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mproved resolution in Bayesian lithology/fluid inversion from prestack
eismic data and well observations: Part 2 — Real case study
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ABSTRACT

We have performed lithology/fluid inversion based on
prestack seismic data and well observations from a gas reser-
voir offshore Norway. The prior profile Markov random field
model captures horizontal continuity and vertical sequencing
of the lithology/fluid variables. The prior model is also local-
ly adjusted for spatially varying lithology/fluid proportions.
The likelihood model is inferred from basic seismic theory
and observations in wells.An approximate posterior model is
defined, which can be simulated from by an extremely com-
puter-efficient algorithm. The lithology/fluid inversion re-
sults are compared to manual interpretations and evaluated
by cross validation in one well. Moreover, inversions based
on simplified prior models are developed for comparative
reasons. Both lithology/fluid realizations and predictions
look geologically reasonable. The results seem to reflect gen-
eral reservoir experience and information provided by the
prestack seismic data and well observations. The lithology/
fluid proportions appear as geologically plausible and thin
elongated lithology/fluid units are identified. The study is
made in a 2D cross section, but extension to a full 3D setting
is feasible.

INTRODUCTION

Prediction of lithology/fluid �LF� characteristics is important in
evelopment of petroleum reserves, both at the exploration and pro-
uction stage. In an exploration setting, the information available is
ften limited to seismic data and geologists’ knowledge about the
rea. In a production setting, both seismic and well data are avail-
ble.

The objective of the study is to infer LF classes in a gas reservoir
ffshore Norway in a production setting, using prestack, true-ampli-
ude imaged seismic data and well observations. The inversion pro-
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edure is defined in a Bayesian setting. In this setting, prior informa-
ion about the LF characteristics is combined with likelihood models
inking the observed data to the characteristics, and the complete so-
ution is the posterior model. The procedure follows the methodolo-
y defined in Ulvmoen and Omre �this issue�, where an approach for
F inversion is defined. In that paper, the inversion approach is eval-
ated on synthetic data, with all model parameters known. Real data
re used in this study, which introduces several new challenges. The
ikelihood part of the Bayesian model is divided into three likelihood

odels. Observations from wells are used in inference of these mod-
ls; hence the existence of at least one well in the target zone or sur-
ounding area is of great importance.

The prior model for the categorical LF variables should capture
haracteristics of the variables and must be based on general reser-
oir experience. Lithologies are created by sedimentary processes
nd are expected to appear as thin, elongated units, and fluids will be
ravitationally segregated. Layers of shale are particularly impor-
ant because they have a large impact on fluid flow.Aprofile Markov
andom field prior model is used to represent these features.

Several papers on LF inversion of seismic data use spatially cou-
led models for the LF variables. Eidsvik et al. �2004� present a 2D
tudy in a geologic horizon based on a traditional Markov random
eld prior model for shale/sand and fluids. The seismic deconvolu-

ion was avoided because only peak reflections were used. In Contr-
ras et al. �2005�, a multivariate approach to fluid unit inversion of
eal data is presented. The model used is continuous and Gaussian.
uland et al. �2008� present a 3D study with deconvolution and ver-

ical coupling in the model for the elastic material variables. No spa-
ial prior was defined for the LF variables themselves. In González et
l. �2008�, a multipoint prior model is defined on the LF variables,
ut conditioning on seismic data is made only in an ad hoc manner.
n Bosch et al. �2009�, porosity and saturation are inferred from
tacked seismic data and well observations. Consequently, the cur-
ent study appears as the first that includes a formal horizontally/ver-
ically coupled categorical model for the LF variables. Moreover,
econvolution ofAVO seismic data is an integrated part of the inver-
ion process.

June 2009; published online 1April 2010.
lvmoen@math.ntnu.no; omre@math.ntnu.no.
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B74 Ulvmoen et al.
The primary objective of the study is to demonstrate the method-
logy defined in Ulvmoen and Omre �this issue� on a real case study.
he steps in the LF inversion approach are �1� define variables of in-

erest and reference discretization over the reservoir; �2� define a
ell likelihood model that links well observations with variables of

nterest; �3� define seismic and rock-physics likelihood models that
ink seismic AVO data with variables of interest; �4� assess a prior

odel for variables of interest; and �5� combine the models above to
efine the posterior model for variables of interest given well and
eismic information. Lastly, realizations from the posterior model
re generated by a Markov chain Monte Carlo �McMC� algorithm to
ssess predictions with associated uncertainties of the LF character-
stics. The major findings are �1� posterior models based on spatially
oupled categorical prior models for the LF characteristics provide
ealistic reservoir predictions; �2� resolution in the predictions ap-
ears to be improved relative to nonspatial models; and �3� computa-
ional demands of the algorithm are such that evaluation of 3D reser-
oirs is within reach.

MODEL INFERENCE

The 2D target zone is a sandstone reservoir offshore Norway.
oth prestack seismic data �Figure 1� and observations from one
ell �Figure 2� are available in the target zone. The existence of gas

n some sandstone layers is established in the well. The target zone is
iscretized and divided into lateral horizons and vertical profiles.
ertical profiles are discretized downward in t� �1, . . . ,T�, where

he reflection time t corresponds to the seismic sampling. The lateral
orizons are further discretized in seismic survey positions. In Fig-
re 1, the target zone is defined within the upper and lower solid
ines. These lines are parallel to the base Cretaceous unconformity
BCU�, which can be identified as the clear reflection approximately
2 ms below the upper solid line. The seismic data in the target zone
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igure 1. Prestack seismic data ds for angles �� �10° ,21° ,36° � in
a�, �b� and �c�, respectively, with the three seismic sections equally
caled. The inversion window is defined between the black lines, and
he well location is marked as the vertical line.
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re aligned to the BCU such that a rectangular field is inverted; hence
he lithologies are given continuity parallel to the BCU horizon. The
eismic data ds in Figure 1 range from 2220 ms to 2800 ms, with
amples every 4 ms collected for the angles �� �10° ,21° ,36° �.
he data have been true-amplitude processed and prestack time mi-
rated by a processing contractor. The quality of the seismic data is
onsidered to be good, but with some residual moveout. We use 950
rofiles and a 260-ms time window; hence T�65 as the seismic data
re sampled every 4 ms.

The well location is marked in Figure 1. Well observations dw in
igure 2 have been depth-to-time converted such that the well sam-
ling coincides with the seismic sampling. The original well obser-
ations are on a finer resolution, and are upscaled by selecting the
ubset of observations corresponding to node locations. In addition
o the gas layers, the well contains a layer of source rock directly be-
ow the BCU and several thin layers of brine in sandstone layers. The
CU is overlaid by a thick layer of shale, and shale is also found be-

ween layers of sandstone and source rock. Based on the observa-
ions in the well, the target zone is assumed to consist of three litholo-
ies: Sandstone, shale, and source rock. Sandstone is saturated with
ither gas or brine. This defines four LF classes in the inversion. The
roportions of the lithologies in the well are about 0.45, 0.5, and 0.05
or sandstone, shale, and source rock, respectively. The joint set of
ell observations and seismic data is denoted by d� �dw,ds�.
The complete set of LF classes in the target zone is denoted by �:

� x,t; all �x,t��, with � x,t being the LF class in lattice node �x,t�. Each
x,t can take one of the four LF classes �gas-saturated sandstone,

rine-saturated sandstone, shale, or source rock� such that � x,t

�SG,SB,SH,SR�. The LF characteristics � are the focus of this
tudy.

In addition to observations of LF classes, the well contains obser-
ations of the three elastic material properties, P-wave velocity,
-wave velocity, and density, along the well trace �see Figure 2�. The

ogarithm of these variables in the target zone is denoted by m: �mx,t;
ll �x,t��, with mx,t representing the log transform of the three elastic

dw

T
im

e
(m

s)

2250

2300

2350

2400

2450

2500 4000
V

p
(m/s)

1000 2000
V

s
(m/s)

2000 3000
ρ (kg/m3)

10 21 36

d s

degrees

igure 2. Well observations dw of LF classes with gas-saturated
andstone �red�, brine-saturated sandstone �blue�, shale �black�, and
ource rock �brown�; elastic material properties P-wave velocity VP,
-wave velocity VS, and density �; and seismic data ds in well loca-

ion.
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Bayesian LF inversion: Real case study B75
ariables in lattice node �x,t�. The original well observations are on a
ner resolution, and are upscaled by selecting the subset of observa-

ions corresponding to node locations.
In Ulvmoen and Omre �this issue�, the inversion approach is de-

ned in a Bayesian setting where the complete solution is the poste-
ior model defined by

p���d��const � p�dw���p�ds���p���, �1�

here p�dw ��� is a well likelihood model, p�ds ��� is a likelihood
odel for the seismic data, p��� is the prior model for the LF class-

s, and const is a normalizing constant. The constant is defined by the
um over all possible configurations of the LF classes in the target
one; hence direct calculation is extremely difficult. The elastic ma-
erial properties are included in the model by rewriting the likelihood

odel for the seismic data as

p�ds�����¯� p�ds�m�p�m���dm, �2�

here p�ds �m� is a seismic likelihood model and p�m ��� is a rock-
hysics likelihood model. The integral is over all possible configura-
ions of the three elastic variables in the target zone; hence it is com-
utationally demanding to calculate.

ikelihood model

The likelihood model links the observations �i.e., well observa-
ions and seismic data� to the variables of interest, which are the LF
lasses.

The well observations dw �see Figure 2� are considered to be exact
bservations of LF classes along the well profile; hence the well like-
ihood model p�dw ��� is a Dirac function in the well location, de-
ned by

�dx,t
w �� x,t��� x,t. �3�

ote that the well likelihood model is defined at the well location
nly.

The seismic likelihood model p�ds �m� is defined by a convolved
inearized Zoeppritz model given by

�ds�m��WADm�e, �4�

here W is a block-diagonal convolution matrix containing one
avelet for each time-angle gather, A is a matrix of angle-dependent
ki-Richards coefficients, D is a differential matrix giving the con-

rasts of the elastic material properties in m, and e is Gaussian error.
he wavelets in W, provided by the data owner, are shown in Figure
. We assume the error term to be a mixture of wavelet colored and
hite noise given by e�Wec�ed. The reflection noise is given
ariance � ec

2 �0.0001 while the observation noise is estimated from
he well and seismic data to be � ed

2 �1.3�105 following the meth-
dology in Buland and Omre �2003b�. The resulting signal-to-noise
atio between elastic parameters and observations is approximately
wo. Note that the total observation-error variance is on the same or-
er of magnitude as the amplitude in the seismic data. The seismic
ikelihood model is rephrased as

p�ds�m��const�
p*�m�ds�

p*�m�
, �5�
Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
here p
*
�m �ds� and p

*
�m� are Gaussian posterior and prior models

n linearized Zoeppritz inversion �see Buland and Omre, 2003a�.
he Gaussian probability p

*
�m� is parametrized by ��

*
,�

*
,c

*
�� ��

ertically, representing expectation, covariance, and spatial correla-
ion function, respectively. These values are estimated from the ob-
ervations of P-wave velocity, S-wave velocity, and density in the
ell �see Figure 2� by standard statistical estimators. Estimated val-
es are fully specified in Appendix A. Note that the model used is
ery general and does not overfit the observations in the well. The
aussian posterior probability p

*
�m �ds� is calculated from the asso-

iated linearized Zoeppritz deconvolution. An approximation as de-
ned in Ulvmoen and Omre �this issue� is used to obtain p̃�ds �m�,
hich is in factorial form.
An empirical rock-physics model p�m ��� is used in the study.
e use two wells from the target zone and surrounding area. These
ells contain locationwise �based on location� observations of both
F classes and elastic variables; hence samples �mx,t �� x,t� are avail-
ble. The empirical rock-physics likelihood model,

p�m����	
x,t

p�mx,t�� x,t�, �6�

s defined from the well logs �see Figure 4�. The LF classes are well
eparated and the pattern corresponds with rock physical theory �see
vseth et al., 2005�. The source rock also is easily identified. It is en-
ouraging that observations from two wells in the same reservoir,
ut still far apart, coincide so well.

rior model

The prior model for the LF variables should capture the general
haracteristics of the variables and must be based on general reser-
oir experience. Because lithologies are created by sedimentary pro-
esses, they are expected to appear as relatively thin, elongated
nits. The fluids will, at an initial state, be horizontally continuous
nd gravitationally segregated, which entails that brine cannot be
mmediately above gas. These characteristics should be captured in
he prior model. The profile Markov random field defined in Ulv-

oen and Omre �this issue� can model the effects listed above. The
athematical expression for this type of Markov random field is

p��x���x��p��x��y;y�� �x��; all x, �7�

here �x is a vertical LF profile, ��x is the set of all LF profiles ex-
ept �x, and � �x� is a fixed horizontal neighborhood around x. Fur-
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igure 3. Wavelets used in inversion for angles �� �10° ,21° ,36° �,
n �a�, �b�, and �c�, respectively.
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B76 Ulvmoen et al.
her, the LF profiles �x follow Markov chain models upward through
he target zone �see Ulvmoen and Omre, this issue�

p��x��y;y�� �x���	
t

p�� x,t�� x,t�1,� y,t;y�� �x��; all x,

�8�

ith p�� x,T �� x,T�1,� y,T;y�� �x���p�� x,T �� y,T;y�� �x�� for nota-
ional convenience. This prior model is termed a 2D Markov random
eld model.
To fully specify the model, the elements in the transition matrix

�� x,t �� x,t�1,� y,t;y�� �x�� must be defined for all vertical configu-
ations of �� x,t,� x,t�1� and all lateral neighborhoods �� y,t;y�� �x��.
ransitions �� x,t �� x,t�1� characterize the vertical dependence in the
F variables and are used to ensure gravity segregation of fluids.
ateral neighbors in �� y,t;y�� �x�� ensure the horizontal depen-
ence of both lithologies and fluids.

Basic elements in the transition matrices have the format

PSG,SH
t �


0.4999 0 0.4999 0.0002

0.4998 0.0002 0.4998 0.0002

0.4998 0.0002 0.4998 0.0002

0.4998 0.0002 0.4998 0.0002
�,

ith rows and columns appearing in the following order: gas-satu-
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igure 4. Elastic properties exp�m� represented by P-wave velocity
S, and density �, given gas-saturated sandstone �red�, brine-saturat
hale �black�, and source rock �brown� from locationwise observat
a�, �b�, and �c�; and �d� impedance ZP�VP �� versus relative veloci
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ated sandstone, brine-saturated sandstone, shale, and source rock.A
losest horizontal neighborhood is used, and the subindices of P.,.

t in-
icate the neighboring class; hence the transition matrix presented
bove is the one with lateral neighbors being gas-saturated sand-
tone and shale. Note that brine immediately above gas is avoided by
aving the zero element in the matrix. Moreover, there is a high
robability of having a class identical to one of the horizontally
eighboring classes. If the neighbors are identical, this probability is
ery close to one. All the 10 basic transition matrices are fully speci-
ed in Appendix B. We have constructed these basic transition ma-

rices to enforce lateral continuity on the LF variables and to ensure
ertical fluid ordering. If the 10 basic transition matrices are aver-
ged and the corresponding limiting distribution is computed, one
btains 0.27, 0.19, 0.27, 0.27. This distribution can be seen as an ap-
roximation of the prior proportions on gas-saturated sandstone,
rine-saturated sandstone, shale, and source rock, defined by the pri-
r model. Note that these proportions deviate from the lithology pro-
ortions observed in the well. Later we will present an approach for
ncluding spatially varying proportions. In principle, the transition

atrices could be estimated from outcrop or training images by a
imple counting process.

Experience from similar reservoir environments tells that the
ithologies occur in different proportions in various layers of the res-
rvoir. The expected proportions in the reservoir are displayed in
igure 5. The expected proportion of sandstone is 0.45, and constant
cross the reservoir. Shale and source rock tend to replace each other.

Above BCU source rock is highly unlikely, while
it is abundant just below BCU. Further down
from BCU shale is more common.

Fluids substitute each other in the sandstone li-
thology. Fluid contacts are known to be largely
horizontal, and given the gas/brine contact in the
well the contact level is assumed to be between
2380 and 2400 ms, and an expected saturation
map can be specified �see Figure 6�.

The basic transition matrices are adjusted in
every node to accommodate the proportion maps
in Figures 5 and 6. The adjustment procedure is
defined in Appendix C. Correction factors are
computed relative to the average of the basic tran-
sition matrices and they are enforced in a hierar-
chical manner. First, the proportions of sandstone
versus shale/source rock are adjusted; thereafter
gas/brine substitution in sandstone and shale/
source rock substitution are made. This local ad-
justment of LF proportions is approximate �see
Appendix C� but after thorough evaluation, we
consider it to be reliable in our case study.

To compare posterior models for LF character-
istics based on different prior models, the follow-
ing alternative simplified prior models are de-
fined:

1� A profilewise �based on profile� Markov
chain prior model that ignores horizontal de-
pendence between the vertical profiles. The
average of the basic transition matrices giv-
en in Appendix B is used, with proportion
adjustment for spatially varying LF propor-
tions.
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Bayesian LF inversion: Real case study B77
� A locationwise prior model that ignores both vertical and hori-
zontal dependence. In this model, we use spatially varying LF
proportions.

� A locationwise prior model with uniform probability for each
of the LF classes. This corresponds to a maximum likelihood
solution.

osterior model

The approximate posterior model p̃�� �d�, defined in Ulvmoen
nd Omre �this issue�, is expressed through p̃��x ���x,dx� for all x,
hich are fully specified by the parameters assessed in the previous

ections. With the posterior model being defined on this conditional
orm, a block Gibbs algorithm is used to simulate from the posterior.
n outline of the algorithm is as follows:
SimulationAlgorithm
Initiate

Generate arbitrary �
Iterate

Draw x uniform randomly
Generate � x from p̃��x ���x,dx� by the upward-downward sim-
ulation algorithm

The simulation algorithm is fully defined in Ulvmoen and Omre
this issue�. However, note that the simulation is made by a comput-
r-efficient recursive algorithm vertically, while an iterative algo-
ithm must be used horizontally.

To evaluate the convergence rate of the simulation algorithm, the
lgorithm is initiated from four extreme configurations of the LF
lasses containing one class only. The proportion of each LF class af-
er each sweep of the algorithm is shown in Figure 7, with one sweep
orresponding to one update of each profile in the target zone. We see
hat all realizations with initial extreme configurations have reached
he same proportion within 1000 sweeps, which we define to be the
urn-in period for convergence.
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igure 5. Expected proportions of the lithologies: �a� sandstone; �b�
hale; and �c� source rock.
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RESULTS WITH DISCUSSION

Our study focus is on LF characteristics, and realizations and pre-
iction of these are obtained from the approximate posterior model.
ealizations are generated from this posterior model, and the most
robable prediction locationwise is calculated by counting the num-
er of occurrences of each of the LF classes in each location, then
hoosing the LF class with most frequent occurrences. We use 400
ealizations in this counting process, where the realizations are taken
very 100 sweeps after burn-in.

Figure 8 contains three independent realizations from the approx-
mate posterior model. These realizations can be considered as pos-
ible LF realities of the target zone, and they span the space of uncer-
ainty. The structure is similar in the three realizations, the layers of
ithology are elongated and thin, and the fluid gravity segregation is
eproduced. Note that the well observations are exactly reproduced,
nd that they have lateral influence due to the horizontal dependence
n the 2D Markov random field prior model. There is surprisingly lit-
le variability among the realizations. Assuming that the simulation
lgorithm has converged, this indicates that there is little prediction
ncertainty given the current model with associated parameters. The
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igure 6. Expected proportions of �a� gas-saturated sandstone; and
b� brine-saturated sandstone.
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igure 7. Convergence plot monitoring the proportion of LF classes
fter each sweep of the simulation algorithm.
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B78 Ulvmoen et al.
ncertainty level is probably not fully representative for reservoir
haracterization in general since uncertainty in the model specifica-
ion is not accounted for. These aspects require further research.

Figure 9 contains the LF class prediction based on the most proba-
le class locationwise. The prediction has less spatial heterogeneity
han the realizations, but not much so because the prediction uncer-
ainty is small. The prediction appears as realistic with continuous,
longated lithology classes. The well observations are exactly repro-
uced, and due to lateral coupling, they have influence in the near-
ell region also. The seismic data seem to define the spatial pattern
f the lithologies away from the well and the resolution in the inver-
ion appears as good because many lithology units are thin. The pro-
ortion of the lithologies sandstone, shale, and source rock are ap-
roximately 0.37, 0.58, 0.05, compared to 0.45, 0.50, 0.05 in the
ell observations used in the prior model. The conditioning on seis-
ic data is assumed to cause this change in proportions. The change

s plausible because wells usually are preferentially located in good
eservoir areas on top of structures. Consequently, sandstone propor-
ions in wells tend to be higher than the reservoir average. Moreover,
ven sampling uncertainty of average proportions from well obser-
ations can cause these levels of deviations �see Ulvmoen and Omre,
his issue�. The gas is on top of brine as expected from gravity segre-
ation, although the vertical trend of the prior fluid model probably
s the major reason for this. We discuss impact of the prior fluid mod-
l later.
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igure 8. Independent realizations of LF characteristics from ap-
roximate posterior p̃�� �d�.
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Figure 10 displays the LF-class prediction overlaying the manual-
y interpreted layer geometry produced by the data owner. The layer
orders seem to coincide reasonably well with lithology changes in
he predictions. In structurally complicated areas around 4 km and
efore 8 km, the match is poorer because the concept of spatial con-
inuity is unclear. The importance of automatic reproduction of layer
eometries is primarily appreciated in 3D modeling, however.

Figure 11 contains the results from cross validation of the LF pre-
iction in the well profile. The LF classes observed in the well are
isplayed along the left axis. The curves correspond to the marginal
robabilities p̃�� x,t �ds� based on seismic data only. Fluid-filled
andstone is well reproduced. Some of the thinnest shales are
erged and the source rock is slightly shifted. The latter is probably
consequence of the deconvolution. Cross-validation results look
ery encouraging and provide credibility to the LF prediction in Fig-
re 9.

Figure 12 contains the LF-class prediction based on a 2D Markov
andom field prior model without a vertical trend in the prior model
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igure 10. Locationwise most probable LF characteristics predic-
ion overlayed by manually interpreted detailed layer geometry.
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ased on seismic data only, with well observations dw marked on
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igure 12. Locationwise most probable LF characteristics predic-
ion based on a 2D Markov random field prior model without vertical
rend in the fluid prior.
igure 9. Locationwise most probable LF characteristics prediction.
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or the fluids. The prior model contains a stronger lateral dependence
or gas than the previous model to compensate for the lack of fluid
rends. The major gas volumes are predicted to be in the shallow
arts of the reservoir where conditioning on well observations for
as has lateral influence. Pockets of gas also are predicted in deeper
arts of the reservoir, however. Without lateral coupling in the prior
odel, the well observations of gas would stand out as a vertical gas

olumn surrounded by brine.
Figure 13 contains realizations from the approximate posterior
odel from the four different prior models; the 2D Markov random
eld model, the profilewise Markov chain model, and the location-
ise model with and without spatially varying LF proportions.
hese realizations reflect the spatial characteristics of the prior mod-
ls. The spatially coupled 2D Markov random field prior model en-
orces continuity on the realizations, while locationwise prior mod-
ls provide realizations dominated by the observation noise. It is ob-
ious that the 2D Markov random field model generates realizations
hat are most geologically realistic.

Figure 14 contains the most probable predictions locationwise
rom the four prior models. The 2D Markov random field prediction
s discussed above. The profilewise Markov chain prediction gives a
ood indication of the LF classes in the target zone. The prediction is
alculated very quickly because the approximate posterior model is
alculated analytically in each profile using a recursive algorithm.

Considering the prediction as a whole, there is a slight skyline ef-
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igure 13. Realizations of LF characteristics from approximate pos-
erior p̃�� �d� for �a� 2D Markov random field model; �b� profilewise

arkov chain model; �c� locationwise model with depth-varying
rior; and �d� locationwise model without depth-varying prior.
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ect due to lack of lateral continuity; hence the solution does not ap-
ear as realistic. Moreover, the well observations do not have an in-
uence in their neighborhood due to lack of lateral coupling. The
redictions based on locationwise prior models are extremely fast to
ompute. The prediction based on spatially varying prior propor-
ions of LF classes clearly reflects this prior model, and seismic data
ppears to carry information concerning sandstone versus shale and
ource rock. Brine appears immediately above gas in some places,
iolating gravity segregation rules, however. Moreover, the litholo-
ies appear as unrealistically patchy due to the influence of seismic
oise and lack of lateral coupling in the model. The prediction based
n the uniform LF proportion prior model reflects mostly the infor-
ation content in the seismic data, though the well observations are

sed in the wavelet estimation and the rock-physics model. Note that
he gas column observed in the well stands out surrounded by brine.
owever, even this prediction does reflect major characteristics of

he lithology distribution.
Realizations and predictions in Figures 13 and 14, under different

rior models, demonstrate that the 2D Markov random field repro-
uces the expected spatial pattern best due to lateral coupling in the
rior model. Moreover, the well observations are given lateral influ-
nce under this prior model.

Figure 15 contains the marginal approximate posterior probabili-
y for the four prior models in the well profile, with the well observa-
ions marked on the axis. The prediction in this figure is made with-
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igure 14. Locationwise most probable LF characteristics predic-
ions for �a� 2D Markov random field model; �b� profilewise Markov
hain model; �c� locationwise model with depth-varying prior; and
d� locationwise model without depth-varying prior.
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ut conditioning on the well data; hence in a cross-validation mode.
he marginal probability profile appears as very conclusive and

argely correct for the 2D Markov random field model. The other
arginal probability profiles appear as much more diffuse — more

o for models without spatial couplings. This demonstrates the im-
ortance of lateral coupling in the prior model, such that neighboring
eismic profiles are jointly interpreted when identifying LF classes
xpected to have long lateral continuity.

CONCLUSIONS

LF inversion in a Bayesian setting is demonstrated on real seismic
ata from a sandstone gas reservoir offshore Norway. The general
xperiences from the study are as follows:

The general reservoir experience about LF horizontal continuity
nd vertical sequencing combined with spatial LF proportion adjust-
ent, introduced through the profile Markov random field prior
odel, makes the inversion results look more geologically credible.
The approximate deconvolution approach for prestack seismic

ata appears as very reliable. Jointly with the horizontal coupling in
he prior model, this approximation makes it possible to identify li-
hology units that are very thin.

Well observations are crucial for inference of the likelihood mod-
l. Note, however, that only global likelihood parameters are esti-
ated; hence we try to avoid overfitting. In the conditioning, well

bservations are given spatial influence due to spatial coupling in the
rior model.

Posterior LF realizations and prediction compare well with manu-
l interpretations of reservoir layers. Moreover, cross validation of
F classes in the well reproduces the well observations very precise-

y, probably due to horizontal coupling in the model.
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igure 15. Marginal approximate posterior p̃�� x,t �ds� in well profile
andom field model; �b� profilewise Markov chain model; �c� locat
epth-varying prior; and �d� locationwise model without depth-vary
bservations dw marked on each axis.
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The inversion is performed under different
choices of prior models. However, all the inver-
sions are based on the approximate deconvolu-
tion approach. The realizations and prediction
from the 2D Markov random field prior model
compare favorably with results based on other
prior models. More realistic continuity in LF
variables is observed, and thinner units are identi-
fied. Uncertainty in the inversion represented by
the set of realizations from the posterior model
could be underevaluated. This is probably caused
by the model parameters being considered known
as their estimated values. Introduction of model-
parameter uncertainties would be a natural exten-
sion of the work.

The study is performed in a 2D cross section of
the reservoir with 950 nodes horizontally and 65
nodes vertically. The study required approxi-
mately eight hours of computing time on an aver-
age-size sequential computer processor. Full 3D
studies are well within reach because the algo-
rithm runs linearly in the number of nodes, al-
though the convergence rate can be somewhat
lower in 3D couplings. Moreover, the block
Gibbs simulation algorithm is well suited for par-
allelization.
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APPENDIX A

PARAMETERS IN GAUSSIAN MODEL

Variable m contains the logarithm of the elastic material proper-
ies. The Gaussian probability p

*
�m� is parametrized by

�
*
,�

*
,c

*
�� �� vertically, and the numerical values are estimated

rom the well using standard statistical estimators giving

�*� �7.99 7.36 7.75�

nd

�*�
0.0106 0.0207 0.0012

0.0207 0.0506 �0.0036

0.0012 �0.0036 0.0051
�,

ith rows and columns corresponding to logarithm of P-wave veloc-
ty, S-wave velocity, and density, respectively, in units of m/s, m/s,
nd kg /m3. The temporal correlation function for P-wave velocity,
-wave velocity, the crosscorrelation between these, and the cross-
orrelations between S-wave velocity and density are given by a
rst-order exponential correlation function

c*�� ��exp��
�

d
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ith range d�35 ms. The remaining correlations are density and
rosscorrelation between P-wave velocity and density. They are giv-
n by the weighted sum of a second-order exponential correlation
unction and a normalized second derivative of a second-order expo-
ential correlation function

c*�� ��0.5 exp��� �

d1
�2

�0.5�1�
2� 2

d2
2 �exp��� �

d2
�2,

ith ranges d1�7.5 ms and d2�35 ms, respectively. This correla-
ion function exhibits a weak hole effect.

APPENDIX B

BASIC TRANSITION MATRICES

Basic transition matrices with limiting distributions in 2D Mar-
ov random field prior model are

PSG,SG
t �


0.9996 0 0.0002 0.0002

0.9994 0.0002 0.0002 0.0002

0.9994 0.0002 0.0002 0.0002

0.9994 0.0002 0.0002 0.0002
�

pSG,SG� �0.9995 0.0000 0.0002 0.0002�

PSG,SB
t �


0.9990 0 0.0005 0.0005

0.4998 0.4998 0.0002 0.0002

0.4998 0.4998 0.0002 0.0002

0.4998 0.4998 0.0002 0.0002
�

pSG,SB� �0.9980 0.0010 0.0005 0.0005�

PSG,SH
t �


0.4999 0 0.4999 0.0002

0.4998 0.0002 0.4998 0.0002

0.4998 0.0002 0.4998 0.0002

0.4998 0.0002 0.4998 0.0002
�

pSG,SH� �0.4998 0.0001 0.4998 0.0002�

PSG,SR
t �


0.4999 0 0.0002 0.4999

0.4998 0.0002 0.0002 0.4998

0.4998 0.0002 0.0002 0.4998

0.4998 0.0002 0.0002 0.4998
�

pSG,SR� �0.4998 0.0001 0.0002 0.4998�

PSB,SB
t �


0.3333 0 0.3333 0.3333

0.0002 0.9993 0.0002 0.0002

0.0002 0.9993 0.0002 0.0002

0.0002 0.9993 0.0002 0.0002
�
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pSB,SB� �0.0004 0.9989 0.0004 0.0004�

PSB,SH
t �


0.0005 0 0.9990 0.0005

0.0002 0.4998 0.4998 0.0002

0.0002 0.4998 0.4998 0.0002

0.0002 0.4998 0.4998 0.0002
�

pSB,SH� �0.0002 0.4996 0.4999 0.0002�

PSB,SR
t �


0.0005 0 0.0005 0.9990

0.0002 0.4998 0.0002 0.4998

0.0002 0.4998 0.0002 0.4998

0.0002 0.4998 0.0002 0.4998
�

pSB,SR� �0.0002 0.4996 0.0002 0.4999�

PSH,SH
t �


0.0002 0 0.9996 0.0002

0.0002 0.0002 0.9994 0.0002

0.0002 0.0002 0.9994 0.0002

0.0002 0.0002 0.9994 0.0002
�

pSH,SH� �0.0002 0.0002 0.9993 0.0002�

PSH,SR
t �


0.0002 0 0.4999 0.4999

0.0002 0.0002 0.4998 0.4998

0.0002 0.0002 0.4998 0.4998

0.0002 0.0002 0.4998 0.4998
�

pSH,SR� �0.0002 0.0002 0.4998 0.4998�

PSR,SR
t �


0.0002 0 0.0002 0.9996

0.0002 0.0002 0.0002 0.9993

0.0002 0.0002 0.0002 0.9993

0.0002 0.0002 0.0002 0.9993
�

pSR,SR� �0.0002 0.0002 0.0002 0.9993�,

ith rows and columns appearing in this order: gas-saturated sand-
tone, brine-saturated sandstone, shale, and source rock. Subindices
n P.,.

t indicate the neighboring class.
The average of the basic transition matrices, used as transition

atrix in the profilewise Markov chain model is

P�

0.33 0 0.33 0.33

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25
�,

ith associated limiting distribution

p� �0.27 0.19 0.27 0.27� .
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APPENDIX C

ADJUSTMENT OF MARGINAL PROPORTIONS

Consider a stationary Markov chain with �n�n�-transition ma-
rix

P�
p11 . . . p1n

] � ]

pn1 . . . pnn
�,

ith � jpij�1 and limiting distribution p� �p1, . . . ,pn� defined by p
PTp. The challenge is to adjust P to have limiting distribution q
�q1, . . . ,qn�.

APPROXIMATION

Define

Pq�
�1p11q1/p1 . . . �1p1nqn/pn

] � ]

�npn1q1/p1 . . . �npnnqn/pn
�

ith

� i� �pi1q1/p1� . . .�pinqn/pn��1.

he limiting distribution for Pq is denoted r� �r1, . . . ,rn� and defined
y r�Pq

Tr. Hence, in the general case, r�q. Note, however, that Pq

ill inherit extreme elements 0 and 1 from P; but otherwise the tran-
ition probabilities will be adjusted.

SPECIAL CASES

ase I: Extreme events

Events with qi�0 or qi�1⇒ri�0 or ri�1. Thus extreme
vents will be reproduced.

ase II: Representative events

Consider q� �pi, . . . ,pn�⇒� i�1⇒Pq�P⇒r� �p1, . . . ,pn�
q. Thus if q coincides with p, q will be correctly reproduced.
Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
ase III: Independence Markov chain

Consider

P�
p1 . . . pn

] � ]

p1 . . . pn
�⇒Pq�
q1 . . . qn

] � ]

q1 . . . qn
�

⇒r� �q1, . . . ,qn� .

hus if P defines an independence Markov chain, q will be repro-
uced.

losing remark

The approximation reproduces extremes and has reliable approxi-
ations if p and q are not too different and/or the dependence in the
arkov chain is weak.
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