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Abstract

Reconstruction of surfaces from images alone is usu-
ally difficult due to noise. Prior information such as
smoothness, shape, size etc. may however be available.
The Bayesian framework makes it possible for a formal
integration of such prior information and the observed
data.  Furthermore, the development of the Markov
Chain Monte Carlo method makes it possible for simula-
tion from the posterior of the surface given the observed
mmages.

In Storvik (1994) this approach was applied to recon-
struction of contours of objects in two-dimensional 1m-
ages. FExtending these approaches to three dimensions
and/or time is in principle simple, but a high price is
payed by the cost of implementation and more computer
power.

In this paper we will discuss the use of Bayesian mod-
eling and stochastic sampling for reconstruction of sur-
faces both in two and three dimensions. Construction of
appropriate models, algorithms will be considered. Ez-
amples from medical imaging will be presented.

1 Introduction

The problem of reconstructing objects from two- or
three-dimensional images appears in many areas. Most
examples are found in Medical imaging, where anatom-
ical organs such as the heart (Terzopoulos 1992), or
the brain (Porrill & Tvins 1994, Thurfjell, Bohm &
Bengtsson 1995) are of interest.

Looking at images visually, the structures are often
easily recognized. Manual tracking of contours is how-
ever time-consuming and subjective. In three dimensions

it is even more difficult. Automated methods is therefore
asked for.

The observed images alone are usually not sufficient
for reconstruction. In many cases, however, information
on size, shape, smoothness etc. may be available. The
information available may either be “hard” in the sense
that the shape has to be on a certain form, or “soft” in
that some configuration are more plausible than others.
Incorporating such information into the method is a dif-
ficult task. Many different methods have been proposed.
In some cases, the Bayesian approach has been used, but
in the Computer Science literature, energy-minimizing
or regularization techniques are more common. There is
however a near correspondence between these two classes
of methods, as we will discuss in the next section.

The amount of prior information available will dif-
fer from one application to another. In many situations
quite explicit information about the surface to be rec-
ognized is available. If for instance, the object to be
recognized is a hand, quite explicit information on the
shape of the hand is available. In such cases global shape
models is highly valuable.

For other situations very little information on the
shape 1s available. Typically the only information avail-
able i1s that the surface should be locally smooth. An-
other situation again is that information on the shapes
may be available in the normal cases. In abnormal cases
(presence of tumor in brain images, for example), the
shapes may however differ dramatically from the normal
ones. Furthermore, it is usually this difference that is of
interest. In such cases strict global models will not be
desirable, and models only taking the available data and
some general prior information into account is desirable.

Many different methods for solving these types of
problems is available. None of the methods will be best



for all types of situations. We will in section 3 review
some of these. The main part of the paper will however
be on a method for pixel-based reconstruction, docu-
mented in (Storvik 1994) for two-dimensional problems.
The approach will be reviewed in section 4 along with
an extension to three dimensions. Some experimental
results will also be presented.

2 Bayesian surface reconstruc-

tion

The Bayesian approach to surface reconstruction involve
several steps. The first step is to define the state space
Q. In most standard applications of Bayesian analysis,
the choice of Q is obvious. However, in our case, several
possibilities exist, and the choice will highly influence on
the results obtained. We will present several examples
in the next section.

The second step is to construct a prior 7 : Q@ — R.
Such priors will usually give emphasize on smoothness,
but may also include other aspects such as size and
shape. Constructing priors is a difficult task. On the
one hand it must include the important aspects of the
information available. On the other hand it must not be
computationally demanding to calculate, because most
numerical methods used are iterative making the need
for computation of the prior a large number of times.

The third step 1s to construct a likelihood function
f(z|®) for the observed data z given the configuration
x € Q. The likelihood is then combined with the prior
to give the posterior

p(®|z) o m(z) f(z|z).

The Bayesian paradigm is to make any inference based
on the posterior. One of the most common choices of
estimates for @ is the Maximum A Posteriori (MAP)
solution, that is the configuration maximizing p(x|z).
Finding the MAP solution is a huge computational task
because of the size of the configuration space 2. Many
different numerical methods have been applied, including
both deterministic (i.e. variational methods, gradient
decent, finite element method, dynamic programming,
ICM) and stochastic (Markov Chain Monte Carlo) algo-
rithms.

The MAP solution corresponds to the optimal Bayes
rule under a 0 — 1 loss function. This is however a very
unrealistic loss-function to use. In Rue & Syversveen
(1995) other choices of loss functions were considered
for object recognition. The approach was based on the
general framework outlined in Rue (1995) and demon-
strated that more sophisticated loss functions than the
0 — 1 function may give considerable improvements.

Many different approaches are suggested to the prob-
lem of surface reconstruction, where only some of the
approaches take the Bayesian point of view. Many of
the methods not being constructed from the Bayesian
standpoint can however be put into the Bayesian frame-
work. In cases where unknown parameters are involved,
a statistical viewpoint can make 1t easier to construct
methods for estimation. Further, the Bayesian view-
point makes 1t easier to introduce other loss-functions
than the 0-1 function which we will see correspond to
the standard choices. We will therefore take this view-
point from some of the most popular methods used for
the problem at hand.

Generally, many methods are based on constructing
some performance measure (a more popular name is en-
ergy function) describing the likeliness of a configuration.
Typically, the energy-function is built up by two additive
terms,

E(z) = fx Er(x) + Ep(x; z)

where Eg is a regularization term, and Ep is the fit to
data, which we will denote as the potential. The pa-
rameter [ specifies the weight on which should be given
to the regularization term compared to the data, and
is usually user-specified. Typically Fr is some smooth-
ness measure, giving low energy to smooth configura-
tions. From a Bayesian point of view this is nothing else
than specifying a prior distribution by

7(@) o exp{yFr(@)}

where v 1s some constant. The potential Ep on the
other hand 1s some measure of the discrepancy between
the configuration and data. Defining

f(z]|z) < exp{—7Ep(x;2)}

this may be seen to correspond to a likelihood function.
It is easily seen that in this case

yE(®) = Const — log(p(x|2))

showing that minimizing the energy corresponds to max-
imizing the posterior distribution.

In many cases, contributions to the potential 1s only
given at points in the boundary. Define B(x) to be the
set of pixels on the boundary. (Voxels are usually the
name used in three dimensions, but we will stick to pixels
both for two and three dimensional data throughout the
paper). Then a common choice is

Ey(z;z)= ) G(=) (1)

where (G is some appropriate function such as the gra-
dient measure, or perhaps the intensity itself. It might



be of interest to see what kind of likelihood function this
would correspond to. Assume now a model where we
have conditional pixel-wise independence, i.e.

f(zle) = [] F(zil)

where the product is over all observed pixels. Assume
further that

Flerla) = {fB(zi) if i € B(x)

otherwise

fo(z)

Then we may rewrite

fB(zi)
log(f(z|®) = Const + log
Z.E%(:m) (fo(zi))

showing that the choice of energy (1) corresponds to
choosing

P ocexp(-6i().

If the MAP estimate is the configuration of interest, the
value of ¥ make no importance. If, on the other hand,
another loss function is to be used, the value of v need
to be specified. For the regularization term, v will not
be distinguished with 7 and makes no further problems.
For the potential Ep, on the other hand, the value of
depend on the distribution of the data, and may there-
fore be estimated.

3 Example of methods

3.1 Star-shape representation

Many objects to be reconstructed are smooth or even
convex in some sense. In such cases it will be natu-
ral to make restrictions on the state space Q so that it
only contain such configurations. One such restriction
is the star-shape representation, which is illustrated in
figure 1. From a prespecified centerpoint, a number n of
radii goes out to the boundary of the object. Denote the
length from the centerpoint ¢ to the boundary along radii
number ¢ by ;. The configuration is then represented by
x = (¢,r1,...,mn). A potential function of the form (1)
where G(+) is a gradient measure along the radii has usu-
ally been used (Friedland & Adam 1989, Lundervold &
Taxt 1990). For the regularization term, different kinds
of local smoothness measures depending on the differ-
ence between neighboring radii are chosen.

In Friedland & Adam (1989) simulated annealing was
used in order to find the minimum energy function. For

Figure 1: Configuration in 2D by star-shape representalion.

particular choices of energy terms, dynamic program-
ming is also possible to use (Olstad 1991). Extension to
three dimensions is easy. Dynamic programming is how-
ever then not more possible, since the sequential struc-
ture of the radii is lost.

3.2 Active Contours

Active (or dynamic) contour models (Kass, Witkin &
Terzopoulos 1988) may be seen as a relaxation of the
restrictions made in the star-shape representation. Also
in this case the boundary is (in two dimensions) defined
by a fized number of sequential points.

The points are joined by straight lines, as in figure 2,
or some more sophisticated methods such as splines. The
potential has in all applications known to the author
been of the form (1) where G is some local gradient or
intensity measure. Representing a point on the surface
by z(t), the regularization term can be written as

where E(z(t) is some local energy function measuring
some kind of smoothness (usually based in thin-plate
splines) at z(s). The integration is performed on the
total surface. Some discretization is necessary in order to
compute the energy. A problem with such models is that
small surfaces are preferred to larger ones. In order to
compensate for this, balloon models (Cohen 1991) have
been introduced, where an extra energy term is added,
giving emphasis on larger surfaces.

Different methods based on variational methods, the
finite element method or dynamic programming has been
applied for finding the minimum energy solution, though
only searching in a neighborhood of a user-specified
initial configuration. The main ingredients in the al-
gorithms is that through iterations, the contours are
changed dynamically until a minima is reached, thereby



Figure 2: Configuration in 2D by active conlour representa-
tion.

the name active contours. In some applications, a refine-
ment of the contours are made at certain steps of the al-
gorithm, making the number possible to be changed dur-
ing the iterations. The original approach was to recon-
struction of objects in two dimensions, but has later been
extended to three dimensions (Cohen & Cohen 1993).

3.3 Template modeling

Situations involving highly structured prior knowl-
edge has been considered by Grenander and cowork-
ers (Grenander, Chow & Keenan 1991, Grenander 1991,
Amit & Piccioni 1991). The framework is based on that
the object of interest is obtained as some transformation
of a reference object, called the template. The transfor-
mations are set so as to preserve certain features of the
template that are assumed characteristics to the set of
objects.

To be more specific, a configuration z is built up by
generators g through

T = O-(g11g27 7gn)

where ¢ is a connector graph saying something on how
the generators are connected. A general framework is de-
veloped for imposing both local and global restrictions
on . As an illustration, consider the representation in
the active contour model, which actually fit into this
framework, and also correspond to the illustrating ex-
ample in Grenander et al. (1991). The generators are
in this case arcs in R? while ¢ belongs to the set of
cyclic graphs. Local restrictions are built in by that the
endpoint on the arc of a generator must be equal to
the startpoint of the arc for the next generator on the
cyclic graph. A global restriction on that ® is not self-
intersecting 1s added. Also the star-shape modeling may
fit into this framework, but both methods are usually
used in “low-level” situations with very little informa-
tion on the shape. The framework is considered to be

more valuable in situations where higher structural in-
formation is available.

The construction of priors in this framework differ
very much from other approaches. Whereas usually prior
models mainly incorporates smoothness, the modeling
in this case is taking further advantage of the structural
information that is present. The modeling is performed
through the introduction of a template

_ 0 0 0
wtemp — U(gl;gZa agn)

An arbitrary configuration @ i1s assumed to be built up
by a set of transformations (si,...,s,) on the genera-
tors and the probability measure is constructed on these
transformations. This makes it possible to make prob-
ability measures for the dewviation to an idealized shape
which in many cases is easier to quantify than measures
on the configuration directly.

Simulation based on Markov Chain Monte Carlo algo-
rithms are used for making inference based on the pos-
terior distribution.

4 Pixel-based reconstruction

In Storvik (1994) another approach for reconstruction
was introduced. The approach may be considered to be
within the class of dynamic contours, but differ from the
general use of such models in that a wider class of models
(i.e. energy-functions) can be used. In particular, mod-
els for the observed image which incorporate grey level
characteristics of regions and not only characteristics lo-
cal to the boundary of interest, which are usually used.
It differ also from the template modeling approach in
that much more flexibility on the shape of the configura-
tions is allowed, making it possible to reconstruct objects
with little information on its shape.

The main aspect of the method is to constrain the
objects to be simply connected. This results in a state
space restricting the possibilities by a large extent, al-
though being much more flexible than the approaches
based on the star-shape models or template matching.
This will be discussed in section 4.1. Specification of
models will be considered in section 4.2 while a Markov
Chain Monte Carlo algorithm for simulation from the
prior will be considered in section 4.3.

4.1 Constraining the state space

As mentioned above, the objects to be recognized are
assumed to be simply connected. The object is then
completely defined by the surface of the object. The
surface can not be intersecting itself at any position. A
further restriction will be made on the surface. Since



Figure 3: Ezample of surface.

data is only observed in pixels, we will assume that each
pixel will either be completely inside or completely out-
side the object. This is of coarse not true in reality, but
1s a convenient assumption for computational reasons. It
is also similar to the restriction usually used for MRF-
models where each pixel is classified to one class. This
results in that the surface will follow the vertices of the
pixels. The state space will be the set of all legal sur-
faces. Figure 3 shows an example of a surface. Note that
the structure can be made arbitrary complex, provided
the restrictions of non-intersection is satisfied.

4.2 Models

In order to construct models for the configurations, we
will do this through energy-functions. Constructing pri-
ors through local elements is comfortable when only local
behavior is of interest. Normally a potential 1s defined
over a neighborhood of pixels, which is also possible in
this case, 1.e.

Ur(z) =B Ve(z) (2)

ceC

where C'is the set of pixels. One possible choice of V()
is

Ve(w) =Y I(zj # ) (3)

J€de

where §. is some neighborhood of ¢, Note that the en-
ergy function only give contribution from pixels being in
the neighborhood of the surface. This makes it just as
natural to consider potentials for the basic elements in

the surface representation, i.e.

Ur(z) =8 Vi(x) (4)

SES

where V;(x) is a potential for vertex s on the surface
S. Constructing reasonable potentials is in general a
difficult task. Many different choices have been explored,
but none seemed to work as well as a more global energy
function defined by

(Boundary length)?

Ur(®) = # Area of object (5)

in two dimensions and

(Surface area)!s

Ur(z) =

~ 7 Volume of object

(6)

in three dimensions.

4.3 Algorithms for reconstruction

Because of the size and complexity of the state space,
direct simulation from or optimization of the posterior
is not possible. We will therefore consider algorithms
for simulation based on Markov Chain Monte Carlo
(MCMC) methods. In particular, we will concentrate
on the Metropolis-Hastings algorithm (Hastings 1970).

The difficult part for constructing such an algorithm is
the representation of the configuration and how changes
are to be made on it. We will follow the general approach
outlined in Storvik (1994) where the surface was built up
by small basic elements (or generators) linked together
by pointers to neighbor elements. For two dimensions,
points corresponding to corners of pixels where used as
basic elements. Another choice which would be equiva-
lent in two dimensions is to use vertices of pixels. Go-
ing up to three dimensions, this would correspond to
vertices of the three dimensional pixels and will differ
from using corners of the pixels. Yet another possibil-
ity is to use the pixels that are on the surface as ba-
sic elements. Some memory savings and perhaps also
computer time for some choice of prior models may re-
sult for this approach, which is under current investiga-
tion (Halaoui 1996). In this work however, vertices of
pixels where considered as basic elements, but it is far
from obvious that this is the best choice. Also this rep-
resentation may be fit into the framework of Grenander
if we allow the number of generators to be stochastic.
The model building part of the approach is however not
possible to utilize, so we will not dwell on this any fur-
ther.

For each vertex, the position and also its direction
(that is the direction perpendicular on the vertex, point-
ing out of the object) need to be stored. Furthermore,



pointers to the four neighbors are needed. Initialization
of such a surface of an arbitrarily complex object can
be made effectively by recursive programming (starting
at one vertex, including this in the data structure, then
searching through all neighbor vertices, if one is not set,
move to this vertex and repeat, see Halaoui (1996)).

Changes are made by moving the vertex one unit in its
direction (giving an increase in the size of the object) or
in the opposite direction(giving a decrease). Note that
this may result in that new vertices have to be created
or old ones have to be removed, see figure 4. Checks
have to be made in order to avoid configurations inter-
secting itself. One such check is to make sure that there
is “free space” on the outside. Another is to avoid such
configurations as shown in figure 5.

In most applications of MCMC known to the author,
the configuration is built up by components which are
fixed in advance. In such cases, specific rules on which
component(s) that are to be changed at a given iteration
step can be made. In our case, the number of compo-
nents involved are the number of vertices of pixels at
the surface which is a random number. This makes con-
struction of Markov Chain Monte Carlo algorithms more
difficult. In Storvik (1994), the problem was solved by
introducing a (fictional) position object moving around
the surface into the configuration space. Defining p to be
the current position on the surface (one of the vertices),
we define the extended configuration space

Q' ={a" = (&,p);x€Q,pcx}

where p € ® means that p is a vertex on the surface ®.
Conditioned on a configuration, the position is assumed
to have a uniform distribution on the set of vertices. The
distribution is then given by

1

||

7 (®) x exp(—U(x))

where || is the number of vertices in the configuration
. Note that the marginal distribution of @ is identical to
m(2), which means that a simulation of (2, p) from 7*(-)
produces a sample & from 7(:). An important aspect
is however the inclusion of the number || which will
vary from one configuration to another, and do actually
influence on the results obtained.

By introducing the position into the configuration
space, it also has to be included to the algorithm. The
full algorithm will the be:

Algorithm 1 Start with an arbitrary configuration ®(0)
and an arbitrary position p(0) at the surface. For each
wteration s, carry out the following steps:

1. Draw a new configuration y* = (y,p) from a tran-
sitton matriz @ on Q% x Q*.

Figure 4: On the left the configuration before change. The
arrow shows the position at which a change is to occur and the
direction of the change. On the right the configuration after
change. The vertices with the arrow on the left configuration
is moved outwards on the right configuration. In addition,
four new vertices are created on the sides of the new pixel
that is included.

Figure 5: An illegal configuration. Four vertices are touch-
ing each other at the same point (actually on a whole line),
making the surface not being unique.

2. If the new configuration is illegal, put ®(s) = (s —
1) and goto 6.

_ . . . (y)l®| 9y =
3. Put x(s) =y with probability min{1, T25a frmer ),

otherwise, put x(s) = x(s — 1).

4. Draw a new position p(s) by some transition matriz

R(x(s)).

The examples we have explored make a change by mov-
ing the current vertex outwards or inwards (with equal
probability). This result in that only one pixel is chang-
ing at each iteration, thereby the name pixel-wise recon-
struction. The framework do however allow more gen-
eral transition matrices. The restrictions on ) is that 1t
has to be irreducible and aperiodic. For the transition
matrix R(x), it has to be doubly stochastic for all config-
urations ® € Q. This can be proved in similar manners

as in Storvik (1994).



Figure 6: A configuration in 2D where local changes are
difficult to be made without violating the constraints on the

configuration space.

l
|

Figure 7: Tllustration on how a removal of a pixel may result
in an illegal configuration.

4.4 Convergence issues

A main problem with the algorithm is that it may be
“trapped” in configurations where changes are very un-
likely to occur. Figure 6 illustrate this in two dimensions.
In order to understand the problem, consider the situa-
tion illustrated in figure 7. A long tail having thickness
only one pixel unit is displayed in the left. Removing a
pixel at any position but the end would lead to a con-
figuration not being simply connected, as illustrated on
the right panel of the figure. One might think that such
problems could be ignored by allowing the whole tail to
be removed. A necessary condition for convergence to
the stationary distribution is however that

Jay > 0= gya >0, (7)

that is, if a change from # to y is allowed, the reverse
should also be possible. this means that if removement
of tails are allowed, also inclusion of tails has to be in-
cluded into the algorithm. For simulation, the calcula-
tion of qgy and gye also is required, and would be even
more difficult to obtain. For optimization these quanti-
ties are not necessary, simplifying matters. The number
of possibilities are however still enormous and would be
difficult, or even impossible to implement.

In order to avoid such problems, experiments have
shown that simulations from models giving more empha-
sis on smooth configurations (by using a large # value on
the relaxation term of the energy) for the first iterations
gave improvements, but it was not possible to use large
enough [ values in order to get satisfactory results. Some

further improvements were obtained by making the po-
sition movements large at each iteration step, but this
was not enough either. What one would actually like to
achieve is to make very smooth changes on the config-
urations. This is very difficult when only local changes
are allowed. The solution was to for every N iteration
to make a “window” around the current configuration.
For the next N iterations, the configuration is then only
allow to vary inside this window. The window was con-
structed by including all pixels that had a distance less
than d to the surface. This approach was used for find-
ing an initial configuration, from which algorithm 1 was
run.

5 Experiments

We will in this section show some examples on how the
method described in the previous section perform. Fig-
ure 8 shows restoration of an MR image of the brain. The
restoration was actually based on a multispectral image
(four channels), but the result is only displayed on one of
the channels. In this case the head and brain was actu-
ally divided into four regions included in each other. The
three contours defining the regions are restored simulta-
neously. Each contour had a prior as given by (5) but
with different @-values (the middle contour had a much
smaller value). No dependence was assumed between the
contours besides the restriction that they do not inter-
sect (which is important information to the algorithm!).
The pixel-observations were assumed conditionally inde-
pendent with different Gaussian mixtures inside each re-
gion. As initial contours, rectangles proportional in size
to the whole image was used, i.e. a very non-informative
initial configuration! We refer to Storvik (1994) for a de-
tailed discussion on this experiment and to Lundervold
& Storvik (1994) for a larger study on this problem.

In order to see how the method perform in 3D, we will
consider simulated data. On the left of figure 9 is a hand-
made configuration displayed. Gaussian noise with a sig-
nal to noise ratio equal to 1.6 was added to the image.
Four slices of the image is displayed in the middle. The
first three mages show a connected region correspond-
ing to the lower part of the configuration. The two tops
of the configuration can bee seen as the lighter areas in
the last image down to the right. A mean filter was run
on the image before processing. For restoration a prior
which was a combination between the global energy (6)
and the local energy (3) (8 = 100 and 1, respectively)
was used. The true distribution for the noise was used
for the likelihood function. An initial configuration was
found by the procedure described in 4.4. This config-
uration was actually itself a very good estimate of the



Figure 8: Restoration of MR-image into four regions cor-
responding to outside brain, subarachnoid space, brain
parenchyma and lateral ventricles.

configuration. A further simulation based on algorithm 1
(4000000 iterations) was then performed, giving slightly
improvements to the initial configuration. The restored
configuration is shown on the right in figure 9. We see
that the main structure has been recognized. The total
error rate for the whole volume is 0.02, though the error
rate is not any good measure for the performance.

6 Summary

We have in this paper discussed Bayesian methods for
surface reconstruction from 2D and 3D images. Many
existing methods do not take the Bayesian viewpoint,
but may be fit into this framework. This makes it possi-
ble to use the statistical estimation procedures for esti-
mation involved and also put up a framework for inclu-
sion of non-standard loss-functions.

The main part of the paper has been concerned with
one method for surface reconstruction. The main ingre-
dients on the method is low-structure modeling, allow-
ing almost any kind of configuration to be reconstructed.
Prior models giving emphasis on smooth configurations
is incorporated. Models for data taking all observations
into account can be used. This is in contrast to the ac-
tive contour model for which only local features around
the surface is used. Algorithms based on Markov Chain

Monte Carlo are applied for simulation from the poste-
rior distribution.

The method has been successfully applied to MR-
images in 2D for restoration of head and brain structures.
Application to real 3D images is under progress, but ex-
perimentation with simulated images shows promise.
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