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1 Introduction

Many contracts in the energy markets are designed to allow flexibility of deliv-
ery. Both the timing and the amount of energy are allowed to be flexible, within
certain constraints. In the natural gas market, there are many long term contracts
with such flexibility. These contracts typically last for 10 years or more and the
volumes are large. Especially in continental Europe, these contracts contribute to
more than half of the turnover in the gas markets. In the United Kingdom, the
market share is smaller. Most of these contracts are priced according to price for-
mulas linked to other commodities prices, such as oil and coal indexes, often with
a time lag.

Neuhoff and von Hirschhausen (2006) investigate the future of long term con-
tracts in Europe. Their conclusion is that in the short run, the role of long term
contracts in the supply mix is likely to diminish. In the long run, however, they
argue that long term contracts will remain an important element of the natural
gas markets in Europe. Neumann and von Hirschhausen (2005) find that as the
market liberalises, the long term contracts get fewer and the duration shorter.

In addition to the long term contracts, there are several other contracts that
include flexibility. The duration of these contracts are shorter, typically one or
some years. As opposed to the long term contracts, these can be purely financial
contracts, i.e. without physical gas delivery. When the contracts are financial, they
are compared to a gas index, typically NBP or Zeebrügge. Finding a fair price for
these types of contracts is a demanding task, but there is an increasing amount of
research in the area.

This report provides an introduction to commodity-based flexibility contracts,
called swing options, and the valuation of these. We focus on long term flexible
gas contracts, which may be seen as complex swing options.

Chapter 2 explains the contracts in more detail. Chapter 3 deals with valuation
based on simulation, whereas Chapter 4 deals with valuation based on dynamic
programming or other methods (an overview of different methods is given in
Table 2.1). Future work is discussed in Chapter 5. Finally, Chapter 6 summarises.
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2 Background

2.1 Long term take or pay contract
Osikilo (2005) discusses the background on the existence of long term natural
gas contracts. The most important reasons for their existence are ensurance to re-
gain what was initially invested in the gas project for the seller, and security of
supply for the buyer. As the gas markets develop to more liquid market places
with natural gas traded as spot, the need for long term contracts decreases and
in some cases the contracts can force the parties not to operate optimally in the
markets. Osikilo (2005) suggests how to improve the situation for the buyers.
Many of these suggestions are in fact carried out in the market. Most of existing
contracts include renegotiation clauses to adjust the contract according to the de-
velopments in the gas markets. In relation to such renegotiatons, both contract
parties need thorough understanding of the impacts of new contract parameters.
Hence, correct valuation of long term contracts are not important only for pri-
cing when entering the contract and possibly hedging, but also continuously as
renegotioations take place.

Turning to more technical aspects of the long term contracts, a typical price
formula is, according to Asche et al. (2002),

Pp = P0 +
∑
j

αj(AEj − AEj0)EKSEjλj, (2.1)

where Pp is the gas price paid to the producer, P0 is the basis price, αj is the weight
for substitute j. Often,

∑
j αj = 1. (AEj − AEj0) is the price change for substitute

j, (actual minus historic price). EKAEj is an energy conversion factor. λj is the
“pass through factor” for price changes in substitute j. λj is typically 0.85 or 0.90.
Hence, the producers are carrying a large part of the price risk. Current prices are
computed as averages of periods of three to nine months.

From our experience, however, we have seen that the price formulas can be
more complicated than (2.1). The contract price can typically depend on several
different commodity indexes. This dependence can also be non-linear, and there
might be limits on to what levels the indexes can reach (like in floor and roof
options). This makes the future prices difficult to foresee, and both seller (often a
producer) and buyer are exposed to several commodity indexes.

One general example of such a formula can be

Pp = P0 + k0(α1OIL1λ1 + α2OIL2λ2 + α3COAL1λ3), (2.2)

Valuation of Commodity-Based Swing Options: A survey 9



where P0 and k0 are constants. αi, i = 1, 2, 3, are weights that add up to one, and
λi, i = 1, 2, 3, are energy conversion factors. The commodity indexes (here OIL1,
OIL2 and COAL1) are typically some indexes that the buyer already is exposed
to, such as high or low sulphur oil delivered in Germany for a contract with de-
livery in the same country. In some cases, there can be limits on the indexes. For
example, OIL1 is replaced with OIL∗

1 = max(OIL1, K), where K is a pre-defined
value. To be able to valuate long term contracts correctly, all commodity indexes
should be treated with the appropriate dependencies. Without strong simplifica-
tions, this puts high demands on the complexity of the underlying price processes
in the valuation algorithms.

In addition to the value of swing options, finding an optimal exercise strategy
is of interest. Knowing the optimal exercise strategy, the buyer can follow this
when nominating volumes and the seller can predict the buyers nominations.

2.2 Constraints and penalties
A flexible commodity contract can be flexible in many ways (see e.g. (Asche et al.,
2002)). In the following, we describe the most common constraints. One contract
may include some, but not necessarily all of the following constraints.

DCQ (Daily Contract Quantity): A minimum (min DCQ) and maximum (max
DCQ) volume that can be taken out of the contract each day. Typical values
of min DCQ and max DCQ are 40 % and 110 %, respectively.

ACQ (Annual Contract Quantity): A minimum and maximum volume that can
be taken out of the contract each year. Typical values of min ACQ and max
ACQ are 90 % and 110 %, respectively.

CF (Carry Forward) and MU (Make Up): A carry forward right gives the holder
of the option the possibility to build up unused flexibility for following years.
Typically, volumes taken above minimum ACQ reduces the minimum ACQ
level the following year, but up to a certain amount. A make up right is the
possibility to use more flexibility in the current year by reducing the flexibil-
ity in following years, being the opposite of a carry forward right. For both
carry forward and make up, the original min ACQ often holds on the average
over some years.

Typical values for CF or MU are 3%, i.e. min ACQ can be temporarily ad-
justed with 3%. The period over which the total min ACQ should not be
violated is typically 3 or 5 years long.

TA (Temperature Adjustment): If the temperature in certain months is higher or
lower than the historical temperature (index), the min ACQ may be changed.
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HM (Hardship Month): If the next month’s forward price is below next month’s
contract price multiplied by a constant, the next month is declared as a “hard-
ship month”. No penalty will be given for violating minimum contract volumes
during the next month.

P (Penalty): If, e.g., less than min ACQ is taken out during a year, the difference
is subject to a penalty.

R (Rebate): If the contract holder has taken out more than a specified volume
this year, the contract price is reduced by a certain percentage or a fixed sum.

In some sense, a rebate is the opposite of a penalty.

Ramping: These constraints limit the slope of the load pattern corresponding to
a given exercise strategy. In other words, you cannot increase or decrease the
volume taken out too fast. This is more common in electricity swing options
(Haarbrücker and Kuhn, 2006).

Other constraints: In addition to daily and yearly volume restrictions, there can
be, e.g., weekly, monthly or quarterly volume constraints as well. Swing op-
tions, at least for electricity prices, can be rights to exercise only in base, peak
or off-peak hours. Furthermore, there can be a restriction on the number of
swings (Dörr, 2003).

The contracts usually have a renegotiation clause. Renegotiation takes place
when the contract terms are far from the current market conditions.

A price adjustment clause allows the price to be renegotiated when the mar-
ket price of gas is substantially different from the contract price.

Large volumes may affect prices (it may not be possible to exercise an option
fully). This reduces the flexibility and the value of flexibility. If there is a port-
folio of contracts, ideally, all contracts should be optimised simultaneously.

2.3 Swing option valuation
Generally, a swing option is equal to N nested American-style call options (N
being the number of exercise rights), similar to a Bermudan option. But while
the Bermudan option has predetermined exercise dates, the swing option has
further optionality. An upper bound of the value of the swing option with N ex-
ercise rights is given byN identical American options. A lower bound is given by
the maximum value of N European options, with predetermined exercise dates.
WhenN = n (n being the number of exercise dates), the value of the swing option
is equal to a series of European options.

Valuation of Commodity-Based Swing Options: A survey 11
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3 Simulation based swing option valu-
ation

In this chapter, we give a short description of the simulation based valuation
methods and comment on their advantages or disadvantages.

3.1 Least-squares Monte Carlo (LSM)
Longstaff and Schwartz (2001) describe a method for valuing American options
using least-squares Monte Carlo simulations (LSM). The method uses scenarios
from any price process, giving full flexibility on the underlying price process. We
will first describe the method for pricing American options, and the extend it to
swing options (Section 3.1.1).

The idea is to work backwards in time. At the last time step (i.e. the last day
of the contract period), the option is exercised if the option is in the money and
expired if not. At the time step prior to the last time step, the holder has two pos-
sibilities. If the option is not in the money, the option is not exercised. If the option
is in the money, the option is exercised if the instant payoff is higher than the ex-
pected value of waiting, which is referred to as the continuation value. The idea
behind the least-squares Monte Carlo method is to use least-squares regression
to find the continuation values.

The method starts with defining a set of basis functions and use a regression
to find the parameter vector βi for each time step i in (3.1) below. The idea is based
on following equality

E[Vi+1(Si+1)|Si = x] =
M∑
r=1

βirψr(x). (3.1)

Here, Vi is the value of the option (which is known at the final time T ). Si is the
price of the underlying, ψr(x) r = 1, . . . ,M are the basis functions and βir are the
parameter vectors to be estimated. It can be shown that (3.1) is true whenM →∞.
The method assumes that for a finite M , we have an appropriate approximation.
βir are estimated by least-squares regression, hence the name of the method.

The basis functions can be functions of the underlying asset, or different states
of factors included in the price process. Typically they are polynomials of degree
M − 1. The regression is done with price paths that are in the money only and
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each continuation value, Ci(x), is computed as

Ci(x) = ψ(x)T · βi. (3.2)

The equation for the regression to estimate βi is

ψ(Si)
T · βi = e−r∆t · Vi+1, (3.3)

where r∆t is the discounting factor with interest rate r.
The simulation algorithm is as follows:

· Simulate b price paths

· Set V̂Tj = h(STj) at the end points of each price path, j = 1, ..., b, where h(STj)

is the payoff at time T

· For each time step, i = T − 1, ..., 1, work backwards in time

– Calculate β̂i with estimated values V̂i+1,j from (3.3)

– Calculate continuation values Ĉi(Sij) using β̂i as in (3.2)

– Set

V̂ij =

{
h(Sij), if h(Sij) ≥ Ĉi(Sij)

e−r∆tV̂i+1,j, if h(Sij) < Ĉi(Sij)

· The option value is given as V̂0 = (V̂11 + · · ·+ V̂1b)/b

Stentoft (2004) shows that the least-squares Monte Carlo method gives results
that converge to the true expectation functions for American option valuation as
the number of scenarios gets large. Clément et al. (2002) also treat the conver-
gence of the least-squares method. They contribute with information on the rate
of convergence.

3.1.1 LSM for swing options
Meinshausen and Hambly (2004) use the least-squares Monte Carlo method and
extend the algorithm to swing options. The method is based on the Longstaff-
Schwartz method described above, but it is modified for multiple exercise rights.
The modified algorithm for n exercise rights is as follows:

· Simulate b price paths

· Set V̂ (k)
Tj = h(STj) for k = 1, ..., n at the end points of each price path, j =

1, ..., b, where h(STj) is the payoff at time T and k is the number of remaining
of exercise rights

· Set Ĉ(k)
Tj = 0 for k = 0, ..., n and all price paths, j = 1, ..., b

14 Valuation of Commodity-Based Swing Options: A survey



· For each time step, i = T − 1, ..., 1, work backwards in time

– Calculate β̂(k)
i with estimated values V̂ (k)

i+1,j from (3.3) for k = 0, ..., n

– Calculate continuation values Ĉ(k)
i (Sij) using β̂i

(k)
as in (3.2) for k =

0, ..., n

– Set
V̂

(k)
ij = max{h(Sij) + Ĉ

(k−1)
ij , Ĉ

(k)
ij }

for all price paths, j = 1, ..., b and k = 1, ..., n with Ĉ(0)
ij = 0

· Simulate b new price paths

· For each time step i = 1, ..., T , each price path j = 1, ..., b and each exercise
right, work backwards

– Compute Ĉ
(k−1)
ij and Ĉ

(k)
ij until h(Sij) + Ĉ

(k−1)
ij > Ĉ

(k)
ij and set V̂ (k)

j =

e−ri∆th(Sij)

– Continue the loop until h(Sij) > Ĉ
(1)
ij and set V̂ (1)

j = e−ri∆th(Sij)

· The option value is given as V̂0
n

= 1
b

n∑
k=1

b∑
j=1

V̂
(k)
j

The estimation of the value of a swing option needs two sets of price scenarios
from the same price process. The algorithm finds a negative-biased value, but
the accuracy is increased with the number of price scenarios. Further, a positive-
biased value can be estimated with a new set of price scenarios. Gravås (2004)
uses the method described above to estimate values of short term swing options
using a more realistic gas price process than the one used by Meinshausen and
Hambly (2004).

In the literature, only a few constraints from Section 2.2 are treated or dis-
cussed. Meinshausen and Hambly (2004) treat a fixed number of maximum exer-
cise rights. Dörr (2003) uses the same methods and treats constraints with respect
to the number of swings, but not with respect to volumes. He also shows how
an exercise strategy can be derived from the least-squares Monte Carlo simula-
tion. Figueroa (2006) follows up on the work of Dörr (2003), and provides pri-
cing under a mean-reverting jump-diffusion (MRJD) model with seasonality. For
the computation of the lower bound for the price, he provides a formula, which
greatly reduces the computational burden.

Thanawalla (2005) comments on the least-squares Monte Carlo method. He ar-
gues that, although flexible with many basis functions, the standard deviation of
the estimated coefficients in the regressions gets very high when many basis func-
tions are used. He proposes the use of non-parametric regression using splines.
However, he seems to have problems when the number of exercise rights gets
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high. Already with 25 exercise rights, his method needs more than eight hours to
run. Thanawalla (2005) also describes how penalties for validating volume con-
straints can be treated using the least-squares Monte Carlo approach.

Boogert and de Jong (2008) develop a least-squares Monte Carlo valuation
method for storage contracts, which incorporates “realistic gas price dynamics
and complex physical constraints”. The price process is a one-factor model with
drift. The constraints are given as limits on maximum injection and withdrawal
rates, cost on injection, profit of withdrawal (both transaction and bid-ask spreads)
and, finally, minimum and maximum volume for the gas storage. In the example
studied, the pricing algorithm converges very fast; “as few as 50 simulations of-
ten suffice”, which is extraordinary few. The authors also discuss computational
issues, and claim that it is sometimes sub-optimal to choose between maximum
possible injection, maximum possible withdrawal and no action, hence that the
bang-bang property (the optimal daily decision is either min DCQ or max DCQ)
is not always valid.

3.2 Monte Carlo valuation through computation of
the optimal exercise frontier

Ibanez and Zapatero (2004) and Ibáñez (2004) have developed another method
based on simulation to value swing options. The first paper introduces the method
and values Bermudan options and the second paper shows how to modify the al-
gorithm to price swing options.

The idea behind their method is to find an optimal exercise price at every
time step. Knowing the optimal exercise price at all times, one can easily compute
the option price for each price scenario. Here, we give a short description of the
method they developed.

Denote with Pt(Vt, K) the price of the option, where Vt is a vector of stochastic
variables (stock price, interest rate, etc.) and K is the strike price. The method re-
lies on the fact that the optimal exercise frontier is a set of points V ∗

t for which the
value of the un-exercised American option and the intrinsic value of the option
are the same, i.e.

Pt(V
∗
t , K) = I(V ∗

t , K).

Let M be the dimension of the vector of state variables V . One of the state
variables are often S, the price of the underlying commodity, so we write V =

(B, S), where B is the vector of values on which the option depends.
The initial time is set to t0 and maturity at T and exercise dates t1, t2, ..., tN ,

tN = T . Suppose there exists an optimal exercise frontier that divides the state
space Vtn into an exercise and a wait region. Any point on this frontier, V ∗

tn =

(Btn , S
∗
tn) can be characterised by a function F ∗

tn such that S∗tn = F ∗
tn(Btn). If r is
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the interest rate and Q is the risk neutral probability, then at any time tn, the price
of the Bermudan option is given by

Ptn(Vtn , K) = EQ
tn [e−

R τ∗
tn

rsdsI(Vτ∗ , K)|Vtn ], (3.4)

where τ ∗ ∈ {tn+1, ..., T} is the optimal stopping time. (3.4) can be computed by
Monte Carlo simulation if the optimal exercise frontier is known.

At every time step, tn = t1, ..., tN−1, j points of V j,∗
tn are computed. Out of these

points, the optimal exercise frontier, V ∗
tn , is estimated. If the dimension of the state

vector is higher than one, several grid points of {B1
tn , ..., B

J
tn} are needed to com-

pute the corresponding set {S1,∗
tn , ..., S

J,∗
tn }. Having M > 1 state vectors increases

the computation costs significantly.
The value of the option using this method is negatively biased, since F̂tn(Btn)

is estimated with error. The bias reduces when the number of simulations in-
creases.

The computational costs are increasing with the number of state parameters.
With M > 1, the computational costs are much higher than with the least-squares
Monte Carlo method. The grid points, Bj

tn , and the starting points S1,(1)
tn , can be

chosen such that the convergence is fast in each iteration.
To find the value of a swing option, the algorithm is slightly modified in a

similar way as in the least-squares Monte Carlo method, where the decrease in
option value due to an exercise has to be included in the point on the optimal
exercise frontier. The authors also discuss how the optimisation is adjusted when
penalties are given for violating minimum or maximum quantities.

3.3 Commercial alternatives
A company called Maycroft1 is selling software for both swing option valuation
and storage valuation, using least-squares Monte Carlo methods, based on (Boo-
gert and de Jong, 2008; de Jong and Walet, 2003). The underlying price process
seem to be a fairly simple mean-reversion model;

logSt = logSt−1 + α(µ− logSt−1) + σεt, (3.5)

where εt ∼ N (0, 1), but more general price processes can be used, since the pri-
cing is based on least-squares Monte Carlo methods. In addition, other commer-
cial alternatives may exist.

1. http://www.maycroft.com/
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4 Non-simulation based swing
option valuation

In this chapter, we describe different valuation methods based on dynamic pro-
gramming (and similar methods) found in the literature. We give a short descrip-
tion of the methods and comment on their advantages and disadvantages.

4.1 Dynamic programming
Jaillet et al. (2004) develop a framework for valuing swing options based on dy-
namic programming with a trinomial tree (see Figure 4.1). They use a one-factor,
seasonal, mean-reverting price process for the underlying commodity price. The
dynamic programming procedure starts from the option’s expiry date and works
backwards in time to value the option using “backward induction” in three di-
mensions; price, number of exercise rights left and volume. The price can be rep-
resented with more than one state variable if necessary. At each discrete point in
time, the exercise possibility is evaluated by finding the most profitable of staying
in the current tree and jumping down to the tree with one less exercise right left.

The method requires discretisation in both volumes and prices. The computa-
tional burden increases according to nJN2L2/2, where n is the number of exercise
dates,N is the number of exercise rights, J is the number of nodes associated with
the underlying spot price and L is the number of exercise amounts. Typical values
(n = 365, J = 5?, N = 200, L = 5) would give approximately 109 computations.

Regarding the constraints, the authors point out that restrictions in the con-
tract can be captured by specification of a general penalty function. Assuming
the volume has to be in the interval [Vmin, Vmax], a penalty function can be

φ(V ) =


∞ if V < Vmin

0 if Vmin < V < Vmax

∞ if V > Vmax.

With such penalty functions, volume constraints can be taken into account, both
daily and periodical.

Lari-Lavassani et al. (2001) use dynamic programming to value swing options.
They use both one-factor and multi-factor models and are one of the first to use
mean-reverting processes for pricing swing options. Baldick et al. (2006) also use
dynamic programming to value swing type contracts. They investigate interrupt-
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Finally, we were unable to demonstrate a violation of single-threshold when the strike prices

are the same.13

0

0

0

0 0 0

0

0
0

0

0

0

0 rights exercised, 0 units bought

1 right exercised, 2 units bought

2 rights exercised, 4 units bought

Trinomial Forest for Swing Option − Fixed Strike 2.40 $/MMBTU

0.24/2

2.00/2
2.00/2

0.16/0

1.72/2

0.68/0

0.32/0

0.79/0

0.24/2

2.00/2
0.73/2

0.16/0

3.68/23.43/2

1.12/0

0.46/0

1.39/0

0.49/0

Figure 6. A four-month trinomial forest for pricing a swing with 2 rights left. Fixed strike
price of $2.40 per MMBTU. No penalties, maximum amount bought at each exercise: 2
MMBTU.

13Details are available from the authors.

26

Figure 4.1. Figure from (Jaillet et al., 2004). A numerical example of pricing a swing option
with two exercise rights left using a trinomial tree.

ible electricity contracts using a structural demand/supply model. They conclude
that, in a de-regulated market, interruptible contracts may alleviate supply prob-
lems due to price spikes.

4.2 Parametric approximation
Barrera-Esteve et al. (2006) present several numerical methods for valuing swing
options. They summarise the methods using least squares Monte Carlo simula-
tion and the dynamic programming approach.

In addition, they introduce alternative algorithms based on parameterisations
of the gas consumption. Observations from these methods lead them to an inter-
esting theoretical result; under some assumptions (that are valid for all relevant
practical cases) the optimal strategy is of bang-bang type, i.e. the optimal daily
decision is either min DCQ or max DCQ, which is an intuitively reasonable res-
ult.

Let q be a given consumption strategy, Φ(·) instantaneous profit and PT some
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terminal penalty. Then they formulate the swing option price as

J (q) = E

(
N−1∑
i=0

Φti(qti , Fti , Qti) + PT (FT , QT )

)
,

where the expectation is performed under the risk-neutral probability measure
Q. ti is a fixed date, tN = T , F is the gas price and Q is the volume constraint. The
authors seem to have DCQ and ACQ constraints in mind, but almost any penalty
function should work.

To value the option, they assume that consumption decisions are based on the
underlying asset price, and not on the real needs of gas. Thus, the price is given
by

sup
q
J (q).

Barrera-Esteve et al. propose two methods for parameterising the consump-
tion function q. With a neural network approach and using the bang-bang prop-
erty, they introduce a faster algorithm with a direct parameterisation of the pur-
chase threshold. This parameterisation does not give a smooth option price func-
tion J (θ). Hence, they introduce a specific optimisation procedure.

The new methods can, like the least-squares Monte Carlo methods, handle
multi-factor models. The authors argue that these methods are advantageous,
since they give intermediate prices throughout the optimisation stage. Results
are shown from all methods, using a numerical example. The results are similar.
However, the dynamic programming approach seems to give slightly higher val-
ues of the swing options. They do not comment further on why this is the case.

4.3 Numerical integration
The integrals involved in pricing a swing option may be solved using all sorts of
numerical integration.

Andricopoulos et al. (2007) do not consider swing options, but path-dependent
options with one or more underlying. They compare their method with, amongst
others, Longstaff and Schwartz (2001). The method is based on numerical quad-
rature methods (QUAD), which are very fast. The authors claim that QUAD out-
performs grid and lattice methods, and even the Monte Carlo method when there
are five underlying assets or when there are early exercise features. It remains to
see if this method is flexible enough to handle swing options with constraints and
realistic price processes.

Bardou et al. (2007a) investigate a numerical integration method, the so-called
optimal (vector) quantisation, for the pricing of swing options. The method seems
promising, since “the optimal quantisation method shares the good properties of
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the so-called tree method but is not limited by the dimension of the underlying”.
The method is compared with the LSM method, which is comparably slower and
less precise. The authors seem to have DCQ and ACQ constraints in mind, and
demonstrate use on both one- and two-factor models. In a corresponding art-
icle (Bardou et al., 2007b) the same authors show that the optimal strategy is
of bang-bang type when the constraints are global (which the ACQ constraints
are). Apparently, this is a stronger result than the bang-bang result obtained by
Barrera-Esteve et al. (2006).

By transforming the multiple stopping problem, which a swing option really
is, into a series of single stopping time problems, Wilhelm and Winter (2006) ap-
plies finite element methods for the pricing of swing options. The speed and ac-
curacy is “superior” to Monte Carlo methods.

4.4 Further methods
Haarbrücker and Kuhn (2006) investigate pricing of electricity swing options.
They use stochastic programming, which they argue is more flexible than dy-
namic programming. The underlying price process is a forward price model.
They include one more constraint on the swing option, ramping. Ramping means
that the volume can not be instantly changed. As an example, it takes several
hours to increase the volume from minimum to maximum. This is relevant for
physical situations like power plants with limited start-up speed.

Stochastic programming should not be mixed with dynamic programming.
Stochastic programming is still attractable when the price processes have several
factors. For such cases, the dynamic programming algorithms often require high
computational efforts. The stochastic programming algorithms are fairly complex
and demands higher implementation efforts.

Bender and Schoenmakers (2006) introduce a new iterative method, not based
on backward dynamic programming. They argue that their method is theoretic-
ally as good as methods based on backward dynamic programming, but may be
“superior from a practical point of view”.
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5 Future work

We have found no literature on swing option pricing that include all constraints
described in Section 2.2. For long term gas contracts, some of these constraints
could add significant value to the contracts. In the following we discuss hardship,
temperature adjustment, carry forward and make-up rights.

5.1 Hardship and temperature adjustment
To consider hardship months, one possible solution would be to simulate or com-
pute forward prices in addition to spot prices. If the forward prices are known,
the buyer can consider the impact due to hardship months. Temperature adjust-
ment might be included by simulating temperature, preferably correlated with
the gas prices. However, both hardship months and temperature adjustments are
assumed to have relatively low impact on the contract values. In addition, the
methods for including these constraints in the pricing algorithms would be fairly
straight-forward, yet computationally demanding.

5.2 Carry forward
In cases when the forward curve is not flat, it is obvious that carry forward flexib-
ility is valuable for the option holder. As the gas prices are volatile, carry forward
may add significant values to the contracts.

If the contract includes carry forward, the option holder has the possibility to
postpone unused flexibility into the future. All volumes nominated above min
ACQ are saved in a carry forward account. These volumes can be reduced from
min ACQ in future years. Imagine, for example, that an option holder nominates
95% of ACQ one year in a contract with min ACQ equal to 90%. The option holder
now has 5% in the carry forward account. These 5% can be reduced from min
ACQ in a following year, such that 90-5%=85% is enough to fulfil the contract
constraints. If 85% is nominated in a following year, the carry forward account
is reduced by 5% again, such that there are no carry forward rights left in this
example. However, carry forward rights can be built up again.

Both carry forward and make-up have a limited duration, such that after a
certain period of years, unused rights are deleted. If, for example, the duration is
five years and the buyer nominates 95, 90, 90, 90, 90, 90% in a contract with min
ACQ 90%, the 5% carry forward rights that are built up the first year are deleted
from the carry forward account after five years. Contrary to the make-up right,
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carry forward volumes are paid for when taken.
We believe that including carry forward constraints in the pricing algorithms

can contribute to the existing theory of swing options pricing. A natural way to
include these constraints is to define more penalty functions. Below, we introduce
penalty functions ((5.1) and (5.2)) to consider DCQ, ACQ and carry forward. See
Table 5.1 for notation.

Symbol Description
Vt Volume nominated at day t = 1, . . . , N

N Number of days in contract period
V (y)

∑y·365
t=1+(y−1)·365 Vt, volume nominated for year y

CF(y)
acc Accumulated carry forward in year y

nY Number of duration years for carry forward
Vmax CF Maximum reduction of volumes due to carry forward rights

Table 5.1. Symbols with description.

Daily penalty function:

φt(Vt) =


∞ if Vt < min DCQ

0 if min DCQ < Vt < max DCQ

∞ if V > max DCQ.

(5.1)

Yearly penalty function:

φy(V
(y)) =


∞ if V (y) < min ACQ−max

(
Vmax CF,CF(y)

acc

)
0 if min ACQ < V (y) < max ACQ

∞ if V > max ACQ.

(5.2)

An infinite penalty (so-called “firm constraints”) implies that the contract holder
is not allowed to violate the constraints. In some cases, if, e.g., less than min ACQ
is taken out during a year, the difference is subject to a (finite) penalty. However,
max ACQ is always a firm constraint.

5.3 Make-up right
Often, the reduction of volumes due to carry forward rights is limited, typic-
ally to 10%, such that no less than min ACQ-10% can be nominated in a year,
regardless of the amount in the carry forward account. If the option holder nom-
inates volumes below minimum permissible volumes, the volumes that are not
nominated have to be paid for (hence these contracts are often called take-or-pay
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contracts). If the contract includes make-up rights, gas that is not nominated, but
paid for, can be nominated in a following year. In some sense, this can be seen as
the opposite of carry forward. Examples of nominations in contracts with carry
forward and make-up rights are illustrated in Figures 5.1 to 5.4.

110%

90%

50%

Figure 5.1. Example of make-up with five years duration. Black lines denote the contract
min and max ACQ, which are 90% and 110%, respectively. The red lines are the min and
max permissible volumes including make-up rights. The lower red line, at 50%, represents
the min DCQ, which actually is the lower limit with make-up right. The green lines are the
nominations made by the option holder. In the first year, 80% is nominated and the make-
up account is built up to 10%. In the second year, 90% is nominated and the make-up
account is still 10%. In the third year, 100% is nominated and the make-up account is
reduced to 0%. In the fourth year, 80% is nominated and the make-up account is built
up to 10%. During the fifth year, 100% is nominated and the make-up account is again
reduced to 0%.

When nominated volumes are below permissible minimum, the volumes not
nominated are paid for with 85 to 100% of the average yearly gas price during
that year1. If the contract includes make-up, these volumes can be nominated in
a following year after the minimum permissible volume has been reached. When
this make-up gas is nominated, 0 to 15% of the average yearly gas price is paid
(total payment for the gas is summed up to 100%). If the price for gas is higher
when the make-up gas is nominated, the gain made by the buyer is added to
the price. Hence, the buyer has no possible gains in speculating on make-up.
Merely, the buyer looses interest rates on the (make-up) volumes not nominated
previously.

1. Note that the contract price typically is computed three months in advance, so before the end
of the year, the average contract price is known.
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110%

90%

Figure 5.2. Example of carry forward with five years duration. Black lines denote the
contract min and max ACQ, which are 90% and 110%, respectively. The red lines are the
min and max permissible volumes including carry forward rights. The green lines are the
nominations made by the option holder. In the first year, 105% is nominated and the carry
forward account is built up to 15%. In the second year, the limits are [80%,110%] due to
the carry forward account and the 10% limit on carry forward. 80% is nominated and the
carry forward account is reduced to 5%. In the third year, the limits are [85%,110%] due
to the carry forward account. 90% is nominated and the carry forward account remains
on 5%. In the fourth year, the limits are [85%,110%] due to the carry forward account.
85% is nominated and the carry forward contract is reduced to zero. The fifth year, the
limits are [90%,110%] and 90% is nominated.

To illustrate this point, assume that the average prices for the first and second
year are P (1) and P (2), respectively. Furthermore, the annual interest rate is set to
r. The net present value of the contract price is then

0.85P (1)

1 + r
+

0.15P (2) + max
(
0, 0.85(P (2) − P (1))

)
(1 + r)2

. (5.3)

If P (1) > P (2), (5.3) gives a net present value of

0.85P (1)(1 + r)0.15P (2)

(1 + r)2
>

P (2)

(1 + r)2
.

If P = P (1) = P (2), (5.3) reduces to

P (1 + 0.85r)

(1 + r)2
>

P

(1 + r)2
.

In any case, the make-up volume is much more expensive than ordinary volumes.
For the margin (contract price–market price of gas), make-up may, however, be
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110%

90%

Figure 5.3. Example of carry forward with three years duration. Black lines denote the
contract min and max ACQ, which are 90% and 110%, respectively. The red lines are
the min and max permissible volumes including carry forward rights. The green lines are
the nominations made by the option holder. In the first year, 95% is nominated and the
carry forward account is built up to 5%. In the second year, the limits are [85%,110%] due
to the carry forward account. 90% is nominated and the carry forward account remains
at 5%. In the third year, the limits are [85%,110%] due to carry forward account. 90%
is nominated and the carry forward account remains on 5%. For the fourth year, 95% is
nominated. 5% is added to the carry forward account, but the 5% from the first year are
deleted from the carry forward account as the duration period has exceeded. The carry
forward account therefore remains at 5%. The fifth year, the limits are [85%,110%] due to
the carry forward account and 90% is nominated.

beneficial, although it is quite unlikely, at least in the long run, since this would
imply that yearly oil and gas prices are decoupling.

Thus, make-up is avoided by the rational buyer and make-up rights do not
add value to the contract. Hence, make-up rights do not have to be considered in
the pricing algorithms.

Physical reasons for using make-up rights may exist. Most buyers of these gas
contracts enter them to provide large amounts of gas, not to speculate. Given that
make-up has been built up, it has to be taken into account properly.
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110%

90%

Figure 5.4. Example of carry forward and make-up with five years duration. Black lines
denote the contract min and max ACQ, which are 90% and 110%, respectively. The
red lines are the min and max permissible volumes including carry forward rights. The
green lines are the nominations made by the option holder. In the first year, 105% is
nominated and the carry forward account is built up to 15%. In the second year, the limits
are [80%,110%] due to the carry forward account and the 10% limit on carry forward. Only
75% is nominated. The carry forward account is reduced by 10% and in addition make-
up gas is built up with 5%. The make-up gas is paid for (85-100%) in this year. In the
third year, the limits are [85%,110%] due to the carry forward account. 85% is nominated
and the carry forward account is reduced to zero. The fourth year, 100% is nominated,
of which 5% are make-up gas (where the remaining costs are paid) and 5% are added
to the carry forward account. In the fifth year, the limits are [85%,110%] due to the carry
forward account. 95% is nominated.
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6 Summary

Correct valuation of long term contracts is important for many reasons. There
are continuous renegotiations of such contracts. It is therefore important to un-
derstand the values of the contracts. In addition, long term contract volumes are
often very large with significant shares of the total volume in the market players
portfolios. Furthermore, exercise strategies are needed for optimising the nomin-
ations for the buyer and estimating future deliveries for the seller.

The most popular methods in the literature for valuing swing options are the
least-squares Monte Carlo based methods and the dynamic programming meth-
ods. In addition, we have described some methods that are more or less similar to
the two popular methods. Long term contracts can be described by complex price
process depending on different commodities prices. This makes it preferable to
use multi-factor models. The least-squares Monte Carlo method is very flexible
in terms of choice of price process for the underlying commodity.

Most methods found consider volume constraints on ACQ and DCQ in some
form. Some of them also include penalties for violating the constraints.

Further work in this area should include more of the contract constraints in
the valuation methods. Carry Forward/Make Up Right, and possibly Hardship
Month, should be the primary focus, since these are important for valuation of
real gas contracts.
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