
Why We Need A Different View of Software Architecture

Jason Baragry Karl Reed
Norwegian Computing Center. Dept. of Computer Science.

P.O. Box 114 Blindern, La Trobe University.
N-0314 Oslo. Bundoora. Vic. 3083

Norway. Australia
Email: Jason.Baragry@nr.no. Email: kreed@cs.latrobe.edu.au.

Abstract

The definition and understanding of software
architectures and architecture views still shows
considerable disagreement in the software engineering
community. This paper argues that the problems we face
exist because our understanding is based on specious
analogies with traditionally engineered artefacts. A
review of the history of ideas shows the evolution of this
understanding. A detailed examination is then presented
of the differences that exist between the nature of the
systems, the content of their large-scale representations,
and how they are used in practice in the respective
disciplines. These differences seriously undermine the
analogies used to develop our understanding and this is
discussed in terms of software engineering as a whole.

1 Introduction

Software engineers have been discussing the
architecture of their systems since at least the late 60s and
software architecture research has been a separate field of
study since the late 80s. However, while the ideas in this
sub-discipline are still solidifying, confusion exists
concerning the exact nature and meaning of software
architecture and that confusion is restricting the progress
of software architecture research and the adoption of its
ideas in practice.

For example, Mobray [1] notes the importance of
architecture research ideas but states they are hard to put
into practice because of confused terminology, the lack of
complete models, and disagreement about which views of
the system are necessary. One reason for those differences
is the lack of a universally agreed definition or even
understanding of what software architecture is or should
be. Similarly, Bennett [2] notes that the research
community is almost unanimous in its conviction that
software architecture describes something about the
structure of a system and that it plays a vital role in
determining the systems emergent properties. However,

they are much less unanimous on the questions of which
elements should be included in the architecture, how to
co-ordinate different collections of those elements
(views), and how to evaluate the architecture against the
external requirements. The problem is not that there are no
answers to these problems; rather, the difficulty arises
from the fact that there have been so many different
answers given.

Research efforts are attempting to solve these
difficulties between software architecture theory and
practice. However, despite the realisation that researchers
need to do something to solve the discrepancies, we
believe the problem is far more fundamental than
currently understood. What is required is an examination
of how we understand software systems, their
development, and the large-scale structures used to
represent them.

One thing that is obvious from the review of the
literature is that the community’s understanding of
software architecture has evolved based on analogies with
the large-scale structure of traditionally engineered
systems. Take for example the philosophy of the self-
proclaimed ‘World-wide Institute of Software Architects’:

“There is a compelling analogy between building
and software construction. It is not new, but it has
never taken root and bloomed. The analogy is not
just convenient or superficial. It is truly profound.
It not only raises the right questions, it has the
answer to what has been called ‘The Software
Crisis.’” [3]
Far from being a potential panacea, we believe this

understanding is in fact the source of many of the
problems in software architecture research. This paper
argues that the analogy is indeed convenient, superficial
and far from “truly profound”. Moreover, the problems in
software architecture exist because our understanding of
the issues is based on these specious analogies with
traditionally engineered systems and that, far from
providing “an answer to what has been called ‘The
Software Crisis’”, the differences between theory and
practice will not be solved until the software engineering

mailto:Jason.Baragry@nr.no
mailto:kreed@cs.latrobe.edu.au


community develops a different view of software
architecture.

The paper begins by presenting the current
understanding of the terms ‘architecture’ and ‘architecture
views’. The historical development of the research
community’s understanding of these terms highlights their
derivation from analogies with more traditional
engineering disciplines. While those analogies served a
useful purpose in facilitating our formulation of software
development concepts, their failure to adequately consider
the differences between software development and those
other disciplines requires them to now be replaced. Those
differences are detailed to show the limitations of our
present understanding by using the specific area of
‘architecture views’ as the example. Those differences are
grouped into three categories:
1. Differences between software and traditionally

engineered systems.
2. Differences between the content of architecture views

in the respective disciplines.
3. Differences between how those views are used in the

development processes of the respective disciplines.
Finally, we make concluding comments about how this

issue relates to the community’s guiding assumptions
about software engineering in general and the role of
research in the progression of the discipline.

2 A History of Our Understanding of
Software Architecture.

The first papers to describe the large-scale structure of
software systems appeared in the mid to late 1960s. For
example, in 1968 Dijkstra detailed the large-scale
structure of the ‘THE-Multiprogramming System’ [4]
where he discussed the advantages of partitioning the
operating system into layers like ‘onion-rings’. Another
example exists in the transcripts of the 1969 NATO
conference on Software Engineering where Sharp
discussed the importance of software architecture and the
differences between design at that level of detail and other
software engineering. [5] (p. 150). Later, Spooner
developed his “Software Architecture for the 1970s” [6],
contrasting it with Dijkstra’s large-scale system structure.
As the 70s progressed, practitioners began detailing the
advantages of theorising about those system-level
structures and the consequences of decisions made at
those higher levels of design (e.g., [7]). In addition,
Brooks wrote his essays on software engineering [8] in
which chapter four, Aristocracy, Democracy, and System
Design, stressed the importance of the conceptual design
phase and how it affects subsequent development. These
examples show software developers were able to identify
and reason about high-level structures of their software
systems and recognised the importance of decisions made

at that level of design. Moreover, it shows that the term
‘architecture’ was well established as the word for
designating those structures.

Brooks, who was the originator of many software
architecture ideas, also published articles on the
architecture of computer hardware [9]. Given this, and the
extent to which Brooks draws on analogies with hardware
development paradigms in The Mythical Man-Month [8],
it could be argued that many of the concepts Brooks used
for understanding the large-scale partitioning of software
systems evolved from his understanding of the concepts
involved in computer architecture. This influence was
considered to some extent. In the early 1960s, Brooks and
Weinberg discussed the appropriateness of the term
‘architecture’ for describing structural design issues in
computer systems. Brooks was worried about the
appropriateness of the analogy, however as their
discussion progressed it seemed to hold [10]. At that time,
their discussion considered computer systems as both
hardware and software, in contrast to the more software-
centric analogies used in recent times [11]. In addition,
their concept of software architecture included the
interface with the computer operator as well as the large-
scale system structure [11]. That aspect is also evident in
Brooks’ later comments on the integrity of the system
architecture.

“By architecture of a system, I mean the complete
and detailed specification of the user interface.” [8]
Coplien notes therefore, that as early as 1965 the

discipline of software development was already enough on
its feet to consider the influence of design theories in other
artefact construction disciplines [12].

Despite these, and many other examples of software
developers reasoning about the large-scale structures of
their systems, it was Mary Shaw’s 1989 paper, Larger
Scale Systems Require Higher Level Abstractions [13]
that was significant in the emergence of the area of
research that is today referred to as ‘software
architecture’. In that paper, Shaw recognised the existence
of high-level system representations that are used during
the development process and which could be recorded and
passed onto other designers. Shaw had been working on
abstraction techniques previously [14] and noted the use
of those abstractions in the development process could
result in a “software architecture level of design.” Shaw’s
work identified and labelled a number of different styles
of architecture that are still used as examples today. For
example, ‘layered’ and ‘pipe & filter’. While Shaw’s
paper discussed the importance of higher-level system
abstractions, it merely identified the concepts that others
began to theorise about.

Perry and Wolf's paper [15], as its title suggests, laid
the foundations for many architecture research ideas. It
also contained the first attempt to define architecture, or at



least, the important concepts of software architecture.
They stated that a model of architecture consists of three
components: elements, form, and rationale. The elements
are either processing, data, or connecting elements; form
is defined in terms of properties and relationships among
the elements (the constraints); and rationale provides the
underlying basis for the architecture in terms of system
constraints. Much of the understanding in that paper was
derived through analogies with other disciplines that
highlighted useful similarities and differences. For
example, computer hardware, network architecture, and
traditional building architecture. One of those analogies
compared the different representations of a software
system with the multiple views of a traditional building
design that are used by the various stakeholders in the
development process. That specific analogy is discussed
in detail in a later section.

From those research foundations, many definitions of
software architecture have emerged. Of the early
definitions, the one by Garlan and Shaw [16] was often
cited. However, neither this, nor any other definition, has
become an accepted standard. The Software Engineering
Institute web site houses many of the definitions that have
been published in software architecture literature [17].

The most recent definitions differ from the earlier ones
by catering for issues that emerged out of published
experience reports – the existence of multiple views of
software architecture. A number of software architecture
case studies and theories based on practical experience
were published suggesting the need for multiple large-
scale representations to capture the architecture of a
software system. For example, Soni [18], as a result of
surveying many software systems used in industrial
applications, identified four different large-scale structural
depictions used throughout the development process.
Kazman [19], while discussing the analysis of quality
attributes of system architecture, asserted that the
architecture could be described from (at least) three
different perspectives. Finally, Kruchten presented his
collection of system representations that had been
successfully used to capture the architecture information
in several large projects [20]:

• Logical view: Where the required system is
decomposed into a set of key abstractions, taken
(mostly) from the problem domain.
• Process view: Depicts how the main, functional
abstractions map onto executing processes and threads
of control.
• Physical view: Reflects distributed aspects by
showing how the software maps onto the hardware.
• Development view: Focuses on the actual software
module organisation in the development environment.
Those four views are depicted with a fifth view that

illustrates them with a few use-cases or scenarios. Indeed

these views are considered analogous to the depiction of
software architectures in the increasingly popular Unified
Software Development Process [21] (p. 62).

From those experience reports, the use of multiple
views to represent the system architecture has become
accepted in the discipline and has become part of more
recent definitions of software architecture. For example,
Bass et al state:

“The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software components,
the external visible properties of those components,
and the relationships among them.” [22]
The intent of the definition is that “a software

architecture must abstract away some information from
the system … and yet provide enough information to be a
basis for analysis, decision making, and hence risk
reduction.”. The authors also note that “the definition
makes clear that systems can comprise more than one
structure, and that no one structure holds the irrefutable
claim to being the system architecture.”

It is now clear that when developing software systems
many large-scale system depictions are used. The
prevailing consensus in software architecture research is
that these representations are different views of the system
architecture, where each view provides a different
abstraction of the underlying implementation detail.
Therefore, each view is a subset of the detail that exists in
the implementation. This way of understanding the nature
of software architecture views can be traced back to the
‘foundations’ paper by Perry and Wolf [15]. From their
analogies with traditional building architecture they noted:

“… a building architect works with the customer
by means of a number of different views in which
some particular aspect of the building is
emphasized. ... For the builder, the architect
provides the ... floor plans plus additional
structural views that provide an immense amount
of detail about various explicit design
considerations such as electrical wiring, plumbing,
heating, and air-conditioning. ... Analogously, the
software architect needs a number of different
views of the software architecture for the various
uses and users.” [15]
The same analogy was used by Bass et al to explain

their definition of architecture. They claim the multiple
representations are analogous to the different building
representations used by the architect, the interior
decorator, the landscaper, and the electrician. They
summarise the most useful representations or views used
by software developers as: module structure, conceptual
or logical structure, process structure or co-ordination
structure, physical structure, uses structure, calls structure,
data flow, control flow, and class structure. [22]



Despite the many definitions, confusion still exists
concerning the exact nature of the representations, why
they are necessary, and which ones should or should not
be included in the description of the system architecture.
Other researchers have offered explanations for this.

Clements, in his overview of the field [23], suggests
five reasons why the community has failed to reach a
consensus on what exactly we mean by software
architecture.
1. Advocates bring their own methodological biases

with them. While most definitions of the term agree at
the core, they differ seriously at the fringes.

2. The study is following practice, not leading it.
Research still involves observing the design
principles and actions used whilst developing real
systems and abstracting the commonalties.

3. The field is still quite new.
4. The foundations have been imprecise. The field

contains a remarkable number of undefined and
ambiguous terms.

5. The term is over-utilised and its meaning as it relates
to software engineering is becoming diluted.

That confusion concerning the meaning of software
architecture is also observed by Bass et al [22]. However,
they suggest the lack of a well-accepted definition is not
as troubling as it appears because the concept of software
architecture can still be successfully used while a
discipline-wide consensus evolves. [22]

To summarise the current understanding of software
architecture:

• Software developers have been able to identify and
theorise about the large-scale structures of software
systems since early in the discipline.
• Those large-scale structures are considered the
‘architecture’ of the software system. That
understanding is based on analogies with traditional
engineering disciplines whose built systems exhibit
large-scale structures that are termed the ‘architecture’.
• Research has successfully sought to improve the
development process at the software architecture level
of design.
• Experience suggests many system representations
are required to depict the architecture of a software
system.
• Those representations are considered analogous to
the multiple representations of traditionally built
artefacts.
• Confusion still exists about the exact nature of
software architecture and the views used to represent it.

3 Issues that Undermine the Current
Understanding of Software Architecture.

The logical progression from the recognition of large-
scale structures in software systems; to Shaw’s call for an
architecture level of design; through to Perry and Wolf’s
foundations for the discipline; and finally to the
explanation of the multiple, high-level representations
required to depict a software system as different views of
the implementation detail appears valid. However, a more
thorough comparison of the systems built by the
respective disciplines shows it is quite specious. It is
based on the implicit assumption that the software
development process is analogous to those ‘construction’
disciplines in which the completed artefacts or systems
exhibit a unique representational abstraction, fixed during
the early stages of design, which we describe as ‘the
architecture’. The problem of obtaining an acceptable
definition of software architecture or a set of common
architecture views is due to the assumption that software
systems have an analogous, unique design abstraction,
determinable at the early stages of the design. That
understanding of architecture and the use of architecture
views follows from Perry and Wolf’s statement,

“… there are a number of interesting architectural
points in building architecture that are suggestive
for software architecture.”
However it ignores the statement that began that

sentence,
“While the subject matter of the two is quite
different …” [15].
The subject matter of the two is quite different and any

attempt to use analogies between the disciplines can only
be done by ensuring that conjectures extrapolated from
those analogies are not invalidated by those differences.
This section examines those differences and finds 3
categories where the analogy fails to hold. They are:
1. Differences between software and traditionally

engineered systems.
2. Differences between the content of architecture

‘views’ in the respective disciplines.
3. Differences between how those views are used in the

development processes of the respective disciplines.

3.1 Differences between Systems.

System Form. A comparison of the disciplines shows
that two important differences exist between the artefacts
produce by software developers and those produced by
the more established engineering disciplines. The first is
the concept of form and the other is the concept of system
execution. Those differences between the fundamental
natures of the respective systems have a significant impact
on the way we use the notions of architecture and
architecture views in the development process.



Systems produced by traditional engineering
disciplines are corporeal. They have a physical form, a
tangibility that allows the viewer to perceive its large-
scale structure – its architecture. That architecture can be
viewed in the original design documents, traced
throughout the design process and viewed in the physical
realisation of the system. Obviously you cannot see all of
the details of the architectural design by looking at the
physical system. For instance, the precise nature of the
materials used, the exact physical dimensions of
components, and hidden areas such as ventilation shafts
may all be indeterminable. However, the large-scale
structure of the system is evident in the design and in the
finished artefact.

While not all architects agree on the most appropriate
solution for a particular problem’s requirements or even
on the best architectural design theory, the discipline does
have a common understanding of what it means to be an
architect and what the goal of architectural design is

“That is what architects are, conceivers of
buildings. What they do is to design, that is, supply
concrete images for a new structure so that it can
be put up. The primary task for the architect, then
as now, is to communicate what proposed buildings
should be and look like.” [24].
Architects represent the geometric properties of the

building materials and/or components. The physical
magnitudes and relations of those components and how
they are juxtaposed in space. That is the case in traditional
architecture, civil engineering, and mechanical
engineering. Those architectures depict the physical form

of the system or the components that comprise the system.
System ‘functionality’ is then inferred from those
components1.

Australia’s most famous piece of architecture, the
Sydney Opera House, provides a good example. Figure 1
depicts the large-scale system design developed by the
architect. It also depicts a picture of its physical
appearance [25]. Put simply, you can see the architecture
in the design and in the realisation.

The analogous concept of form does not exist for
software systems. In general parlance, the architecture of a
physical artefact describes its “unifying or coherent form
or structure” [26]. That generic concept is easy to
understand when dealing with our vast range of physical
artefacts. People without specific training in the respective
fields can perceive building architecture, computer
architecture, naval architecture, etc. However, difficulties
arise when you apply the same concept to elicit the
architecture of a system whose only tangible manifestation
of the construction is the source code implementation [2].

You cannot see the architecture of a software system by
looking at the thousands of lines of source code. It simply
does not exist in the same fashion. The difference is so
obvious it can easily be missed. Others have claimed the
user interface can be thought of as a tangible aspect of a
software system. The UI is certainly a tangible aspect of
the system, however you still cannot determine the large-
scale structure of a software system by looking at its UI in
just the same way as you can’t determine the large-scale
structure of a car’s engine by looking at its dashboard.
There is a fundamental difference between the forms of
the systems produced by the respective disciplines.

Software systems have no analogous physical form.
They are not tangible systems and therefore their high-
level, abstract, design representations must be different to
those produced by the peer level of design in other
engineering disciplines. Empirical research has shown that
software developers produce multiple, high-level
abstractions to represent their systems and the evolution of
research ideas has assumed that they can be devised and
used in an analogous manner to those architecture views
of other disciplines. Indeed, it may be possible. However,
the current understanding of software architecture views is
based on an assumption that, while employed for a long
time, has never been validated. During software
development, large-scale design representations are
created in the conceptual design phase, the
implementation stage, the maintenance stage, and all other
stages in between. Do they have any relation to each
other? Is it possible to derive them all from the source
code? Are they immutable in the same sense as

1 We recognise that electronic engineering generally does not have this
property.

Figure 1: Architecture Diagrams and Physical
Representation of the Sydney Opera House



traditionally built architectures? Software engineering
researchers answer “Of course!” to these questions and
use further analogies with other engineering disciplines as
justification. Those justifications however, fail to consider
the differences between the disciplines and the lack of
tangibility of software is one difference that makes the use
of those analogies hard to justify. To determine whether
those multiple representations of software architecture are
views in an analogous sense to other disciplines the
following question needs to be answered. What is it about
the nature of our discipline, rather than other disciplines,
which makes it so?

System Execution. The other important difference
between software systems and traditionally engineered
artefacts concerns the concept of system execution.
Software has a distinction between the implemented
system, the collection of source code, and the executing
system, that is, the way the source code is executed by the
implementation environment to realise the system. This
distinction does not exist in any other discipline. A
software system is nothing more than a collection of
source code statements until it is compiled and executed,
statement by statement, by the ‘virtual machine’ implied
by the semantics of the programming language. It is not
until this stage that the system realises the desired result –
a fact that is taught to all computer science students and
perhaps forgotten not long after.

Some researchers contest the uniqueness of the
distinction between system implementation and system
execution. Counter arguments make analogies with other
disciplines such as, “What about the flow of movement
through a building?” or “What about the execution of a
motor vehicle or electronic device?” To refute those
claims, a distinction is made between the operation and
the execution of a system. This distinction is critical to
realising the differences between software systems and
traditionally built artefacts and, therefore, warrants a few
examples. Users can operate a software system through its
user interface but that operation cannot occur until the
system is being realised through its execution by the
computer. Motor vehicles and electronic devices certainly
operate but they are not executed in the same manner. The
construction of a motor vehicle results in the existence of
a constant mechanical linkage between the physical
components. As the driver is operating the vehicle, the
gross structure of its dynamic operation is exactly the
same as the gross structure that was the result of its
construction. Similarly, computer architecture remains the
same whether the machine is being used or not. A user can
operate mechanical and electronic devises but they have
no need of an external system to provide its execution.
They may require power through electricity or
combustible fuel for the components of the system to

operate and exhibit the required properties. However,
once supplied that power they continue to execute
independently and have no need of concepts such as a
‘threads of control’.

3.2 Differences Between the Content of
Architecture Views.

The difference between the concepts of system form
and system execution in the respective disciplines affects
the content of the architecture and architecture views used
in the respective development processes. This does not
simply refer to the obvious differences between corporeal
systems and software systems but rather to the content of
each view and its relationship to the system as a whole.

Traditional building disciplines produce many different
representations of their system architecture. Those views
are constructed by removing some of the implementation
detail and leaving a subset of the devised form. Each view
may correspond to particular viewpoint of one of the
actors in the development process and each view is
understood in the context of the global structure using the
understanding of the physical form or features of the
entire system. For example, how the wiring moves
throughout the spatial arrangement of the automotive
vehicle, or how the plumbing system is laid out within the
spatial arrangement of the building. Those high-level
representations can be developed both before the system is
realised and as documentation after the system is
completed. They depict a view of what some aspect the
physical system is or will be. Not how the system will
operate, but how that aspect of the system will exist as a
corporeal artefact.

The content of architecture views as viewpoint-oriented
subsets of the global design or implementation is not
repeated in software architecture views. Earlier in this
paper we presented the different collections of
architecture views identified by Soni, Kazman, Kruchten,
and Bass et al. The specific views in each of those
collections can be grouped into the following three
categories:

• Static Implementation Architectures: The
representations that depict the source code modules and
the relationships between them. Examples from the
identified taxonomies include – source code, module
interconnection, structural, development, physical, call-
structure, object-structure, etc views.
• Dynamic Operation/Execution Architectures: The
architectures that depict how the system executes in
terms of functional abstractions of the implemented
system and execution abstractions of the computing
environment (e.g., processes, distributed machines,
threads of control information). Examples from the
identified taxonomies include – execution, allocation,
process-structure, coordination, etc views.



• Conceptual/Logical Architectures: The
representations used during the conceptual design phase
of development that depict what the designer believes
should be implemented. Examples from the identified
taxonomies include – conceptual, domain level, logical,
etc views.
If the many large-scale system representations of

software systems are in fact analogous to the different
views of traditionally engineered artefacts then these
categories should all be obtainable from the underlying
software implementation. However this is not the case.
The architectures used to represent the only ‘tangible’ part
of the system that exists, the source code implementation,
are fundamentally different to those used to represent the
executing system. Representations of the source code
implementation depict how the system is implemented
using the building blocks provided by the implementation
language(s). These building blocks include files,
procedures, functions, rules, object definitions, etc. That is
the only system representation that can be directly
perceived by us, yet it does not contain all the
implementation detail necessary to understand what the
system does or how the system executes to realise the
requirements2. It is missing services provided by the
operating system; services provided by other software
systems, both those provided at compile time by linking in
additional libraries and those provided at run-time by
communicating processes; and it is missing information
that affects the operation of the system because it is
hidden in data values rather than being explicit in
procedural invocation.

The source code is the lowest level of system
granularity, the detail from which larger-scale abstractions
are generated. However, it is missing the detail necessary
for understanding how the system will execute. That
additional detail is available only at run-time after the
source code has been compiled and is being executed. The
missing information is depicted in the abstract concepts
evident in the architecture representations of the dynamic
operation of the system. Those representations detail the
operating system processes, the inter-process
communication abstractions, the distributed nature of the
system and the other services that become part of the
system at runtime. The representations we have to depict
the static implementation of the system and those that
represent the dynamic operation of that system are
different. One is not merely a subset or more abstract
‘view’ of the other. They are different, and the reason they
are different is because of the differences that exist
between the discipline of software development and those

2 Again, some may argue that the user interface constitutes a tangible
aspect of the system. That debate is not considered here because it does
not alter the subsequent conjectures.

from which we draw the concepts of architecture and
architecture views. Our systems have no tangible form and
our systems have a distinction between system
implementation and system execution.

The difference between system implementation and
system execution also highlights the fact that no software
system representation, from lowest level of detail, through
to most abstract architecture contains the information that
explains how the system is executed. It is not immediately
obvious because few, if any, other disciplines require it in
their system representations. In other disciplines you look
at the architecture of a system and infer how it works.
That is because those systems are not executed by another
machine. Software systems are executed and knowledge of
the operation of that execution engine, the virtual machine
implied by the language, is necessary to understand how
the system is executed.

The majority of systems are implemented in procedural
or object-oriented languages. Developers can
conceptualise the operation of those by implicitly
following the procedural invocations as the imagined
thread of control moves through the system components.
Object-oriented terms like ‘message passing’ are still, at
the code level, procedure invocations. Designers viewing
system representations automatically apply that
knowledge of how that model of abstraction operates to
solve a problem, often without explicitly realising it. It
becomes evident however, when attempting to understand
a system representation that has been implemented in a
language that utilises its own virtual machine rather than
traditional procedural invocation. For example,
understanding how a system implemented in Prolog
operates must be done with the knowledge of how a
backward-chaining inference engine works. The dynamic
execution architectures of a realised system are not
generated by abstracting away detail from the large and
complex implementation because those details do not exist
in the implementation. Again, we have an architecture
representation that is not a subset or abstraction of some
other, more complex, representation. It is different to the
implementation because of the fundamental nature of
software systems.

Like the static implementation and dynamic operational
views of a software system, it is impossible to consider the
conceptual views as a subset of the implementation detail.
The concepts represented in the logical or conceptual
level depictions of software architecture contain abstract,
domain level concepts. They are mentally conceived
entities that have no tangible manifestation. They may
attempt to model or mimic tangible things, but they
themselves have no form. The realisation process of a
software system as an executing computer program occurs
by implementing those mentally conceived, domain level
concepts using the constructs provided by the



programming language and operating system, and
subsequently executing them in a machine. Those
mentally conceived notions might be similar to
implementation level concepts, however they do not have
to be. Indeed the essence of software development is the
process of implementing those domain level concepts of
our minds using the constructs provided by whatever
implementation environment is at our disposal. This is not
generally the case in any other engineering discipline [27].
High-level software design representations consist of
abstract concepts that depict domain level functionality
and/or behaviour. In contrast, large-scale representations
of the implementation consist of concepts provided by the
implementation medium. For instance, language
constructs (e.g., functions, rules), virtual machines, files,
operating system processes, etc. They are different
collections of concepts.

The difference between the two can be explained
through a better understanding of a word that is often used
in software architecture research – ‘abstraction’. The
existence of different architectures for a software system
has been explained as different abstractions of the
complex implementation detail. The definition of the word
abstraction is often quoted from Shaw’s work as a
simplified description of a system that emphasises some of
the system’s details or properties while suppressing others
[14]. That definition matches the one in a standard English
dictionary. It also matches how views are assumed to be
generated in traditional built architecture, where each
view is a subset of the system as a whole. However, that is
not the situation with software architectures. They match a
definition of abstraction discussed in philosophy and
psychological – see for example [28]. In those fields,
abstraction is the technique by which higher order
concepts are used to further intellectual reasoning by
representing distinct, yet similar, particular instances. For
example, apples and bananas can be represented by a
single concept, fruit. That is how abstraction is used in
software architecture. The collection of particular
implementation concepts, such as objects, message
queues, etc are represented by a different concept such as
a blackboard. A blackboard does not exist in the software
system. What ‘exists’ is a collection of programming
objects or procedures, in conjunction with operating
system message queues. We simply choose to refer to that
collection by the single concept ‘blackboard’. Similarly,
there is no particular instance of ‘fruit’. There are apples,
bananas, oranges, etc. We simply choose to refer to them
collectively as ‘fruit’.

Software architecture views are not developed by
merely removing the unwanted detail. They involve the
generation of higher level, abstract concepts to represent
the underlying detail. Moreover, many higher level
concepts can be used to represent the same particular

instances. That is why many architectures can be used to
describe the high level structure of a software system.
That is, a conceptual architecture can be realised by many
implementation architectures and an implementation
architecture can be represented by many conceptual
architectures.

It is true that some representations, for example high-
level object diagrams, have a smaller cognitive distance
between the design level concepts and the implementation
level concepts. Similarly, when modifying an existing
system or building upon some previously implemented
system the conceptual architecture may consist of
components that have direct analogues in the implemented
system. However, it is not true of all high-level software
architectures developed early in the design process. They
are different from the architectures developed during the
same stage of other disciplines and are not different views
of the implementation complexity.

3.3 Differences between How Views are Used in
Practice.

The final difference to be noted concerns how these
large-scale structures are used in practice. Shaw’s original
architecture paper noted the existence of large-scale
software representations (“abstractions”) and proposed
these could result in an “architectural level of design” that
is analogous to the one that is presumed to exist in
traditional engineering disciplines [13]. Traditional
building disciplines develop the architecture, the gross
structural form of the system, during the initial design
stages of the development process. The form is specified
in large-scale representations and a process of refinements
specifies precisely how that form will be realised in terms
of physical materials. The gross-structure of the form
remains throughout the process.

This is not the case in software development. The
creation of large-scale, conceptual representations is also
noted during software system design. However the process
of moving from the conceptual representations to the
dynamic operation and static implementation ‘views’ is
not an analogous process of refinements and specifications
(regardless of how it is popularly described). This is due
to the nature of the elements that are contained in those
representations. They are not representations of corporeal
components in an analogous manner to traditional system
architectures. As we have discussed previously, the
concepts represented in the design level depictions of
software architecture contain abstract domain level
concepts, which must be realised using the constructs
provided by the programming language, operating system,
and other existing components, and then subsequently
executed by the machine. Progress in software design
research is concerned with reducing the cognitive distance
between the concepts that exist in our minds and those that



are realisable in the implementation medium of our
discipline. Programming language improvements, such as
object-oriented languages and FGLs, have attempted to
bring the implementation level closer to the mentally
conceived components. Alternatively, design methods and
patterns attempt to provide techniques that help to develop
mental level components, and their interactions, that are
more easily, and predictably, realisable in our
implementation medium(s). Regardless of these advances,
the cognitive distance exists and must be traversed during
all software design activities.

Because the nature of our systems are different to those
of traditional engineering disciplines and the nature of the
content of our large-scale representations for them are
different, they way they are used will also be different.
Therefore it is impossible to consider “an architectural
level of design” for software development that is
analogous to those other disciplines. It is important to note
that we are not saying analysis at this level of design is
neither possible nor useful. Advances in areas such as
product-line architecture are obviously benefiting the
community. However, in order to reason why they are so
useful and in order to perform research to establish
improved practices, it is necessary to develop a view of
software architecture based on the nature of software
systems and not traditionally engineering artefacts.

4 Conclusion.

This paper has argued that the problems that exist
between software architecture theory and practice exist
because our understanding of the issues is based on
specious analogies with traditionally engineered artefacts.
A review of the history of the field shows how our
understanding has evolved and how it appears plausible.
Nevertheless, a closer investigation reveals significant
differences between our discipline and those with which
we made those analogies used to derive that
understanding. Certainly software developers utilise many
large-scale representations of their systems during and
after the development process. Traditional engineering
disciplines also utilise many large-scale representations of
their systems during and after their development process.
However, differences exist between the types of systems
developed in the respective disciplines; the relationship
between the content of the different representations and
those implemented systems; and differences between how
those representations are utilised in the development
processes of the respective disciplines. Those differences
seriously question the theories extrapolated from our
present understanding.

We are not suggesting that all research in software
architecture is pointless and should be abandoned. The
discipline is undoubtedly producing results that benefit the
community. Research in psychology shows that disciplines

often form the basis of their understanding of new
phenomena on something that is already well understood
(see for example [29]). However, as the discipline
progresses it is often necessary to reject that initial
understanding and develop something more appropriate.
Research in the philosophy of science has considerable
literature in this area. It is beyond the scope of this paper
to go into those details but it is something already
investigated by the authors. We are suggesting that in
order to improve research in software architecture and to
reduce the difference between theory and practice, a
different way of understanding the nature of our systems
and how they can be engineered is required.

Earlier versions of this material have elicited comments
suggesting we are merely poking holes in the current
understanding of software architecture without providing a
legitimate alternative, and that is certainly one valid
assessment. However, we believe this issue is so
fundamentally important that it is necessary to make
people aware of the problems so that a community-wide
discussion can begin. Moreover, fitting a thorough
treatment of the problems and possible solutions into a
single paper is extremely difficult in this philosophical
area. What we hope to achieve is a commitment to the
development of a better understanding of the fundamental
nature of software systems and their development.
Answers are needed to the questions that are often posed
in commentary-style journal articles (e.g., [30]) and in
informal conference discussions and keynote addresses
(e.g., [31, 32]). “What do we build and how do we build
them?” “What does software engineering really mean?”
These are not easy questions to answer. They will not
present quantitative results that are easily testable or easily
publishable. What is required is work on the philosophical
foundation of the discipline. We have already working
towards solutions, see for example [33], however we
believe more literature and conference-based discussion is
required. Without a good understanding of the nature of
our own discipline we will continue to grasp at analogies
and attempt fit the square-pegs of other disciplines into the
round-holes of our own problems.

5 References.
1. Mobray, T.J., Will the Real Architecture Please Sit

Down? Component Strategies, 1998(December).
2. Bennett, D., Desiging Hard Software: the essential

tasks. 1997: Manning Publications.
3. WWISA, Philosophy. 1999, Worldwide Institute of

Software Architects. http://www.wwisa.org/
4. Dijkstra, E.W., The Structure of the "THE" -

Multiprogramming System. Communications of the ACM, 1968.
11(5): p. 341-346.

5. NATO, Report on a Conference Sponsored by the
NATO Science Committee, Rome, Italy Oct 27-31, 1969, in
Software Engineering Concepts and Techniques: Proceedings of



the NATO confereces, J.N. Bruxton and B. Randall, Editors.
1976, Petrochelli/Charter.

6. Spooner, C.R., A Software Architecture for the 70's:
Part I - The General Approach. Software - Practice and
Experience, 1971. 1(Jan-March): p. 5-37.

7. Parnas, D.L., On the Criteria to be Used in
Decomposing Systems into Modules. Communications of the
ACM, 1972(December).

8. Brooks, F.P., The Mythical Man-Month: Essays in
Software Engineering. 1975: Addison-Wesley Publishing.

9. Brooks, F.P., Architectural Philosophy, in Planning a
Computer System - Project Stretch, W. Buchholz, Editor. 1962,
McGraw-Hill. p. 5-16.

10. Coplien, J., Architecture as Metaphor,, http://www.bell-
labs.com/~cope/ArchitectureAsMetaphor.html, March 2000.

11. Weinberg, J., Architecture as Metaphor. Personal
Communication. March 2000.

12. Coplien, J.O., Reevaluating the Architectural Metaphor:
Toward Piecemeal Growth. IEEE Software, 1999(Sept/Oct).

13. Shaw, M., Large Scale Systems Require Higher-Level
Abstraction. Proceedings of Fifth International Workshop on
Software Specification and Design, IEEE Computer Society.,
1989: p. 143-146.

14. Shaw, M., Abstraction Techniques in Modern
Programming Languages. IEEE Software, 1984(Oct): p. 10-26.

15. Perry, D.E. and A.L. Wolf, Foundations for the Study of
Software Architecture. ACM SigSoft, 1992. 17(4).

16. Garlan, D. and M. Shaw, An Introduction to Software
Architecture, in Advances in Software Engineering and
Knowledge Engineering, V. Ambriola, Editor. 1993, World
Scientific.

17. SEI, Software Architecture Definitions,,
http://www.sei.cmu.edu/architecture/definitions.html,
September 1998.

18. Soni, D., R.L. Nord, and C. Hofmeister. Software
Architecture in Industrial Applications. in ICSE '95. 1995.
Seattle, Washington.

19. Kazman, R., et al. SAAM: A Method for Analyzing the
Properties of Software Architectures. in ICSE. 1994. Sorrento,
Italy: IEEE Computer Society Press.

20. Kruchten, P., Architectural Blueprints - The "4+1" View
Model of Software Architecture. IEEE Software,
1995(November).

21. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified
Software Developent Process. 1998: Addison Wesley Longman.

22. Bass, L., P. Clements, and R. Kazman, Software
Architecture in Practice. SEI Series in Software Engineering.
1998: Addison-Wesley.

23. Clements, P.C., Software Architecture: An Executive
Overview. 1996, Software Engineering Institute. CMU/SEI-96-
TR-003.

24. Kostof, S., The Architect: chapters in the history of the
profession. 1986: Oxford University Press.

25. Sydney Opera House,, http://www.soh.nsw.gov.au, April
1999.

26. Miriam-Webster Dictionary: http://www.m-
w.com/netdict.htm. 1997.

27. Baragry, J. and K. Reed. Why Is It So Hard To Define
Software Architecture? in Asia Pacific Software Engineering
Conference. 1998. Tapei, Taiwan.

28. Corsini, R.e., Encyclopedia of Psychology. Vol. 1. 1984,
New York: NY Wiley.

29. Holyoak, K.J. and P. Thagard, Mental Leaps: Analogy
in Creative Thought. 1995: MIT Press.

30. Gilb, T., Level 6: Why We Can't Get There From Here.
IEEE Software, 1996(January).

31. Reed, K. Commercial Software Engineering, The Way
Forward. (keynote address). in Australian Software Engineering
Conference. 1987. Canberra. ACT. Australia.

32. Xia, F. (Panel Session) How Can We Conduct Research
In Software Engineering. in Asia Pacific Software Engineering
Conference. 1998. Taipei, Taiwan.

33. Baragry, J., Understanding Software Engineering: from
analogies with other disciplines to a philosophical foundation.,
PhD thesis in Dept of Computer Science and Computer
Engineering. 2000, La Trobe University.: Australia. p. 350.
(Available from the author).


	Introduction
	A History of Our Understanding of Software Architecture.
	Issues that Undermine the Current Understanding of Software Architecture.
	Differences between Systems.
	Differences Between the Content of Architecture Views.
	Differences between How Views are Used in Practice.

	Conclusion.
	References.

