatrix)

NAME

VecSimplest(nMatrix) - a very simple vector of matrices

INCLUDE

include "VecSimplest_nMatrix.h"

SYNTAX

#define Type nMatrix
#include <VecSimplest.h>
#undef Type

KEYWORDS

matrix, simple vector, vector

DESCRIPTION

VecSimplest(nMatrix) is a class implementing a very simple vector of nMatrix objects,
and is a specification of the parametric class VecSimplest (Type) in Diffpack, with param-
eter Type equal nMatrix.

The only operation available is subscripting, so that this class is suitable for storing vec-
tors of matrices not intended for use in numerical computations. The index base is 1.
Assignment operators and input and output routines are provided by the derived class
VecSimple(nMatrix).

See documentation of the parametric class VecSimplest(Type) implemented in Diffpack
for a description of the interface of the class.

SEEALSO

class VecSimplest(Type), class VecSimple(nMatrix)

41

2.6.2 VecSimple(nMatrix)

NAME

VecSimple(nMatrix) - a simple vector of matrices

INCLUDE

include "VecSimple_nMatrix.h"

SYNTAX

#define Type nMatrix
#include <VecSimple.h>
#undef Type

KEYWORDS

matrix, simple vector, vector

DESCRIPTION

VecSimple(nMatrix) is a class implementing a simple vector of nMatrix objects, and is a
specification of the parametric class VecSimple(Type) in Diffpack, with parameter Type
equal nMatrix.

The class is derived from class VecSimplest(nMatrix), and in addition to the inherited
member functions, functions performing assignment and input and output of the contents
of the array, are provided. The index base is 1.

See documentation of the parametric class VecSimple(Type) in Diffpack for a description
of the interface of the class.

SEEALSO

class VecSimple(Type), class VecSimplest(nMatrix)

42

2.6.3 VecSimplest(nIntVector)

NAME

VecSimplest(nIntVector) - a very simple vector of integer vectors

INCLUDE

include "VecSimplest_nIntVector.h"

SYNTAX

#define Type nIntVector
#include <VecSimplest.h>
#undef Type

KEYWORDS

vector, simple vector

DESCRIPTION

VecSimplest(nIntVector) is a class implementing a very simple vector of nIntVector
objects, and is a specification of the parametric class VecSimplest (Type) in Diffpack, with
parameter Type equal nIntVector.

The only operation available is subscripting. The index base is 1. Assignment operators
and input and output routines are provided by the derived class VecSimple(nIntVector).

See documentation of the parametric class VecSimplest(Type) implemented in Diffpack
for a description of the interface of the class.

SEEALSO

class VecSimplest(Type), class VecSimple(nIntVector)

43

2.6.4 VecSimple(nIntVector)

NAME

VecSimple(nIntVector) - a simple vector of integer vectors

INCLUDE

include "VecSimple_nIntVector.h"

SYNTAX

#define Type nIntVector
#include <VecSimple.h>
#undef Type

KEYWORDS

vector, simple vector

DESCRIPTION

VecSimple(nIntVector) is a class implementing a simple vector of nIntVector objects,
and is a specification of the parametric class VecSimple(Type) in Diffpack, with parameter
Type equal nIntVector.

The class is derived from class VecSimplest (nIntVector), and in addition to the inherited
member functions, functions performing assignment and input and output of the contents
of the array, are provided. The index base is 1.

See documentation of the parametric class VecSimple(Type) in Diffpack for a description
of the interface of the class.

SEEALSO

class VecSimple(Type), class VecSimplest(nIntVector)

44

2.6.5 ArrayGenSimplest(nMatrix)

NAME

ArrayGenSimplest(nMatrix) - a general array of matrices, with variable number of indices

INCLUDE

include "ArrayGenSimplest_nMatrix.h"

SYNTAX

#define Type nMatrix
#include <ArrayGenSimplest.h>
#undef Type

KEYWORDS

matrix, array

DESCRIPTION

ArrayGenSimplest (nMatrix) is a class implementing a general array of nMatrix objects,
and is a specification of the parametric class ArrayGenSimplest(Type) in Diffpack, with
parameter Type equal nMatrix.

The base and the number of dimensions of the array are both variable. The base is set
manually. The only operations available are subscripting and an iterator for traversal of
the array, so this class is suitable for storing arrays of matrices not intended for use in
numerical computations.

Assignment operators and input and output routines are provided by the derived class
ArrayGenSimple(nMatrix).

See documentation of the parametric class ArrayGenSimplest(Type) implemented in Diff-
pack for a description of the interface of the class.

SEEALSO

class ArrayGenSimplest(Type), class ArrayGenSimple(nMatrix), class VecSimplest(nMatrix)

45

2.6.6 ArrayGenSimple(nMatrix)

NAME

ArrayGenSimple(nMatrix) - a general array of matrices, with variable number of indices

INCLUDE

include "ArrayGenSimple_nMatrix.h"

SYNTAX

#define Type nMatrix
#include <ArrayGenSimple.h>
#undef Type

KEYWORDS

matrix, array

DESCRIPTION

ArrayGenSimple(nMatrix) is a class implementing a general array of nMatrix objects,
and is a specification of the parametric class ArrayGenSimple(Type) in Diffpack, with
parameter Type equal nMatrix.

The base and the number of dimensions of the array are both variable. The base is set
manually. The class is derived from class ArrayGenSimplest(nMatrix), and in addition
to the inherited member functions, functions performing assignment and input and output
of the contents of the array, are provided.

See documentation of the parametric class ArrayGenSimple(Type) implemented in Diff-
pack for a description of the interface of the class.

SEEALSO

class ArrayGenSimple(Type), class ArrayGenSimplest(nMatrix), class VecSimple(nMatrix)

46

Chapter 3

Least squares computations

47

3.1

3.1.1

Ordinary least squares

LeastSquaresQR

NAME

LeastSquaresQR - a class for ordinary least squares computations

INCLUDE

include "least_squares.h"

SYNTAX

class LeastSquares(R

{

protected:

nMatrix qr;
nVector alpha;
nIntVector pivot;

void decompose();

public:

LeastSquaresQR(const nMatrix& X);
virtual “LeastSquaresQR () { }

virtual nMatrix solve(const nMatrix& Y) const;
virtual nMatrix fit(nMatrix& Y) const;

virtual SymMatrix XtXinv () const;

void Qtrans(nMatrix& X) const;

void QbackTrans(nMatrix& X) const;
nMatrix backFit(const nMatrix & z) const;

nMatrix solveCoeff(const nMatrix& z) const;

TriangMatrix getRt() const;
nIntVector getPivot() const { return pivot;}

//

returns coefficient matrix
overwrites Y with fit and
returns coefficient matrix
computes inv(X’X)

overwrites X with QX
overwrites X with Q’°X

bactransforms fitted part of Z

solves for coefficient matrix

returns pivot vector

// computation of the least squares solution B of Y = XB:
friend nMatrix leastSquaresSolution(const nMatrix& X, const nMatrix& Y);

KEYWORDS

least squares, QR decomposition

DESCRIPTION

The class implements least squares solutions through QR decomposition. We determine B

minimizing the Euclidean norm of Y-XB, by Householder transformation of X: QX = R. Here,
R is upper triangular and Q unitarian. Pivoting is used. Multiple columns of Y and B are

allowed. X must have full rank.

48

The QR-representation itself should be used for computing quantities of interest such as the
variance estimate, residual vector, hat matrix etc., rather than brute force computations
using X, B and Y directly. Auxiliary functions are provided for these purposes.

The method is numerically stable, but may be slower than methods based on solving the
normal equations by Cholesky decomposition.

The QR-transformation follows the algorithm from Businger and Golub (1971), and the
regression problem is solved by using the methods described in Goodall (1993).

REFERENCES:

Businger, P. and Golub, G.H.: ”Linear Least Squares Solutions by Householder Transfor-
mations” , in Wilkinson, J.H. and Rheinsch, C.: Linear Algebra, Springer-Verlag, 1971.

Goodall, C.R.: ”Computations Using the QR Decomposition”, in Rao, C.R. (ed.): Hand-
book of Statistics 9. Computational Statistics, 1993, pp. 492-496.

CONSTRUCTORS AND INITTIALIZATION

The class has one constructor, taking the X matrix as argument. Transformation to QR
form is performed by the constructor, and may be reused.

MEMBER FUNCTIONS

See also the SYNTAX section.

The basic operations are solving for B, computing the fitted Y, and transformations by Q
and its inverse (equal to its transpose). The member functions vary in the way arguments
are passed and in combinations of basic operations.

backFit - backtransforms fitted part of the transformed Y, Z=QY. The argument to the
function is the m x p matrix Zhat, and the fitted value of Y, Yhat, is returned. The
function performs a similar operation as QbackTrans, but takes advantage of the fact that
the last m-n rows of Zhat are zero. Here n is the rank of the matrix X (X must have full
rank) in the regression problem Y=XB.

fit - solves the system Y=XB, overwrites the nMatrix reference argument Y with the
fitted value, yhat, and returns the estimated coefficient matrix.

solve - solves the system Y=XB. The only argument is the matrix Y, and the estimated
coefficient matrix is returned.

solveCoeff - solves the system Z=QXB, where the nMatrix argument Z is the Q-transformed
of Y, and returns the coefficient matrix B.

XtXinv - computes the matrix inv(X‘X), to be used in computation of the covariance
matrix of the estimated coefficients.

FILES
least_squares.C
EXAMPLE

[sk sk s o R R R ok R o K KR K s K KR K s ok o ok o R KK R KKK ok ok o ok
/* Computation of the hat-matrix H in yhat = Hy, and the leverage, diag(H), */

49

/* for the regression problem y=Xb. */

/* */
/* Let X be a n by p matrix, and y n by q. The fitted y is given by */
/* */
/* yhat = Q’zhat, */
/* */
/* where zhat is the solution of the Q-transformed problem: */
/* Qy = z = QXb = Rb. */
/* */
/* Since the last n-p rows of zhat are zero, yhat can be computed by */
/* */
/* yhat = Q1’zihat = Q1’z1 = Q1’R1b = Q1°Q1Xb = Q1’Q1ly */
/* */
/* and */
/* H=01Q1 */
/* */
/* Q1 is the n by p left submatrix of @, and zl the upper n by q submatrix */
/% of z = Qy. */

3 o ok o o R oK oK oo o K KKK K Ko oK K KK oK K o o K KK K o o o K K KK oK K o o oK o K S o o o K K Ko o o o o KK Ko o o o ok
#include <iostream.h>
#include <fstream.h>

#include <least_squares.h>

main(int argc, char* argv[])

{
int n=atoi(argv[1]);
int p=atoi(argv[2]);
nMatrix X(n,p); // n by p matrix of independent variables
ifstream in("input.file",ios::in);
X.scan(in);
LeastSquaresQR 1sq(X); // QR-decomposition of X
nMatrix Hi(identity(n)); // n by n identity matrix
1sq.Qtrans(H1); // computes QH1 = QI = Q (n by n)
// backFit takes into account the zeros below row p, so that
// Q1°Q1, and not Q’Q as would be the case with Qbacktrans, is returned.
nMatrix H = 1sq.backFit(H1);
ofstream out("out.file",ios::out);
out << "Hat matrix:\n" << H;
out << "leverage:\n" << H.diag();

}

SEEALSO

class GenLeastSquaresQR, class nMatrix

AUTHOR

Jon Helgeland, NR

50

3.2 Generalized least squares

3.2.1 GenLeastSquaresQR

NAME

GenLeastSquaresQR - a class for generalized least squares computations

INCLUDE

include "least_squares.h"

SYNTAX

class GenLeastSquaresQR: public LeastSquaresQR

{
protected:
TriangMatrix Bt;

void QSymmQt(SymMatrix&);
TriangMatrix setBt(SymMatrix&);

public:
GenLeastSquaresQR(const nMatrix& X, SymMatrix& Sigma);
// Sigma is overwritten

nMatrix solve(const nMatrix& Y) const; // returns coefficient matrix
nMatrix fit(nMatrix& Y) const; // overwrites Y with fit and returns
// coefficient matrix
nMatrix solveResid(const nMatrix&)const;
// From z1, finds fitted residuals (etal, nu2)
SymMatrix XtXinv () const; // matrix factor of covariance matrix
TriangMatrix getBt() const {return Bt;}

KEYWORDS

generalized least squares, least squares, QR decomposition

DESCRIPTION

The class implements generalized least squares solutions. The solution vector b minimizes

(y-Xb) ‘inv(Sigma) (y-Xb),

where Sigma is symmetric and positive definite, and X has full rank.

Householder transformation of X is used: QX=R, as well as reverse Cholesky decomposition
of the transformed Sigma matrix: BBt = Q Sigma Qt, with B upper triangular.

This algorithm is numerically more stable than methods based on Cholesky decomposition
of Sigma followed by transformation to an ordinary least squares problem.

51

The generalized least squares computations are based on the algorithms described in

Goodall (1993).
REFERENCE:

Goodall, C.R.: ”Computations Using the QR Decomposition”, in Rao, C.R. (ed.) Hand-
book of Statistics 9. Computational Statistics, 1993, pp. 492-496.

CONSTRUCTORS AND INITTIALIZATION

The constructor takes one nMatrix argument X and one SymMatrix argument Sigma,
holding the covariance matrix for the residuals. A QR-decomposition of the matrix X is
performed by the inherited LeastSquaresQR constructor. To conserve memory in large
problems, Sigma is overwritten and the storage used for the TriangMatrix holding the
reverse Cholesky decomposition of the matrix Q Sigma Qt.

Changes to the SymMatrix entered as actual argument to the function will have no impact
on the TriangMatrix member because of the copy count mechanism for the matrix classes,
but should be avoided to prevent creation of a copy of the matrix representation.

MEMBER FUNCTIONS

The member functions solve and fit are virtual functions inherited from the base class
LeastSquaresQR, and re-implemented for generalized least squares.

getBt - returns the TriangMatrix Bt, where BBt is the reverse Cholesky decomposition
of Q Sigma Qt.

setBt - protected member function used in the constructor, returning the reverse Cholesky
decomposition Q Sigma Qt as a lower triangular matrix Bt.

solveResid - this function is called by solve and fit, and computes the residuals of the
transformed least squares problem:

min nu’nu; z = QX beta + eta; eta = B nu.

The function argument is the transformed y-matrix z=Qy, and it is assumed that the matrix
is amx 1 column matrix.

The return value is the minimizing value of the vector

(etal’, nu2’)’,

where etal is the upper n-dimensional subvector of eta, and nu2 the lower m-n-dimensional
subvector of nu.

See the reference Goodall (1993) for a further description of the method.

XtXinv - computes the matrix inv(Xt*inv(Sigma)*X), to be used in computation of the
covariance matrix of the estimated coefficients.

FILES

least_squares.C

92

EXAMPLE

// Computation of the coefficient matrix for a generalized least squares
// problem

#include <iostream.h>
#include <fstream.h>

#include <least_squares.h>

main(int argc, char* argv[])

{
int n=atoi(argv[1]);
int p=atoi(argv[2]);
nMatrix D(mn,p+1); // n by p+1l matrix of independent variables and

// one response variable
ifstream ini1("data.file",ios::in);
D.scan(inl);
nMatrix X = D.submatrix(1,n,1,p);
nMatrix y = D.submatrix(1,n,p+1,p+1);
SymMatrix Cov(n);
ifstream in2("covar.file",ios::in);
Cov.scan(in2);
GenLeastSquaresQR glsq(X,Cov); // QR-decomposition of X and reversed
// Cholesky decomp. of QCov(Q’

nMatrix BCoef = glsq.solve(y);
ofstream out("out.file",ios::out);
out << "Coefficient matrix:\n" << BCoef;

¥

SEEALSO

class LeastSquaresQR, class nMatrix

AUTHOR

Jon Helgeland, NR

93

Chapter 4

Random number generators

94

4.1 A stream of random numbers

4.1.1 RandomStream

NAME

RandomStream - a class for generating a stream of random numbers

INCLUDE

include "rand.h"

SYNTAX

class RandomStream

{

public:
RandomStream(int il,int i2=0) {xint1=il; xint2=i2;}
RandomStream() ;

};

KEYWORDS

random numbers, random stream

DESCRIPTION

The class keeps in order the stream of uniformly distributed random numbers that is
generated by the random number generators in the RandomGen hierarchy.

The random numbers are generated by the rule (Knuth, p.105)

31
X(n+1) = (271828183 * X(n) - 314159269 * X(n-1)) mod (2 -1).

The period is

19
4.61*%10

REFERENCE:

Knuth, D.E.: ”Seminumerical Algorithms”, The art of computer programming, Vol. 2, 2nd
ed., Addison-Wesley, 1981.

95

CONSTRUCTORS AND INITTIALIZATION
One constructor has two integer arguments, giving two seeds for the generator. The first
integer has to be specified, the other has default value zero. The class also provides a

default constructor. By calling this constructor, the second seed is set to zero, and the first
to the point of time.

A global pointer to RandomStream is always created. This pointer will be initialized by the
default construction of objects in the RandomGen hierarchy.

MEMBER FUNCTIONS

None.

FILES

rand.C

EXAMPLE

See class RandUnif

SEEALSO

class RandomCont, class RandomDisc, class RandomGen

AUTHOR

Jon Helgeland, NR

56

4.2 Abstract base classes

4.2.1 RandomGen

NAME

RandomGen - a base class for generating random numbers

INCLUDE

include "rand.h"

SYNTAX

class RandomGen
{
protected:
RandomStream *rstr;
public:
RandomGen (RandomStream* r)
: rstr(r) { }
RandomGen(int il, int i2=0);
RandomGen() ;

virtual “RandomGen() { }

KEYWORDS

random numbers, random stream

DESCRIPTION

The class is a base class for generation of random numbers.

The numbers are generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor. See also CON-
STRUCTORS AND INITIALIZATION.

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors. The first, taking a pointer to a RandomStream as argu-
ment, constructs a random number generator operating on this local random stream. The
two other constructors initialize a global random stream. Using the default constructor
implies that the seeds for the stream are set to the point of time and zero respectively.
Alternatively, one or both seeds can be specified by using the second constructor.

Note that it is assumed that the integer argument constructor is called for only one object of
the classes in the RandomGen hierarchy in a program, so that all random number generators
constructed, operate on the same random stream. If one tries to use this constructor a
second time, a warning is issued, and the new seeds are ignored.

a7

If one prefers to operate on different random streams for different generators, a RandomStream
object should be constructed for each generator, and its address entered as actual argument
to the first constructor.

MEMBER FUNCTIONS

None.

FILES

rand.C

EXAMPLE

See class RandomCont, class RandUnif

SEEALSO

class RandomCont, class RandomDisc, class RandomStream

AUTHOR

Jon Helgeland, NR

58

4.2.2 RandomCont

NAME

RandomCont - a base class for generating continuously distributed random numbers

INCLUDE

include "rand.h"

SYNTAX

class RandomCont : public RandomGen
{
public:
RandomCont (RandomStream* r)
: RandomGen(r) { }
RandomCont (int i1, int i2=0)
: RandomGen(il,i2) { };
RandomCont ()
: RandomGen() { };

virtual double operator()() = 0;
};

KEYWORDS

continuous distribution, random numbers, random stream

DESCRIPTION

The class is a base class for classes generating random numbers from continuous distribu-
tions. It is inherited from the general random generator class RandomGen.

The numbers will be generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor.

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors. The first, taking a pointer to a RandomStream as argu-
ment, constructs a random number generator operating on this local random stream. The
two other constructors initialize a global random stream. Using the default constructor
implies that the seeds for the stream are set to the point of time and zero respectively.
Alternatively, one or both seeds can be specified by using the second constructor.

See also the documentation of class RandomGen.

MEMBER FUNCTIONS

operator() - virtual function that is to generate a random number from a continuous
distribution.

59

FILES

rand.C

EXAMPLE

#include
#include
#include
#include

main(int

{

<iostream.h>
<stdlib.h>
<matrix.h>
<rand.h>

argc, charx argv[])
int ns = atoi(argv[1]l);

int seed = atoi(argv[2]);
char* type = argv[3];

cout << type << endl;

RandomCont* randn;
if (!strcmp(type,'n"))
randn = new RandStdNormal();
else if (!strcmp(type,'u"))
randn = new RandUnif();
nVector randvec(ns);
for (int i=1;i<=ns;i++)
randvec(i) = (*randn) ();

cout << randvec;
cout << endl;

delete randn;

SEEALSO

//

//

//

//

number of simulations
seed for random generator
type of distribution

attached to global stream

attached to global stream

class RandomGen, class RandomStream

AUTHOR

Jon Helgeland, NR

60

4.2.3 RandomDisc

NAME

RandomDisc - a base class for generation of random numbers from discrete distributions

INCLUDE

include "rand.h"

SYNTAX

class RandomDisc : public RandomGen
{
public:
RandomDisc(RandomStream* r)
: RandomGen(r) { }
RandomDisc(int i1, int i2=0)
: RandomGen(il,i2) { };
RandomDisc()
: RandomGen() { };

virtual int operator()() = 0;

};

KEYWORDS

discrete distribution, random numbers, random stream

DESCRIPTION

The class is a base class for random number generators for discrete distributions, and is
inherited from the general random generator class RandomGen.

The numbers are generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor.

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors. The first, taking a pointer to a RandomStream as argu-
ment, constructs a random number generator operating on this local random stream. The
two other constructors initialize a global random stream. Using the default constructor
implies that the seeds for the stream are set to the point of time and zero respectively.
Alternatively, one or both seeds can be specified by using the second constructor.

See also the documentation of class RandomGen.

MEMBER FUNCTIONS

operator () - virtual function that is to generate a random number from a discrete distri-
bution.

61

FILES

rand.C

EXAMPLE

See class RandPoisson

SEEALSO

class RandomGen, class RandomStream

AUTHOR

Turid Follestad, NR,

62

4.3 Random number generators for different distributions

4.3.1 RandUnif

NAME

RandUnif - a class for generating uniformly distributed random numbers

INCLUDE

include "rand.h"

SYNTAX

class RandUnif : public RandomCont
{
public:
RandUnif (RandomStream* r)
: RandomCont(r) { }
RandUnif(int il, int i2=0)
: RandomCont(il,i2) { };
RandUnif ()
: RandomCont() { };

virtual double operator()(O{ return unif();}
};

KEYWORDS

continuous distribution, random numbers, random stream, uniform distribution

DESCRIPTION

The class is a random number generator for the uniform [0,1] distribution, as well as a base
class for classes generating random numbers from several other continuous distributions.
It is inherited from the base class for continuous random generators, RandomCont.

The numbers are generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor.

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors. The first, taking a pointer to a RandomStream as argu-
ment, constructs a random number generator operating on this local random stream. The
two other constructors initialize a global random stream. Using the default constructor
implies that the seeds for the stream are set to the point of time and zero respectively.
Alternatively, one or both seeds can be specified by using the second constructor.

See also the documentation of class RandomGen.

63

MEMBER FUNCTIONS

operator() - generates a random number from the uniform distribution.

FILES

rand.C

EXAMPLE

#include <iostream.h>
#include <stdlib.h>
#include <matrix.h>
#include <rand.h>

main(int argc, char* argv[])

{

int ns = atoi(argv[il); // number of simulations
int seed = atoi(argv[2]); // seed for random generator
RandUnif randu(seed); // global stream initialized, seeds seed
nVector randvec(ns);
for (int i=1;i<=ns;i++)
randvec(i) = randu();
cout << "Uniform distribution:\n";
cout << randvec;
RandUnif randul(seed); // argument ignored, global stream already

// initialized, attached to global stream

RandUnif randu2(); // 0K, attached to global stream
//

RandomStream* rstr = new RandomStream(seed);
// creating a local random stream

RandUnif randlocal(rstr); // OK, attached to local stream

for (i=1;i<=ns;i++)
randvec(i) = randlocal();

cout << "Uniform distribution, local stream:\n";
cout << randvec;

delete rstr;

SEEALSO

class RandomCont, class RandomGen, class RandomStream

AUTHOR

Jon Helgeland, NR

64

and zero

4.3.2 RandStdNormal

NAME

RandStdNormal - a class for generating normally distributed random numbers

INCLUDE

include "rand.h"

SYNTAX

class RandStdNormal: public RandUnif
{
public:
RandStdNormal (RandomStream* r)
: RandUnif(r){}
RandStdNormal(int i1, int i2=0)
: RandUnif(i1,i2){}
RandStdNormal ()
: RandUnifO{}

double operator()();
};

KEYWORDS

normal distribution, random numbers

DESCRIPTION

The class is a random number generator, generating random numbers from the standard
normal distribution on a random stream.

The numbers are generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor.

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors. The first, taking a pointer to a RandomStream as argu-
ment, constructs a random number generator operating on this local random stream. The
two other constructors initialize a global random stream. Using the default constructor
implies that the seeds for the stream are set to the point of time and zero respectively.
Alternatively, one or both seeds can be specified by using the second constructor.

See also the documentation of class RandomGen.

MEMBER FUNCTIONS

operator() - generates a random number from the standard normal distribution.

65

FILES

rand.C

EXAMPLE

See class RandUnif. Classes RandUnif and RandStdNormal are used equivalently.

SEEALSO

class RandomGen, class RandNormal, class RandomStream, class RandUnif

AUTHOR

Jon Helgeland, NR

66

4.3.3 RandNormal

NAME

RandNormal - a class for generating normally distributed random numbers

INCLUDE

include "rand.h"

SYNTAX
class RandNormal: public RandStdNormal
{
double meanval; // mean value
double stddev; // standard deviance
public:

RandNormal (RandomStream* r, double mval, double var)

: RandStdNormal(r), meanval(mval), stddev(sqrt(var)) {}
RandNormal(int i1, double mval=0, double var=1, int i2=0)

: RandStdNormal(il,i2), meanval(mval), stddev(sqrt(var)) {}
RandNormal (double mval, double var)

: RandStdNormal(), meanval(mval), stddev(sqrt(var)) {}

double operator()() { return meanval + stddev*RandStdNormal::operator()(); }
s

KEYWORDS

normal distribution, random numbers

DESCRIPTION

The class is a random number generator, generating normally distributed random numbers
on a random stream.

The numbers are generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor.

If random numbers from the standard normal distribution, N(0,1), are to be generated,
the class RandStdNormal could be used, to minimize the number of arithmetic operations
in the member funtion generating the random numbers.

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors, all taking the distribution parameters mean and vari-
ance as two double arguments. The first, taking in addition a pointer to a RandomStream
argument, constructs a random number generator operating on this local random stream.
The two other constructors initialize a global random stream. Using the constructor with
no integer arguments implies that the seeds for the stream are set to the point of time
and zero respectively. Alternatively, one or both seeds can be specified by using the second
constructor.

See also the documentation of class RandomGen.

67

MEMBER FUNCTIONS

operator() - generates a random number from the normal distribution.

FILES

rand.C

EXAMPLE

#include <iostream.h>
#include <stdlib.h>
#include <matrix.h>
#include <rand.h>

main(int argc, char* argv[])

{
int ns = atoi(argv[il); // number of simulations
double mv = atof(argv[2]); // mean value
double var = atof(argv[3]); // variance
RandNormal rand(mv,var); // default initialization of global random stream
nVector randvec(ns);
for (int i=1;i<=ns;i++)

randvec(i) = rand();

cout << "Normal distribution:\n";
cout << randvec;

¥

SEEALSO

class RandomGen, class RandStdNormal, class RandomStream, class RandUnif

AUTHOR

Turid Follestad, NR,

68

4.3.4 RandExp

NAME

RandExp - a class for generating exponentially distributed random numbers

INCLUDE

include "rand.h"

SYNTAX
class RandExp: public RandUnif
{
double lambda; // distribution parameter
public:

RandExp(RandomStream* r, double 1=1.0);
RandExp(int il, double 1=1.0, int i2=0);
RandExp(double 1=1.0);

double operator()();

KEYWORDS

exponential distribution, random numbers

DESCRIPTION

The class is a random number generator, generating exponentially distributed random
numbers on a random stream.

The numbers are generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor.

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors, all having a double argument indicating the parameter
of the distribution. By default, the parameter value is set to one. The first constructor,
taking a pointer to RandomStream argument, constructs a generator operating on this local
random stream. The two other constructors initialize a global random stream. Using the
constructor with no integer arguments implies that the seeds for the stream are set to the
point of time and zero respectively. Alternatively, one or both seeds can be specified by
using the second constructor.

See also the documentation of class RandomGen.

MEMBER FUNCTIONS

operator() - generates a random number from the exponential distribution.

69

FILES

rand.C

EXAMPLE

#include <iostream.h>
#include <stdlib.h>
#include <matrix.h>
#include <rand.h>
main(int argc, char*x argv[])
{
int ns = atoi(argv[il); // number of simulations

double lambda = atof(argv[2]); // parameter of distribution

RandExp rand(lambda); // default initialization of global random stream
nVector randvec(ns);

for (int i=1;i<=ns;i++)
randvec(i) = rand();

cout << "Exponential distribution:\n";
cout << randvec;

SEEALSO

class RandomGen, class RandomStream, class RandUnif

AUTHOR

Jon Helgeland, NR

70

4.3.5 RandGamma

NAME

RandGamma - a class for generating random numbers from the gamma distribution

INCLUDE

include "rand.h"

SYNTAX
class RandGamma: public RandUnif
{
double lambda; // scaling parameter

double alpha;

public:

RandGamma(RandomStream* r, double alpha=1.0, double lambda=1.0);
RandGamma(int i1, double alpha=1.0, double lambda=1.0, int i2=0);
RandGamma(double alpha=1.0, double lambda=1.0);

double operator()();
};

KEYWORDS

gamma distribution, random numbers

DESCRIPTION

The class is a random number generator, generating gamma distributed random numbers

on a random stream. The distribution function is defined as

alpha-1
f(x) = lambda/gamma(alpha) * (lambda*x) exp(-lambda*x),

where alpha and the scaling parameter lambda are the two parameters of the distribution,

and gamma(alpha) is the gamma-function.

The random numbers are generated by the method in Ripley (1987).

The numbers are generated on a global random stream, if no other stream is explicitly

specified by the RandomStream pointer argument of the first constructor.

REFERENCE:
Ripley, B.D.: ”Stochastic Simulation”, Wiley, 1987, p.88.

71

CONSTRUCTORS AND INITTIALIZATION

The class has three constructors, all having two double arguments specifying the param-
eters alpha and lambda, the scaling parameter, of the gamma distribution. The first con-
structor, taking a pointer to a RandomStream argument, creates a random number gener-
ator operating on this local random stream. The two other constructors initialize a global
random stream. Using the constructor with no integer arguments implies that the seeds
for the stream are set to the point of time and zero respectively. Alternatively, one or both
seeds can be specified by using the second constructor.

See also the documentation of class RandomGen.

MEMBER FUNCTIONS

operator() - generates a random number from the gamma distribution.

FILES

rand.C

EXAMPLE

#include <iostream.h>
#include <stdlib.h>
#include <matrix.h>
#include <rand.h>

main(int argc, char*x argv[])
{

int ns = atoi(argv[il); // number of simulations

double alpha = atof(argv[2]); // parameters of distribution
double lambda = atof(argv[3]);

RandGamma rand(alpha, lambda);
// default initialization of global random stream

nVector randvec(ns);

for (int i=1;i<=ns;i++)
randvec(i) = rand();

cout << "Gamma distribution:\n";
cout << randvec;

SEEALSO

class RandomGen, class RandomStream, class RandUnif

AUTHOR

Jon Helgeland and Tove Andersen, NR

72

4.3.6 RandPoisson

NAME

RandPoisson - a class for generating random numbers from the Poisson distribution

INCLUDE

include "rand.h"

SYNTAX
class RandPoisson : public RandomDisc
{
double C; // distribution parameter
public:
RandPoisson(RandomStream* r, double lambda=1.0);
RandPoisson(int seedl, double lambda=1.0, int seed2=0);
RandPoisson(double lambda=1.0);
“RandPoisson () { if (Rand!=NULL) delete Rand; }
int operator()();
};
KEYWORDS

Poisson distribution, random numbers

DESCRIPTION

The class is a random number generator, generating random numbers from the Poisson
distribution on a random stream, by the Centred search algorithm in Kemp and Kemp

(1991).

The numbers are generated on a global random stream, if no other stream is explicitly
specified by the RandomStream pointer argument of the first constructor.

REFERENCE:

Kemp, C.D. and Kemp, A.W.: ”Poisson Random Variate Generation”, Applied Statistics,
40(1), 1991, pp. 143-158.

CONSTRUCTORS AND INITIALIZATION

The class has three constructors, all having a double argument indicating the parameter
of the distribution. By default, the parameter value is set to one. The first constructor,
taking a pointer to RandomStream argument, constructs a generator operating on this local
random stream. The two other constructors initialize a global random stream. Using the
constructor with no integer arguments, implies that the seeds for the stream are set to the
point of time and zero respectively. Alternatively, one or both seeds can be specified by
using the second constructor.

73

See also the documentation of class RandomGen.

MEMBER FUNCTIONS

operator() - generates a random number from the Poisson distribution.

FILES

rand.C

EXAMPLE

#include <iostream.h>
#include <stdlib.h>
#include <matrix.h>
#include <rand.h>

main(int argc, char* argv[])

{
int ns = atoi(argv[il); // number of simulations
int seed = atoi(argv[2]); // seed for random generator
double lambda = atof(argv[3]); // parameter of distribution

RandPoisson rand(seed,lambda) ;
// initialization of global random stream with seeds seed and zero
nIntVector randvec(ns);

for (int i=1;i<=ns;i++)
randvec(i) = rand();

cout << "Poisson distribution:\n";
cout << randvec;

SEEALSO

class RandomDisc, class RandomGen, class RandomStream

AUTHOR

Ingvar Koppervik and Tove Andersen, NR

74

Chapter 5

Some general tools

75

5.1 Functions

5.1.1 nfac

NAME

nfac - a function computing the factorial of an integer

INCLUDE

include "bincoef.h"

SYNTAX

int nfac(int n);

KEYWORD

factorial

DESCRIPTION

The function computes the factorial of the integer argument by computing the exponential
of the sum of logarithms of numbers from 1 up to n. As the size of integers are restricted,
this function, returning an integer, can be used only for values of n less than or equal to
12. For higher values of n, the function dnfac, returning the factorial funtion as a double

value, can be used.

FILES

bincoef.C

SEEALSO

dnfac

AUTHOR

Turid Follestad, NR, translated from a Splus function written by Gro Hagen, NR

76

5.1.2 binCoef

NAME

binCoef - a function computing the binomial coefficient

INCLUDE

include "bincoef.h"

SYNTAX

int binCoef(int n, int r);

KEYWORD

binomial coefficient

DESCRIPTION

The function computes the binomial coefficient n over r by computing sums of loga-
rithms for the series n-r+1 to n (sumlog(n)) and 1 to r (sumlog(r)), returning the value
exp(sumlog(n)-sumlog(r)). As the size of integers are restricted, this function, returning
an integer, can be used only for values of n and r giving a value for the binomial coeffi-
cient less than the integer size limit. For values not satisfying this constraint, the function
dbinCoef, returning a double value, might be used.

FILES

bincoef.C

SEEALSO

dbinCoef

AUTHOR

Turid Follestad, NR, based on a Splus function written by Gro Hagen, NR

7

5.1.3 dnfac

NAME

dnfac - a function computing factorial for large numbers

INCLUDE

include "bincoef.h"

SYNTAX

double dnfac(int n);

KEYWORD

factorial

DESCRIPTION
The function computes the factorial of the integer argument by computing the exponential
of the sum of logarithms of numbers from 1 up to n. As the size of integers are restricted,
this function, returning double and not integer, should be used when the result is expected

to be greater than the integer size limit. The function nfac, returning an integer, can be
used for values of n less than or equal 12.

FILES

bincoef.C

SEEALSO

nfac

AUTHOR

Turid Follestad, NR, translated from a Splus function written by Gro Hagen, NR

78

5.1.4 dbinCoef

NAME

dbinCoef - function computing the binomial coeflicient for large numbers

INCLUDE

include "bincoef.h"

SYNTAX

double dbinCoef(int n, int r);

KEYWORD

binomial coefficient

DESCRIPTION

The function computes the binomial coefficient for n over r by computing sums of loga-
rithms for the series n-r+1 to n (sumlog(n)) and 1 to r (sumlog(r)), returning the value
exp(sumlog(n)-sumlog(r)).

As the size of integers are restricted, this function, returning double and not integer, should
be used when the result is expected to be a large integer value.

FILES

bincoef.C

SEEALSO

binCoef

AUTHOR

Turid Follestad, NR, based on a Splus function written by Gro Hagen, NR

79

5.1.5 countNumbers
NAME

countNumbers - counts the numbers on a file.

INCLUDE

include "countNumbers.h"

SYNTAX

int countHumbers(char* file);

KEYWORDS

file

DESCRIPTION

The function returns the number of numbers on a file with the name specified by the
argument to the function. The file is expected to contain numerical entries only.

FILES

countNumbers.C

AUTHOR

Magne Aldrin, NR

80

5.2 Abstract base class for data sets

5.2.1 DataSet

NAME

DataSet - a base class for sample data sets

INCLUDE

include "DataSet.h"

SYNTAX
class DataSet
{
public:
virtual “DataSet () { };
virtual BooLean ok () = 0; // returns dpTRUE if object status ok
virtual int getNobs() const = O; // returns number of observations
virtual void cleanUp () = 0; // editing tha data
virtual void extract(const nIntVector& ind, DataSet& ds) const = O;
// Extracts observations indexed by ind returning a new DataSet
virtual void extract(int f, int t, DataSet& ds) const = O;
// Extracts observations indexed from f to t (obs. no f and t included)
// returning a new DataSet
virtual void remove (const nIntVector& ind) = O;
// Removes observations indexed by ind
virtual void remove (int f, int t) = O;
// Removes observations indexed f to t (obs. no f and t included)
virtual void insert (const DataSet& ds, int from) = O;
// Inserts DataSet ds after observation number from-1
virtual void scan (Is in) = O;
virtual void print (Os out) const = O;
};
KEYWORDS

data set, data editing

DESCRIPTION

The class provides an interface for a general sample data set, with member functions
representing operations that is supposed to be useful for several kinds of data sets.

81

CONSTRUCTORS AND INITTIALIZATION

No constructors.

MEMBER FUNCTIONS
All member functions are pure virtual. Their intended use is indicated by the comments in
the SYNTAX section. The nIntVector arguments represents a vector of indices indicating
which observations are to be extracted, removed or inserted. remove, insert and append

all modify the object, and extract creates a new one, which is returned through the
DataSet-argument.

scan should read the contents of the data set from an input source, and print should
print the contents of the data set to an output source.

FILES

None.

EXAMPLE

See class SpatialData in NSPACE and class RegData in NMODEL.

SEEALSO

class SpatialData in NSPACE, class RegData in NMODEL

AUTHOR

Turid Follestad, NR,

82

Appendix A

Some functions and classes from

Diffpack

83

A.1 Boolean variables

A.1.1 BooLean

NAME

BooLean - enum variable for boolean (logical) variables

INCLUDE

include "BooLean.h"

SYNTAX

enum BooLean // the boolean variable
{
dpFALSE = O,
dpTRUE = 1,
OFF = 0,
on =1,
dpFAILURE
dpSUCCESS

KEYWORDS

boolean, logical

DESCRIPTION

Usually, the int variable is used for boolean values in C and C++ programs. For most
purposes, it is safer to use a distinct type boolean that is not automatically convertable
with int. To avoid name conflicts with other libraries, this boolean variable is spelled
as BooLean. It is implemented as an enum. Conversion to int is automatic (or by use of
operator int), while conversion from an int (e.g., the return value of C library functions
like stremp) to a BooLean is performed explicitly by the function getBooLean. As usual
in Diffpack, there are conversion functions assignEnum from int or a String to the enum
variable, as well as getEnumValue and getEnumDescription that returns the name of the
enum value and a short description of the meaning of that value, respectively.

DEVELOPED BY

SINTEF Applied Mathematics, Oslo, Norway, and University of Oslo, Dept. of Mathemat-
ics, Norway

AUTHOR

Hans Petter Langtangen, SINTEF /UiO

84

A.2 Simple vector templates

A.2.1 VecSimplest
NAME

VecSimplest(Type) - very simple vector, only allocation and subscripting

INCLUDE

include "VecSimplest.h"

SYNTAX
class VecSimplest(Type) //: public virtual Handleld
{
protected:
Type* A; // vector representation
int length; // vector length
BooLean internal; // dpTRUE: internal allocation, dpFALSE: do not delete A
// (A is borrowed from the user)
public:
static long nbytes; // total number of allocated bytes (all objects)
static long nbytes_dealloc; // no of deallocated bytes
static long narrays; // no of allocated arrays
static long narrays_dealloc;// no of deallocated arrays
protected:
BooLean makeNew (int length); // used by redim for efficiency
Type* allocate (int length);
void deallocate ();
Type* borrow (Type* a, int n, int base = 0);
public:

VecSimplest(Type) ();

VecSimplest(Type) (int length);
VecSimplest(Type) (Type* a, int n, int base = 0);
“VecSimplest(Type) ();

BooLean redim (int length);

BooLean redim (Type* a, int n, int base = 0);

BooLean ok () const;

int size () const { return length; }

BooLean compatible (const VecSimplest(Type)& X) const;
BooLean index0Ok (int i, const char* message = NULL) const;
const Type& operator () (int i) const;

Type& operator () (int i);

Type* getPtr0 ();
Type* getPtrl ();

// illegal functions (included here with just an error message):
VecSimplest(Type) (const VecSimplest(Type)& v);

void operator = (const VecSimplest(Type)& v);
// CLASS_INFO // removed (goal: as little data as possible in the class
s

inline Type& VecSimplest(Type):: operator () (int i)

#ifdef ARRAY_RANGECHECK
index0k (i) ;
#endif

return A[i];

}

#ifdef ARRAY_RANGECHECK
index0k(i);
#endif

return A[i];

}

return length == length_ ? dpFALSE : makeNew (length_);
}

KEYWORDS

vector class, array, base class

DESCRIPTION

The class implements a standard vector type. The public interface consists only of two con-
structors, a subscripting operator and some size information. In addition, the pointer repre-
sentation of the vector can be returned from a member function (e.g. when using this vector
in a C function). The base is unity. More operations, included print, £ill, operator=,
copy-constructors, operator<< etc., can be found in the derived class VecSimple(Type).

86

If arithmetic operations have meanings (e.g. when Type is float, double or dpComplex)
one can use the standard class Vec(Type) which is derived from VecSimple(Type). A
general base for the subscripting operator is provided in ArrayGenSimplest(Type).

Since no operations, execpt a constructor without arguments, is assumed to exist for Type,
this matrix class can be used as a general class for collecting (complicated) objects in a
matrix.

CONSTRUCTORS AND INITIALIZATION

Three constructors are available. The constructor without parameters allocates no memory.
To allocate the proper amount of memory at a later stage, the redim function can be used.
Another constructor takes the number of entries in the vector as parameter and allocates
memory for the corresponding vector representation. The third constructor takes a C array
and its length and base index as parameters. This makes it easy for the vector to borrow
its contents from an already existing C array. The C array will not be deleted by the
VecSimplest class, but the content of the array may be changed. Note that VecSimplest
cannot take a copy of the C array since operator= is not required for class Type. However,
one may create a VecSimple object from a C array and then copy this class object.

To initialize the vector entries one must use the member function operator().

MEMBER FUNCTIONS

Most member functions are self-explanatory.

ok - returns dpTRUE if the object is in an ok state, that is, if memory is allocated for the
vector. In an ok state one can make the call operator() (1) (at least one entry is present
in the vector).

redim - changes the dimension (length) of the vector (if necessary). There is also a redim
function for borrowing a C-array.

size - returns the length of the vector.
compatible - checks if the object has compatible size with the object given as argument.

operator() - subscripting operator, can be used on the left side of an assignment. The
function assumes that the base of the array is 1. Notice that there are two versions of
this function, one is const and one is non-const. This is necessary to ensure that the
compiler issues an error message if const arrays are altered by the subscript operator. The
reader is encouraged to seek information such that a const/non-const pair of functions are
thoroughly understood. For example, construction of a toy program may be helpful in
experimenting with const and non-const.

index0k - returns dpFALSE and an error message if the index is illegal, legal indices leads
to a dpTRUE return value. There is an optional argument that can be used to give extra
information, for example, where index0k is called.

getPtrO0 - return access to the internal C array and assume that the base is 0 (note that
internally in this class, the base is 1). This is the common function for sending the vector
class object to a C function requiring a pointer.

getPtri - return access to the internal C array and assume that the base is 1. A common
use is when the object is to be transferred to C functions, e.g., Numerical Recipes routines.

Be aware that VecSimplest does not require the Type class to have an operator=. Hence,
the copy constructor or the assignment operator has no meaning for VecSimplest. Since
C++ automatically makes such functions if they are not explicitly declared (and such

87

automatically generated functions lead to serious errors in the present case), the functions
are declared, but the content is just an error message.

EXAMPLES

VecSimplest(MyTool) g(4); // (1:4) vector of class MyTool objects
g(2) = MyTool (n,m,s); // entry (2) is assigned a MyTool object

typedef MyTool* MyToolPtr;
VecSimplest (MyToolPtr)* gp;
gp = new VecSimplest(MyToolPtr)(5);
(*gp) (3) = MyTool (m,m,s);

int 1 = gp->size(); // 1=5 (length of gp)

VecSimplest (MyTool) a; // no memory is allocated

a.redim(10); // allocates memory for 10 MyTool objects
SEE ALSO

class MatSimplest (Type), VecSimple(Type), Vec(Type), ArrayGenSimplest (Type)
DEVELOPED BY
SINTEF Applied Mathematics, Oslo, Norway, and University of Oslo, Dept. of Mathemat-

ics, Norway

AUTHOR

Hans Petter Langtangen, SINTEF/UiO

88

A.2.2 VecSimple

NAME

VecSimple(Type) - simple vector, base=1, no arithmetic operations

INCLUDE

include "VecSimple.h"

SYNTAX

class VecSimple(Type) : public virtual VecSimplest(Type)

{

public:
VecSimple(Type) ();
VecSimple(Type) (int length);
VecSimple(Type) (Type* a, int n, int base = 0);
VecSimple(Type) (const VecSimple(Type)& X);
“VecSimple(Type) ();
void fill (const Type& value);
void operator = (const Type& value) { fill(value); }
void operator = (const VecSimple(Type)& X);
void copy (const VecSimple(Type)& v);
void print (0s os, const char* header = NULL,

int nentries_per_line = 3) const;
void scan (Is is);
void printAsIndex (Os os) const;
void printAscii (0s os, const char* header = NULL,
int nentries_per_line = 3) const;

void scanFromFile (const String& filename); // numbers on file -> empty vec
friend Os& operator << (0s& os, const VecSimple(Type)& x);
friend Is& operator >> (Is& is , VecSimple(Type)& x);
// CLASS_INFO

};

KEYWORDS

vector class, array

DESCRIPTION

The class implements a standard matrix type derived from VecSimplest (Type). The pub-

lic interface consists of various operations such as subscripting (w/array-range-check if de-
sired), assignment operators, fill functions, print and scan functions, etc. The subscript op-
erator assumes that the base equals 1. If other bases are desired, the ArrayGenSimplest (Type)
or ArrayGen(Type) classes can be used.

89

No arithmetic operations are used in any of the member functions. Hence this class is suited
as a general vector class for various objects. The only requirement is that the object has
a constructor with no arguments so that an array of the class’ objects can be allocated by
new. In addition, the class must define operator=, operator<< and operator>>. Macros
for generating default versions of these operators are collected in the file default_op.h.

CONSTRUCTORS AND INITTIALIZATION

Several constructors are available. The constructor without parameters allocates no mem-
ory. To allocate the proper amount of memory at a later stage, the redim function can
be used. Another constructor takes the number of entries in the vector as parameter and
allocates memory for the corresponding vector representation. Finally, a copy-constructor
is available.

To initialize the vector entries one can use the member functions £i11 or operator().

MEMBER FUNCTIONS

Most member functions are self-explanatory. Some member functions are inherited from
and documented in class VecSimplest (Type). New member functions are described below.

copy - makes the object a copy of the matrix argument, that is, the object is redimensioned
according to the dimensions of v and thereafter operator= is called.

print - prints the contents of the vector. See documentation of the function scan.

scan - reads the vector from an Is object. The entries of an array can be written and read
in two main formats, the binary format or the ascii format. When print is invoked, the
format is determined by the state of the Os object (the result of the getFormat function).
Each of the ascii/binary formats can have a header or not. The header is present if print is
called with a non-NULL header string. In scan one detects the header if the first non-space
character is [. If the header is present, its syntax is like this: ! [size]X text $ where size
is the size of the array (for a vector it is the length, for a matrix it is a string on the form
rxc, where r is the number of rows and ¢ is the number of columns), X is a character that
equals b in case of a binary format or space in case of an ascii format. text is the header
string given to print. In scan this string is ignored, but it is available in the internal Is
buffer so the programmer can in principle extract the header after scan is called.

After the header a character @ follows if the format is binary, if not, a space appears.
Hence one can detect whether the format is binary or ascii even when the header does
not appear. After the @, the binary format has two binary numbers: The number of array
entries and the size of each entry.

If the header is present and the format is ascii, there will be nentires_per_line array
entries on each output line. There array index will also be written. In all other cases, the
array entries are written with no index, but in the ascii format there will be an extra space.

With a header the scan functions can read the dimensions of the array and call redim
before reading the entries. Without a header the dimensions of the array must be correct
BEFORE scan is called. In other words, a file containing the array entries only can only
be read when the number of entries is known. The function scanFromFile can, however,
read an unknown number of entries from file into a vector with wrong dimensions (see
documentation below). If the format is binary, the scan function detects the array length
and redimensions the array, but a warning is issued. The reason is that, without a header,
the main rule is that the programmer must redimensioned the array on beforehand.

90

After the header the data appears. If they are written in binary mode, the first non-
white character (after the header) is @. Then, in binary format, the number of items must
appear and after that the size of each item. Then the data appear in binary format. If the
@ character is not present, the data appear in ascii format.

Let us present some examples on valid data files. First the most comprehensive form:

[3] Example of a data file with much additional information such as
indices for each vector entry. This file is in ascii format.$

(1)=1.2
(2)=3.4
(3)=1.8

Here is an ascii format file with as little information as possible (a NULL header was given
when calling print:

1.2 3.41.8

An equivalent form may be

1.2 3.4
1.8

Finally we show a binary file without header. To indicate a binary number (f.ex. 8.1) we
use the notation [B8.1].

@[B3][B4][B1.2][B3.4][B1.8]

Observe that the item is a float and that the size of the item is sizeof (float) which equals
4. There is a comprehensive demonstration and test program for the various ascii and bi-
nary file formats of arrays in the directory $DPR/src/app/class-verify/category2/arrayprint.

scanFromFile - enables an unknown numbers of Type objects to be read from file into a
possibly empty vector. The objects must appear on the file without any text. Hence, this
function cannot read a file written by print with a comment. First, the number of objects
on the file is found, then the vector is correctly redimensioned and then an ordinary scan
function is called. Only ascii files can be read by the present implementation (that is also
the most useful application of a function like this).

print - writes the content of the vector in a format that can be read by scan. See the
documentation for VecSimple::scan. A header string can be given (empty by default).
Also the number of characters in each entry (when the entry is written in ascii format)
can be given. If this parameter is missing the print function assumes that there can be
no more than one entry per line. For example, if one wishes to write an int vector v with
heading ”"Improved values by inner iterations” on standard output, where each int has
width 5, one can make the calls:

s_o->setIntFormat ("%5d4");

v.print (s_o, "Improved values by inner iterations",
s_o->getFormatWidth(v(1)));

s_o->resetIntFormat();

<<>> - operator<< and operator>> are defined in terms of the print and scan functions.

EXAMPLES

91

VecSimple(int) a(4);// allocates a vector of integers, length=4.

a.fill (5); // sets all entries in a equal to 5.

a(2) = 6; // entry (2) is set equal to 6.

a.print(cout); // prints a on cout

cout << a(2); // prints entry (2).

a.scan (cin); // reads the vector from standard input, entry by entry,

// a total 4 numbers.
Vec(dpComplex) c; // no size is given, no memory is allocated.

c.redim (m); // ¢ becomes a vector of dpComplex of length m.
c.fill (dpComplex(2,7); // all entries in c¢ 1is set equal to 2 + T7i.

SEE ALSO

class ArrayGenSimplest (Type), class Vec(Type), class MatSimple(Type)

DEVELOPED BY

SINTEF Applied Mathematics, Oslo, Norway, and University of Oslo, Dept. of Mathemat-
ics, Norway

AUTHOR

Hans Petter Langtangen, SINTEF/UiO

92

A.2.3 ArrayGenSimplest

NAME

ArrayGenSimplest(Type) - general array with variable no. of indices

INCLUDE

include "ArrayGenSimplest.h"

class ArrayGenSimplest(Type) : public virtual VecSimplest(Type)

ndim;

nm;
bm;

// number of dimensions
// length of each dimensions, multiple index
// base of each dimensions, multiple index

current_iterator_index; // for iterating over the array entries

int totalLength (const Ptv(int)& n);

(int n1);

(int n1, int n2);

(int n1, int n2, int n3);
(const Ptv(int)& n);

BooLean index0k (const Ptv(int)& index) const; // rangecheck for operator()
void indexOkl (int i) comst; // for singleIndexl

void indexOk (int i) const;

void indexOk (int i, int j) const;

void indexOk (int i, int j, int k) const;

SYNTAX

{

protected:
int
Ptv(int)
Ptv(int)
int
void init
void init
void init
void init

public:

ArrayGenSimplest (Type) ();

ArrayGenSimplest(Type) (int nil);

ArrayGenSimplest(Type) (int nl, int n2);

ArrayGenSimplest(Type) (int nl, int n2, int n3);
ArrayGenSimplest (Type) (const Ptv(int)& n); // multiple index
“ArrayGenSimplest (Type) O {}

// NOTE:
// than
BooLean
BooLean
BooLean
BooLean

BooLean

these redim functions are not inline and less efficient
the redim functions in VecSimplest!!

redim
redim
redim
redim

(int n1); // one-dim. array

(int n1, int n2); // two-dim. array

(int n1, int n2, int n3); // three-dim. array

(const Ptv(int)& n); // multiple index (arbitrary-dim.)

compatible (const ArrayGenSimplest(Type)& a,

void setBase

void setBase

void setBase

void setBase

BooLean error_message = dpTRUE);

(int bl);

(int b1, int b2);

(int b1, int b2, int b3);
(const Ptv(int)& b);

// with getBase and getMaxI one can easily determine lower and
// upper bounds on loops involving ArrayGenSimplest objects, while
// getDim finds the length of the loops

// lower index:

93

void getBase (int& bl) const;

void getBase (int& bl, int& b2) const;

void getBase (int& bl, int& b2, int& b3) const;
void getBase (Ptv(int)& b) const;

// upper index:

void getMaxI (int& nl) const;

void getMaxI (int& nl, int& n2) const;

void getMaxI (int& nl, int& n2, int& n3) const;
void getMaxI (Ptv(int)& n) const;

// length of each dimension:

int getDim () const; // the dimension of the array (1D,2D,3D,..)
void getDim (int& nl) const; // length of 1D array

void getDim (int& nl, int& n2) const; // length of 2D array

void getDim (int& nl, int& n2, int& n3) const; // length of 3D array
void getDim (Ptv(int)& n) const; // length of general dD array

Type& singleIndexl (int i); // single index, 1 to total length
const Type& singleIndexl (int i) const;

String arraySize () const;

Type& operator () (int i);

Type& operator () (int i, int j);

Type& operator () (int i, int j, int k);
Type& operator () (const Ptv(int)& index);

const Type& operator () (int i) const;

const Type& operator () (int i, int j) const;

const Type& operator () (int i, int j, int k) const;
const Type& operator () (const Ptv(int)& index) const;

void startIterator ();

BooLean nextEntry (); // is there a next entry? if yes, move to it
Type& thisEntry (); // enables assignment

const Type& thisEntry () const; // enables reading only

// illegal functions (included here with just an error message):
ArrayGenSimplest (Type) (const ArrayGenSimplest(Type)& v);

void operator = (const ArrayGenSimplest(Type)& v);

// CLASS_INFD: not used, no virtual functions

inline Type& ArrayGenSimplest(Type):: singleIndexl (int i)

#ifdef ARRAY_RANGECHECK
index0k1(i);
#endif

return A[i];

inline const Type& ArrayGenSimplest(Type):: singleIndexl (int i) const

#ifdef ARRAY_RANGECHECK
index0k1(i);
#endif

return A[i];

}

94

inline Type& ArrayGenSimplest(Type):: operator () (int i)

#ifdef ARRAY_RANGECHECK
index0k(i);
#endif

return A[i-bm(1)+1];

#ifdef ARRAY_RANGECHECK
index0k(i);
#endif

return A[i-bm(1)+1];

inline Type& ArrayGenSimplest(Type):: operator () (int i, int j)

#ifdef ARRAY_RANGECHECK
index0k(i,j);
#endif

return A[(j-bm(2))*nm(1) + i-bm(1)+1];

#ifdef ARRAY_RANGECHECK
index0k(i,j);
#endif

return A[(j-bm(2))*mm(1) + i-bm(1)+1];
}

inline Type& ArrayGenSimplest(Type):: operator () (int i, int j, int k)

#ifdef ARRAY_RANGECHECK
index0k(i,j,k);
#endif

return A[(k-bm(3))*nm(1)*nm(2) + (j-bm(2))*nm(1) + i-bm(1)+1];
}

/* NOTE: 3-dimensional indexing is not very efficient since it implies
look up in Ptv-objects and several multiplications. If extreme efficiency
is required, one should use an array structure with a pointer for each
dimension (classes with Type*** are not supperted in Diffpack).
Here is a suggested implementation: Derive the class from Vector,
take care of the details and support the Vector interface. Then the
vector/array can be used in all vector computations in Diffpack (e.g.
in linear system solvers).

*/

inline const Type& ArrayGenSimplest(Type):: operator () (int i, int j, int k)

#ifdef ARRAY_RANGECHECK
index0k(i,j,k);
#endif

return A[(k-bm(3))*nm(1)*nm(2) + (j-bm(2))*nm(1) + i-bm(1)+1];

}
/)= oo
inline BooLean ArrayGenSimplest(Type):: nextEntry ()
e
{

current_iterator_index++;

return (current_iterator_index >= 1 && current_iterator_index <= length) 7

dpTRUE : dpFALSE;

}
/)= oo
inline const Type& ArrayGenSimplest(Type):: thisEntry () const
e
{

#ifdef ARRAY_RANGECHECK
if (!(current_iterator_index >= 1 && current_iterator_index <= length))
errorFP("ArrayGenSimplest (Type) ::thisEntry",
"current_iterator_index is out of bounds, probably incorrect use of nextEntry()");
#endif
return VecSimplest(Type)::operator() (current_iterator_index);

}

inline Type& ArrayGenSimplest(Type):: thisEntry ()

#ifdef ARRAY_RANGECHECK
if (!(current_iterator_index >= 1 && current_iterator_index <= length))
errorFP("ArrayGenSimplest (Type) ::thisEntry",
"current_iterator_index is out of bounds, probably incorrect use of nextEntry()");
#endif
return VecSimplest(Type)::operator() (current_iterator_index);

}

KEYWORDS

array, general array, multi-dimensional array

DESCRIPTION

The class implements a multi-dimensional array in terms of a standard, one-dimensional C
array. The multi-dimensional feature is created by offering subscript operators for one, two,
three and Ptv(int) indices. The bases of the indices can be arbitrary (see the example
below). The array is parameterized and can contain any built-in or user defined type, cf.
class VecSimplest (Type). Further features, such as arithmetic operations, are enabled in
the derived class ArrayGen(Type).

96

CONSTRUCTORS AND INITTIALIZATION

There are several constructors. All constructors allocate the proper amount of memory
and initialize the various internal data structure needed for administrating the multi-
dimensional array. The base of each index must be set manually. The default base is 1.
The only user required initialization is to assign values to the entries in the array.

There is a default constructor which coincides with the default constructor of the base class
VecSimplest(Type). The other constructors take the number of entries in each dimension
of the array as arguments. If there are more than 3 dimensions, a Ptv(int) object is given
as argument.

MEMBER FUNCTIONS

If the documentation of class VecSimplest is known and the example below is studied,
most of the member functions should be self-explanatory.

redim - redimensions the array. With this function one can change the dimension of the
array, and the number of entries of each dimension. The base is set to 1.

setBase - enables the programmer to choose an arbitrary base for the index of each
dimension.

getBase - returns the base of the index of each dimension.

getMaxI - returns the upper index value of each dimension. If one wants a loop over the
array entries and need to extract the lower and upper loop limits, getBase will give the
lower limits, while getMaxI will give the correct upper limits.

getDim - returns the number of array entries in each dimension. Note that if the base is
unity, the number of entries equals the return values of getMaxI. To redimension another
array, getDim extracts the correct size. If the bases should also coicide, one must extract
the bases (getBase) and set them in the new array (setBase) after the declaration.

singleIndex1 - enables the programmer to index the possibly multi-dimensional array by
using a single index. This is convenient if the programmer wants to avoid separate loops
over each dimension (hence there is no need for getBase or getMaxI or knowledge of the
number of dimensions).

arraySize - returns a string containing the array size, e.g., for a 2-dimensional array
[0:3]x[-1:4] it simply returns the string ”[0:3]x[-1:4]”.

operator () - enables subscripting of the array. The number of dimensions must be known
and the index must be correct with respect to the base of each dimension. NOTE: 2- and
3-dimensional indexing are not very efficient since it implies look up in Ptv-objects and
several multiplications. If extreme efficiency is required, one should use an array structure
with a pointer for each dimension (classes with Type[][][] are not supperted in Diffpack,
but for 2-dimensional arrays one can use MatSimplest and its subclasses). Here is a sug-
gested implementation: Derive the class from Vector, take care of the details and support
the Vector interface. Then the vector/array can be used in all vector computations in
Diffpack (e.g. in linear system solvers).

startIterator - starts an iteration over all the array entries.

nextEntry - moves a pointer to the next entry in the array. Returns a true value of there
is a next entry, if not, a false value is returned.

thisEntry - returns the value of the current entry. Actually, a reference is returned so that
the function can be used for assigning values to entries (only true for a const object).

Be aware that ArrayGenSimplest does not require the Type class to have an operator=.
Hence, the copy constructor or the assignment operator has no meaning for ArrayGenSimplest.

97

Since C4++ automatically makes such functions if they are not explicitly declared (and such
automatically generated functions lead to serious errors in the present case), the functions
are declared, but the content is just an error message.

EXAMPLES

// two-dimensional array with each index starting at O:
ArrayGenSimplest(real) v (10, 10);

v.setBase (0, 0);

// valid indices: v(i,j), where 0 <= i,j <= 9

// four-dimensional array with first index starting at 0, the others
// starting at 1:

Ptv(int) b(4), n(4), i(4);

n(1) = 10; n(2) = 5; n(3) = n(4) = 8; // dimensions

b(1) = 0; Db(2) = b(3) = b(4) = 1; // base
ArrayGenSimplest(real) w (n);

w.setBase (b);

i(1) = 1; i(2) = i(3) = i(4) = 3; // 4-tuple index

w(i) = 6; // assignment, one entry

// three-dimensional array of class Thing objects, each index base
// equals -1, each dimension of the array equals 3:
ArrayGenSimplest(Thing) t (3,3,3);

t.setBase (-1,-1,-1);

t(0,-1,1).scan (cin);

// copy a to b manually (ArrayGenSimplest(Type) has no operator=
// function, cf. class VecSimplest(Type):

int n1, n2; a.getDim (n1,n2);
ArrayGenSimplest(real) b(nil,n2);
int j,k,j1,k1,jn,kn;
a.getBase (j1,k1); a.getMaxI (jn,kn);
for (j=j1; j<=jn; j++)
for (k=k1l; k<=kn; k++)
b(j,k) = a(j,k);

SEE ALSO

class ArrayGen(Type), class VecSimplest (Type)

DEVELOPED BY

SINTEF Applied Mathematics, Oslo, Norway, and University of Oslo, Dept. of Mathemat-
ics, Norway

98

AUTHOR

Hans Petter Langtangen, SINTEF /UiO

99

A.2.4 ArrayGenSimple

NAME

ArrayGenSimple(Type) - general array with operator= and printing

INCLUDE

include "ArrayGenSimple.h"

SYNTAX

class ArrayGenSimple(Type) : public virtual VecSimple(Type),
public ArrayGenSimplest(Type)

{
// recall: virtual base class VecSimplest(Type)
public:

//-——=———— constructors and destructor:

ArrayGenSimple(Type) O ;

ArrayGenSimple(Type) (int n1);

ArrayGenSimple(Type) (int nl, int n2);

ArrayGenSimple(Type) (int nl, int n2, int n3);

ArrayGenSimple(Type) (const Ptv{(int)& n); // multiple index
“ArrayGenSimple(Type) () {}

BooLean redim (int n1)
{ return ArrayGenSimplest(Type)::redim(n1); }

BooLean redim (int nl, int n2)
{ return ArrayGenSimplest(Type)::redim(nl,n2); }

BooLean redim (int nl1, int n2, int n3)
{ return ArrayGenSimplest(Type)::redim(nl,n2,n3); }

BooLean redim (const Ptv(int)& n)
{ return ArrayGenSimplest(Type)::redim(n); }
//-=—====—= indexing operators

Type& operator () (int i)
{ return ArrayGenSimplest(Type)::operator()(i); }

Type& operator () (int i, int j)
{ return ArrayGenSimplest(Type)::operator()(i,j); }

Type& operator () (int i, int j, int k)
{ return ArrayGenSimplest(Type)::operator()(i,j,k); }

Type& operator () (const Ptv(int)& index)
{ return ArrayGenSimplest(Type)::operator() (index); }

const Type& operator () (int i) const
{ return ArrayGenSimplest(Type)::operator()(i); }

const Type& operator () (int i, int j) const
{ return ArrayGenSimplest(Type)::operator()(i,j); }

100

const Type& operator () (int i, int j, int k) const
{ return ArrayGenSimplest(Type)::operator()(i,j,k); }

const Type& operator () (const Ptv(int)& index) const
{ return ArrayGenSimplest(Type)::operator() (index); }
/)= various standard functions
void operator = (Type a) { VecSimple(Type)::fill(a); }
void operator = (const ArrayGenSimple(Type)& a);
void fill (const Type& a) { VecSimple(Type)::fill(a); }
void print (0s os, const char* header = NULL,
int nentries_per_line = 3) const;
void printAscii (0Os os, const char* header = NULL) const;

void scan (Is is);

//CLASS_INFO: not used

KEYWORDS

array, finite difference methods, point operators, general array, multi-dimensional array

DESCRIPTION

The class implements a multi-dimensional array in terms of a standard, one-dimensional
C array. The multi-dimensional feature is created by offering subscript operators for one,
two, three and Ptv(int) indices. The bases of the indices can be arbitrary (see the ex-
ample below). The only requirement of the array entries is that class Type must have a
constructor without arguments and operator=, operator>> and operator<<. There are
no assumptions that the entries in the array can be used in arithmetic operations like +,

-, xand /.

The present class has class VecSimplest (Type) as a virtual base class.

CONSTRUCTORS AND INITTIALIZATION

See documentation for class ArrayGenSimplest (Type).

MEMBER FUNCTIONS

The member functions should be self-explanatory if the documentation of the classes
VecSimplest(Type), VecSimple(Type) and ArrayGenSimplest(Type) has been studied.

EXAMPLES

See documentation for class ArrayGenSimplest (Type).

101

SEE ALSO

class ArrayGenSimplest (Type), class VecSimple(Type)

DEVELOPED BY

SINTEF Applied Mathematics, Oslo, Norway, and University of Oslo, Dept. of Mathemat-
ics, Norway

AUTHOR

Hans Petter Langtangen, SINTEF /UiO

102

A.3 Error handling functions

A.3.1 errors

NAME

errors.h - definition of error and warning message functions

INCLUDE

include "errors.h"

SYNTAX

// function pointers for error/warning message functions:
typedef void (*#messageFP)(charx,...);

extern messageFP errorFP;
extern messageFP fatalerrorFP;
extern messageFP warningFP;

// as errorFP but returns an int or int*
typedef BooLean (*messageFPbool)(char#,...);
extern messageFPbool errorFPret;

typedef int#* (#messageFPintPtr)(char*,...);
extern messageFPintPtr errorFPptr;

extern void setMaxWarnings(int);

KEYWORDS

error messages, warning messages, fatal error

DESCRIPTION

Error and warning messages in a program should be reported at the places where they
occur. This is performed by calling an error or warning message function through a function
pointer. There are three such pointers: 1) errorFP, reporting an error, 2) fatalerrorFP,
reporting a fatal error and 3) warningFP, reporting a warning. An error leads to a prompt
for further execution (the user must hit carriage return or click on an ok-button), a fatal
error leads to abortion of the program while a warning message makes no interruption of
the execution.

The programmer must decide which error/warning message function to use, according
to the expected consequences for further execution of the program. The main guidelines
are that a fatal error is required if further execution is expected to lead to core dump,
segmentation fault or meaningless results, an error is issued if the results are likely to be
wrong but execution is technically possible, and a warning is issued if further execution
may yield acceptable results.

The error/warning message functions take a charx* as the first argument. This is the name
of the function in which the error or warning has occured. If the function is a member

103

function of a class, the complete name should be gien (see ghe example below). The next
arguments follow the same syntax as the arguments to the standard printf C function.
That is, a string, with formatting indications, and possibly some variables can be given.
This allows the programmer to report the contents of variables. Examples are given below.
In parameterized classes it may be convenient to use oform type of function to format the
name of the function where the error was found. However, the error functions also use
oform so care must be taken. The programmer should use the eform function, which is
equivalent to oform except that the resulting formatted string is allocated separately and
not a part of the oform buffer. In other words, a grep on errorFP(oform) should not
result in any output! The aform function could be used, but then a cast and a call to the
String::chars() function are required - it is simpler to use eform (acutally, the e stands
for error and indicates that this is the version of oform that is suited in conjuction with
the error functions).

In the future a tool will be developed that collects all calls to warning and error functions
in a separate file. This information can be automatically be formatted for documentation
of possible error messages from a module or the messages can be translated no other
languages than English (tools for re-inserting the translated messages will be provided).
Hence, at the present stage it is only necessary to report errors/warnings at the places
where they occur, using the functions described above, and future tools will be based on
this convention and will offer sophisticated documentation of the messages.

The function pointers errorFP, fatalerrorFP and warningFP are at compile time set
to default values which corresponds to functions that writes the messages to standard
output. Other choices are possible, for example, the pointers can be set to functions
that report the messages in windows. The functions setErrorMessageInWindows() and
setErrorMessageOnStdout() set the function pointers to the two possible choices, win-
dow messages or messages on standard output. In addition, the function setMaxWarnings
is used to force program exit after a given number of warnings is issued.

It should be mentioned that empty functions are often equipped with an error message to
tell the user that the body of the function is not implemented. In cases where the function
returns a value or a pointer it is convenient to return a call to an error function that has
int or intx* as return value. This is provided by the two function pointers errorFPret
(returns int) and errorFPptr (returns intx).

EXAMPLES

Suppose that i is an index in an array. If i is less than zero, it is out of bounds and a fatal
error message with program abortion should be issued. On the other hand, other program-
mers would perhaps consider an index out of bounds to be an error, further execution is
allowed if the user wants.
if (1 < 0)
fatalerrorFP("myfunction","i is negative (i=%d)",i);

void MyClass:: test ()
{
real r; int s;
// some code
if (i)
errorFP("MyClass::test","wrong status, r=%5.2f, s=%d",r,s);

104

DEVELOPED BY

SINTEF Applied Mathematics, Oslo, Norway, and University of Oslo, Dept. of Mathemat-
ics, Norway

AUTHOR

Hans Petter Langtangen, SINTEF/UiO. The basic structure of the code was provided by
Per Oyvind Hvidsten, SINTEF.

105

Index

Poisson distribution 73 continuous distribution 59, 63
QR decomposition 48, 51 data editing 81
ArrayGenSimple(nMatrix) 46 data set 81
ArrayGenSimplest(nMatrix) 45 discrete distribution 61
ArrayGenSimplest 93 double array 6
ArrayGenSimple 100 double matrix 22, 29, 34
BaseArray 5 double vector 12

BaseInt Array 8 eigenvalues 37

BooLean 84 error messages 103
DataSet 81 exponential distribution 69
Eigen 37 factorial 76, 78
GenLeastSquaresQR 51 fatal error 103
LeastSquaresQR 48 file 80

RandExp 69 finite difference methods 101
RandGamma 71 gamma distribution 71
RandNormal 67 general array 101, 96
RandPoisson 73 generalized least squares 51
RandStdNormal 65 index vector 17

RandUnif 63 integer array 9
RandomCont 59 integer vector 17
RandomDisc 61 least squares 48, 51
RandomGen 57 linear algebra 37, 39
RandomStream 55 logical 84

Svd 39 lower triangular matrix 34
SymMatrix 27 matrix 22, 29, 34, 37, 39, 41, 42, 45, 46
TriangMatrix 33 multi-dimensional array 96
VecSimple(nIntVector) 44 multi-dimensional 101
VecSimple(nMatrix) 42 normal distribution 65, 67
VecSimplest(nIntVector) 43 point operators 101
VecSimplest(nMatrix) 41 random numbers 55, 57, 59, 61, 63, 65, 67,
VecSimplest 85 69, 71, 73
VecSimple 89 random stream 55, 57, 59, 61, 63
binCoef 77 rectangular matrix 22
countNumbers 80 simple vector 41, 42, 43, 44
dbinCoef 79 singular value theorem 39
dnfac 78 singular values 39

errors 103 spectral theorem 37
nIntVector 16 square matrix 22, 34
nMatrix 19 symmetric matrix 29
nVector 11 triangular matrix 34

nfac 76 uniform distribution 63
array 101, 101, 45, 46, 6, 86, 89, 96, 9 vector class 86, 89

base class 86 vector 12, 17,41, 42, 43, 44
binomial coefficient 77, 79

boolean 84

106

