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ABSTRACT

The study of chromatin 3D structure has recently
gained much focus owing to novel techniques for
detecting genome-wide chromatin contacts using
next-generation sequencing. A deeper under-
standing of the architecture of the DNA inside
the nucleus is crucial for gaining insight into funda-
mental processes such as transcriptional regula-
tion, genome dynamics and genome stability.
Chromatin conformation capture-based methods,
such as Hi-C and ChIA-PET, are now paving the
way for routine genome-wide studies of chromatin
3D structure in a range of organisms and tissues.
However, appropriate methods for analyzing such
data are lacking. Here, we propose a hypothesis
test and an enrichment score of 3D co-localization
of genomic elements that handles intra- or
interchromosomal interactions, both separately
and jointly, and that adjusts for biases caused by
structural dependencies in the 3D data. We show
that maintaining structural properties during
resampling is essential to obtain valid estimation
of P-values. We apply the method on chro-
matin states and a set of mutated regions in
leukemia cells, and find significant co-localization
of these elements, with varying enrichment scores,
supporting the role of chromatin 3D structure in
shaping the landscape of somatic mutations in
cancer.

INTRODUCTION

The spatial organization of chromatin is of major import-
ance to key processes in the cell. Recently, several studies
have shown that, in addition to regulatory functions (1,2),
long-range DNA interactions are associated with the mu-
tational landscape and chromosomal alterations in cancer
genomes (3–5). Therefore, understanding how DNA is
organized in the nucleus is crucial.

One recently published technique called Hi-C (6), has
been shown to successfully map genome-wide 3D inter-
actions in several species (7–9). Briefly, the Hi-C method
uses formaldehyde to cross-link the DNA, which is subse-
quently digested using a restriction enzyme, and then
paired-end next-generation sequencing determines the
frequency of interactions between all pairs of restriction
fragments. Other techniques based on chromosome con-
formation capture (10) include 5C (11) and ChIA-PET (12).

Despite these recent breakthroughs in experimental
techniques for mapping chromatin 3D interactions, few
tools have been developed to handle the large amounts
of data that are produced in a statistically sound way.

We are interested in evaluating whether a set of regions
in the genome (our ‘query set of interest’) are spatially
closer to each other than what would be expected by
chance. The Hi-C data will typically consist of restriction
fragments that can be concatenated into bins of a certain
constant size, which we will call genomic elements. We
wish to evaluate whether a predefined subset of these
elements has significantly higher interaction frequencies
than what would be expected by chance. As is obvious,
both the choice of query set and what we mean by chance
is crucial to this question.
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One of the first computational methods to handle this
question was proposed by Botta et al. (13). In this study,
they assumed a null hypothesis where interactions were
considered as independent and could therefore be
randomized independently, using uniform resampling.
They then compared the number of observed interactions
with the average number of interactions in the randomized
samples. Similarly, Duan et al. (7) and Dai and Dai (14)
suggested that the number of interchromosomal inter-
actions within a set of genes is hypergeometrically
distributed, based on the assumption that the interactions
are independent. However, as the 3D structure implies
both transitive relations (if i is close to j and k, then j
and k are also close) and correlation between certain
pairs of interactions, these independence properties are
not valid.

The dependency between interactions was recently
pointed out in an article by Witten and Noble (15). In
the same article, the authors proposed a simple
resampling-based method for evaluating the overrepre-
sentation of interchromosomal interactions in a set of
genomic elements. They considered interaction frequen-
cies in binary form, where true interactions were defined
as interchromosomal interactions at a false discovery rate
<0.01. Letting the size of the query set be n, they uni-
formly drew n new elements from the total population,
and compared the number of interactions in the
randomly chosen set with the number of interactions in
the original set, keeping the number of elements on each
chromosome constant. In this way, they obtained an
estimate of the P-value according to the null hypothesis
that the set of interest shows no more co-localization than
a randomly chosen set of elements. Using this resampling
approach, the global 3D structure is maintained, and
therefore also the transitive properties. However, the de-
pendency between interactions close in sequence is not
preserved.

The Witten and Noble (15) method is designed to work
only for interchromosomal interactions, and therefore
abundant cis-acting interactions cannot be assessed.
Additional properties will have to be considered when
taking into account intrachromosomal interactions.
Random close contacts in the DNA molecule cause sys-
tematically higher numbers of interactions for regions
close in sequence compared with more distant regions.
Such effects need to be adjusted for when testing on inter-
action frequencies within a chromosome.

There are several properties of the query set of interest
that can be important to preserve in a hypothesis test
setting when considering the total data set. Examples of
such properties are the proportion of genomic elements
close to centromeres and telomeres, or the GC content
in the query set of interest. We show in this article that
ignoring such features may cause skewness in the P-value
distribution under the null model. This is because the
interaction frequencies have varying distributions
throughout the genome.

Imakaev et al. (16) showed that the three first eigenvec-
tors of the bias corrected Hi-C data capture global
patterns of chromatin interactions. The authors showed
enrichments of contacts between genomic regions with

similar corresponding elements in the first eigenvector.
Because this eigenvector is strongly correlated with GC
content, it implies that regions with similar GC content
have a higher chance of interacting than regions with dif-
ferent GC content. In addition, they showed that the
second and third eigenvectors pick up patterns relating
to the relative positioning along the chromosome arms,
where centromeric and telomeric regions are enriched for
contacts within these regions more than between. The first
eigenvector is related to the two-compartment model,
where chromatin is divided into open and closed compart-
ments, proposed in (6). Here, they also reported higher
correlations between interaction frequencies within com-
partments compared with between compartments.
In this article, we present a genome-wide hypothesis test

for inter- and intrachromosomal interactions, either sep-
arately or jointly, that can take into account structural
properties due to both sequence-based distance and
varying compartmental structure defined as domains
along the chromosomes. We evaluate the method on
both simulated and real data, and find that it performs
well in all circumstances. Software for these tests is avail-
able online.

MATERIALS AND METHODS

A genome-wide hypothesis test of 3D co-localization of
genomic elements

Based on knowledge about the spatial organization of a
genome, there are some distinct and important properties
to be considered in a hypothesis test context.
We are more likely to observe intrachromosomal inter-

actions between elements with low sequence-based distance
along a chromosome compared with high sequence-based
distance (see Figure 1a), as shown in Lieberman-Aiden
et al. (6). Consequently, the expectation and variance of
the interaction frequencies depend on the sequence-based
distance. For interchromosomal interactions, the
sequence-based distance is undefined, and therefore
the expectation and variance are constant in this case. In
the calculation of the test statistics, we adjust for the dif-
ferent expectations and variances of inter- and intrachro-
mosomal interactions given their sequence-based distance.
To maintain the transitive properties (see Figure 1b), we

will randomize the query region of interest instead of
the 3D structure. Still, in such a randomization, we need
to consider the dependency between the interaction
frequencies.
We want to test if a set of genomic elements (our ‘query

set of interest’) has a higher 3D co-localization than what
would be expected by chance. Our hypotheses are as
follows:

H0 : The query set of interest has the same 3D co-localization
as a random set,
H1 : The query set of interest has more 3D co-localization

than a random set.

What we mean by ‘random set’ can vary according to
what structural properties of the query set we want to
preserve, and will be specified later.
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We will now describe a test statistic that measures the
amount of 3D co-localization in the query set of interest.
Let genomic element ai be the element that starts on base
pair i on chromosome a. Let maibj be the interaction fre-
quency between genomic elements ai and bj. We calculate
the sequence-based distance corresponding to an inter-
action as

� ¼
jj� ij if a ¼ b
1 if a 6¼ b:

�

If a ¼ b, maibj corresponds to an intrachromosomal

interaction, Êðmj� ¼ kÞ is the empirical mean of all
intrachromosomal interaction frequencies with sequence-

based distance k ¼ jj� ij and bsdðmj� ¼ kÞ is the sample
standard deviation. When a 6¼ b, maibj corresponds to an

interchromosomal interaction, Êðmj� ¼ 1Þ is the empir-
ical mean of all interchromosomal interaction frequencies

and bsdðmj� ¼ 1Þ is the sample standard deviation. If the
number of observed interactions is low for certain high �,
it is advisable to assemble these into larger groups such
that the estimation will be more accurate. Let m�aibj be the

corrected interaction frequencies, which are adjusted for
the expectation and standard deviation given � like the
following:

m�aibj ¼
maibj � Êðmj�Þbsdðmj�Þ ð1Þ

Let Sint
a be the set of base pairs corresponding to the

genomic elements of interest on chromosome a, and let
Q ¼

S
Sint
a be our query set of interest over all chromo-

somes. The corresponding test statistic becomes the sum
over all possible inter- and/or intrachromosomal corrected
interaction frequencies m� from Equation 1 in our query
set Q:

t ¼
1

M

X
ai,bj2Q

m�aibj ð2Þ

whereM is the number of terms in the sum. Under the null
hypothesis, the expected value of the numerator of
Equation 1 will be close to zero, and therefore the test
statistic in Equation 2 will be close to zero. We know
that the variance of the test statistic is the sum over the
variance for each corrected interaction frequency, plus the
sum over the covariances between all pairs of corrected
interaction frequencies. It follows that when the genomic
elements in Q are close in sequence, the covariance
between interaction frequencies increases, along with the
variance of the test statistic.

We estimate the P-value using a permutation test, and
resample R random sets. In the permutation of genomic
elements, it is important to maintain the query set config-
uration, meaning the sequence-based distance between the
genomic elements of interest. We choose to sample new
positions by randomizing the order of the consecutive
distances between the genomic elements in the query set.
Thereby, the set of all successive distances between the
elements in the query set are conserved (see Supplemen-
tary Figure S1). This leads us to the following Monte
Carlo (MC) randomization strategy, which we name
Conserved Consecutive Distances (CCD):

. Calculate tobs, the test statistic from Equation 2 based
on the query set of interest Q.

. Calculate sequence-based distance da between all pairs
of consecutive genomic elements in Sint

a for all a.
. Repeat the following procedure for r ¼ 1, � � � ,R.

– For each chromosome a, let Sr
a be a random set,

where the order of the sequence-based distance da
is randomized. It follows that jSr

aj ¼ jS
int
a j.

– Let tr be the test statistic from Equation 2 based
on the random set Sr

a for all a.
. We calculate the exact Monte Carlo P-value, described

in (17)

p ¼

PR
r¼1

Iðtr � tobsÞ+1

R+1
ð3Þ

Testing for alternative hypotheses with lower co-localiza-
tion, or testing for either lower or higher co-localization, is
done in exactly the same way, but with a trivially modified
P-value calculation.

We quantify the 3D co-localization of elements in the
query set by calculating an enrichment score S. This is
given as the ratio of the average observed over average
expected co-localization. In the Supplementary methods,
we provide a detailed description of the calculations.

Figure 1. An overview of important structural features in chromatin
3D data, and how they are accounted for in the method. High and low
interaction frequencies are shown as solid and dotted lines respectively,
between selected genomic elements (circles). (a) Relationship between
sequence-based distance (grey lines) and 3D contact frequency is cor-
rected for using Equation 1. (b) All transitivity relations are preserved
by randomizing the genomic elements only, and not the 3D inter-
actions. (c) Interactions within domains are more prevalent than
between domains. (d) Two genomic elements in the same relative
position on the chromosome are more likely to interact than genomic
elements on different positions. Both (c) and (d) are taken into account
by using the domain randomization procedure. All these structural
features lead to correlation between interactions with low sequence-
based distance, which we take into account by using the CCD random-
ization procedure.
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When presented in percentage, we give the enrichment as
ðS� 1Þ100%.

The domain randomization procedure

It has recently become clear that the structural properties
of mammalian chromatin are not constant throughout the
entire genome, but varies locally depending on both GC-
content and on relative positioning along the chromosome
arms [see (16)]. The GC-dependent variation is related to
the two-compartment model proposed in (6), where the nu-
cleus is compartmentalized into open and closed chroma-
tin. Therefore, in addition to conserving the consecutive
distances within the query set during the randomization, it
is often necessary to conserve these additional structural
features as well (i.e. being more strict in the definition of a
random set). In other words, we compare our query set
with random sets with similar properties as the query set
(see Figure 1c and d).

To conserve the structural features in the hypothesis
test, we divide the genome into domains such that all
genomic elements within the same domain have the same
desired properties. We then use the CCD randomization
strategy separately within each domain. Note that this
strategy will not necessarily conserve the consecutive dis-
tances between adjacent domains. This, however, is not
critical, as interactions are much more prevalent within
than between domains.

For comparison, a ‘global’ randomization is performed
in the form of using the CCD randomization strategy on
the entire chromosome arm.

To evaluate the difference between the presented ran-
domizations, we used two publicly available data sets and
looked at two important properties to define the domains.
First, we looked at the amount of genomic elements in
open and closed compartments, we then considered
the relative position of the genomic elements along the
chromosome arm. We classified the genomic elements
into open and closed compartments using the same
method as Lieberman-Aiden et al. (6) (by looking at
the sign of the first principal component). To categorize
the position of the genomic elements on the chromosome,
we divided the chromosome arms into six equally sized
groups. To investigate the influence of the domain ran-
domization, we chose 1000 query sets of size 50 at
random (with the same domain properties), and
compared the resulting P-values to the P-values when
using the global randomization procedure. By definition,
the P-values are uniform when using the domain random-
ization, but this does not need to be the case when using
the global randomization.

Simulated data and method evaluation

To validate the CCD randomization strategy, we
simulated 3D structures where H0 was true by definition,
and inspected the distribution of P-values for a large set of
such structures. The P-values should be uniformly
distributed if the resampling procedure is valid.

The 3D structures were simulated using random walks
of size 500 inside a reflecting sphere. Two independent
sequences (chromosomes) were simulated using the

following algorithm Xai ¼ Xai�1+
ri
jjrijj

for i ¼ 2, . . . ,500,
where Xa1 was, for simulated chromosome a, a random
starting 3D position sampled within a sphere with a
diameter of

ffiffiffiffiffiffiffiffi
500
p

=2. ri was sampled from a 3D
Gaussian distribution with � ¼ 0 and � ¼ 1. Each step
Xai � Xai�1 had length one and a random direction in the
3D space. The simulated interaction frequency was
defined as logð1=jjXai � Xbj jj+1Þ for all possible paired
genomic elements between and within the simulated
chromosomes. We simulated 5000 such 3D structures con-
taining two chromosomes each.
We compared our test statistic with an uncorrected

version defined in the same way as Equation 2, except
that we summed over ‘uncorrected’ interaction frequencies
maibj . We compared our Monte Carlo randomization
strategy CCD with a simpler strategy where we resampled
random sets Sr

a on each chromosome a, by sampling the
same number of genomic elements uniformly distributed
along the chromosome. We call this MC-strategy ‘UNI’.
In total, we compared four different approaches with
increasing degree of sophistication: UNI with uncorrected
test statistic, UNI with corrected test statistic, CCD with
uncorrected test statistic and CCD with corrected test stat-
istic. The distribution of interaction frequencies was
similar over the entire simulated genome, so we did not
need to use the domain randomization procedure in this
particular test.
To show the effect of variations in the configuration of

Sint
a , we evaluated all four approaches on three different

types of Sint
a that were meant to represent a wide range of

cases. The first type of query region consisted of 10
genomic elements uniformly sampled on each chromo-
some. In this case, we considered an ensemble of 150
query regions to see the distribution of the P-values in
the average case. The second type of query region had
10 unique positions with high dispersion on each chromo-
some. Here, the positions were sampled using regularly
spaced positions with added noise from a uniform distri-
bution between 0 and 10. The last type was a set of 10
genomic elements heavily clustered on each chromosome.
The positions for the genomic elements were sampled
using ten unique positions from a Gaussian distribution
with � ¼ 10 centered on the middle of the chromosome.

Specific versus regional co-localization

In analysis of real data, it is of interest to know whether a
set of elements is co-localized simply because they are
found in larger regions with general closeness, or if the
query set itself is specifically co-localized compared with
its near neighbors. Precise enrichment could potentially
have a different interpretation than a more regional co-
localization. To evaluate the specificity of the co-localiza-
tion, we first perform a hypothesis test on the query set Q
and calculate the P-value, and then subsequently perform
hypothesis tests on neighboring query sets Qk, where each
genomic element is shifted k elements in a random direc-
tion from the original position in Q. We let k 2 ð1, � � � ,KÞ
and look at how fast the enrichment scores and the
P-values change, according to k.
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Software

All algorithms have been implemented in a publicly avail-
able statistical web toolkit called the Genomic Hyper-
browser, at http://hyperbrowser.uio.no/3d-coloc/ (18).

Publicly available data sets used

We used three different publicly available data sets with
bin sizes varying from 100 kb to 1Mb to evaluate inherent
properties of chromatin 3D data and for hypothesis
testing. All data sets used are adjusted for technical bias
using the method of Imakaev et al. (16). For evaluating
the domain randomization procedure, we used IMR90
and human embryonic stem cell (hESC) Hi-C data from
(9). To test for co-localization of elements marked by
somatic mutations, we used K562 Hi-C data from (6),
and somatic mutations in leukemia patients from (19).
We masked out centromeric, telomeric and gap regions,
and performed the randomization within each chromo-
some arm separately.

RESULTS

In this section, we show how the dependency between inter-
action frequencies changes according to the sequence-
based distance between the interactions, and use simulated
data to validate the CCD randomization, which takes this
dependency into account. With the publicly available data,
we compare global and domain randomization, and use
these methods to analyze the hypothesis that chromatin
states are co-localized, and the hypothesis that mutated
regions in leukemia patients are co-localized.

Interaction frequencies depend on sequence-based distance

A major motivation for the choice of randomization pro-
cedure is the occurrence of correlations between the inter-
action frequencies also after correcting for different
sequence-based distances. We are strengthening this state-
ment by showing that pairs of interactions with low
sequence-based distance have similar corrected interaction
frequencies. Specifically, we calculate the absolute differ-
ence jm�aibj �m�akbl j between all pairs of contacts. For each

intrachromosomal pair, we find their sequence-based
distances defined according to the smallest distance
minðji� kj,jj� lj,jj� kj,ji� ljÞð�1Þ and the distance
between the remaining two genomic elements (�2). For
instance, if �1 ¼ ji� kj, then �2 ¼ jj� lj, or if
�1 ¼ jj� kj, then �2 ¼ ji� lj. For each interchro-
mosomal interaction, �1 is defined as minðji� kj,jj� ljÞ
and �2 to be maxðji� kj,jj� ljÞ. When �1 is small, one
genomic element from each of the two interactions has low
sequence-based distance. When, in addition, �2 is small,
the other two genomic elements from each of the two
interactions also have low sequence-based distance.

In Figure 2, we show the dependency between
intrachromosomal interaction frequencies in hESC Hi-C
data (9), measured by the average absolute difference,
as explained above. As the figure shows, the corrected
interaction frequencies tend to be more similar when
both �1 and �2 are low, i.e. the interactions have low
sequence-based distance. The interaction frequencies
seem to be particularly similar for interactions that are
separated by <5 bins on either end. This emphasizes the
need to maintain the structure in the randomization for
interactions with low sequence-based distance. We see the
same trends for the IMR90 cell line (9) in Supplementary
Figure S2. There does not seem to be a large difference
between bin sizes, although the interaction frequencies are
more similar when the bin size is large compared with
when the bin size is small. This could be because the inter-
action distribution is smoother for higher bin sizes. We see
similar trends for corrected interchromosomal interaction
frequencies (data not shown). To maintain this structure,
we have chosen to conserve consecutive distances during
the randomization (i.e. using the CCD method). Figure 2
also shows that the dependency structure is similar for the
random walk structures, even though these interaction
frequencies are more similar overall owing to the lack of
noise in these structures.

The resampling produces valid P-values

To validate the CCD resampling procedure, we looked at
the distribution of the P-values in simulated data where
H0 was true. A valid procedure for P-value estimation
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Figure 2. The average absolute difference jm�aiaj �m�akal j between all pairs of corrected intrachromosomal interaction frequencies, given the two
distances �1 ¼ minðji� kj,ji� lj,jj� kj,jj� ljÞ and �2 equal to the distance between the remaining two genomic elements. When �1 is small, one
genomic element from each of the two interactions have low sequence-based distance. When, in addition, �2 is small, the other two genomic elements
from each of the two interactions also have low sequence-based distance. The two sequence-based distances are given in million base pairs (Mb)
along the genome. On the left, we see the result using hESC data (9) with bin size 1Mb, in the middle, using a bin size of 500 kb and to the right, the
simulated random walk structures.
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should produce a uniform distribution of P-values under
H0. We simulate 5000 structures of two chromosomes
under H0 (see ‘Materials and Methods’ section). The dis-
tribution of the simulated interactions in the random walk
structures are similar across the structure, so we use global
randomization on the entire chromosomes.

Figure 3 shows the resulting P-value distributions for
both simulated intra- and interchromosomal interactions
considered jointly. As expected, both the corrected and
uncorrected test statistics give uniformly distributed P-
values when the genomic elements were in fact generated
uniformly. In the middle panels, we see the distribution of
the P-values in a more intricate case, i.e. when the query
sets are spread out over each chromosome. With spread
genomic elements, we observe small uncorrelated inter-
action frequencies. Using the uncorrected test statistic in
combination with UNI, we obtain P-values shifted toward
1, as the true distribution of the uncorrected test statistic
has lower expectation and variance than the UNI approxi-
mation. Choosing a clustered query set gives P-values that
are biased in the other direction, as here, the true distri-
bution of the uncorrelated test statistic has higher expect-
ation and variance than the UNI approximation. The only
satisfactory estimation of the P-value for all types of query
sets is given by CCD in combination with the corrected
test statistic, as we in this situation correct for both the
expectation and the variance of the test statistic.

In Supplementary Figure S5, we see the resulting
P-values for all combination of methods, namely UNI
and CCD with both uncorrected and corrected test statis-
tics. The same validations were also performed on
simulated intra- and interchromosomal data separately
(see, respectively, Supplementary Figures S3 and S4).
The overall conclusion is the same: the only method that
always gives uniformly distributed P-values for every con-
sidered query set when H0 is true, is the corrected test

statistic in combination with CCD. For the remainder of
the analysis, we will exclusively use the CCD in combin-
ation with the corrected test statistic in Equation 2.

Taking into account domain structure is necessary for
biologically meaningful P-values

As proposed earlier, it is also possible to use a more strict
null hypothesis where we randomize within predefined
domains. In this section, we use two Hi-C data sets from
(9) to evaluate the domain randomization procedure. We
conserve two important properties, first the amount of
genomic elements within each open and closed compart-
ment, second the relative positioning of the genomic
elements along the chromosome arm, as explained in
‘Materials and Methods’ section. If the P-values are the
same using both global and domain randomizations, then
the interactions are equally distributed within the domains
compared with the entire genome.
In Figure 4, we see, in the left panel, the P-values for

query sets from the closed compartments, and in the right
panel, query sets from the open compartments. In both
cases, the P-values, when using the global randomization,
tend to be close to zero. In other words, all the query sets
in either open or closed compartments have larger 3D co-
localization if we compare them with random sets from
the entire genome. These results correspond with the
findings in Lieberman-Aiden et al. (6) where they show
that there are higher 3D contacts when the genomic
elements are in the same compartments compared with
when they are distributed between compartments.
In Figure 5, we see the P-values for query sets close to

the telomeres (left panel), close to the center of the
chromosome arms (middle panel) and close to the centro-
meres (right panel). Query sets in either end of the
chromosome arm give P-values close to zero when using
the global randomization, meaning they have larger 3D
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Figure 3. Each plot shows the histogram of 5000P-values found by performing hypothesis testing on simulated 3D structures (based on a random
walk procedure as explained in ‘Materials and Methods’ section) where our null hypothesis is true. The tests are performed on both intra- and
interchromosomal interactions simultaneously. The upper row display the least complex approach, using the Monte Carlo resampling strategy UNI
and the uncorrected test statistic. The bottom row shows the results from the Monte Carlo resampling strategy CCD and corrected test statistic from
Equation 2. The three columns represent the three different configurations in the query sets of interest, uniformly distributed (left column), spread
(middle column) and clustered (right column).
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co-localization than if we compared them with random
sets from the entire genome. In contrast, if we choose
genomic elements in the middle of the chromosome
arms, we find that they have lower 3D interaction, than
if we compared them with random sets from the entire
genome. This is similar to the results reported in
Imakaev et al. (16).
When analyzing genomic elements all located in

telomere, centromere or open compartments, one should
avoid using the global randomization, as this hypothesis
test will always give significance, as seen in the right plot in
Figure 4.
In Supplementary Figures S6–S8 we see the results of

the same test, using bin sizes 1Mb, 500 kb and 200 kb,
respectively. The analyses are performed on interactions
from intrachromosomal, interchromosomal and both
combined. In Supplementary Figures S9–S11, we see the
results of the same analyses on cell line IMR90. In some of
the cases, for example, when the genomic elements in the
query set are close to the centromere, there are different
results when comparing intra- and interchromosomal
interactions. This is reasonable because intra- and
interchromosomal interactions potentially represent very
different features.

3D co-localization correlates with chromatin state activity

We have demonstrated that our method is capable of
producing uniformly distributed P-values under H0 (see
Figure 3). However, it is also of interest to confirm that
the method produces significant P-values when H0 is not
true. We performed a genome-wide test of co-localization
for three different sets of genomic elements defined ac-
cording to chromatin state activity in human embryonic
stem cells [using the chromatin states as defined in Ernst
et al. (20)]. We therefore classified the 100 kb Hi-C bins in
human embryonic stem cells (9) into three categories: All
bins covered by ‘active promoter’, all bins covered by
‘strong enhancer’ and all bins covered by >50%
‘polycomb repressed’ regions. For each of these three
sets of genomic elements, we performed a hypothesis test
using the global randomization and the domain random-
ization methods with two different domain classifications

(open and closed compartments, and chromosome arm
positions divided into six groups). All tests were per-
formed on intra- and interchromosomal interactions
separately, in addition to jointly. In Figure 6, we see the
P-values and enrichment scores (see Supplementary
Figures S12–S14 for test statistic distributions). As
expected, the regions marked by promoter or enhancer
are significantly co-localized (P � 0:001), even after
taking the domain properties of the query set into
account. The enrichment scores represent average
changes over the entire query set, thus for large query
sets (like these) the values are generally low, and must
not be confused with the traditional fold change in gene
expression, where genes are analyzed individually. For
both query sets, we see a decrease in enrichment score
when comparing the global with the domain randomiza-
tions. Both enhancers and promoters are highly present in
open compartments, making a global randomization
problematic. This illustrates the importance of maintain-
ing domain properties during randomization. Regions
marked by Polycomb repressed states do not give signifi-
cant co-localization, despite suggestions that Polycomb
group proteins create silencing hubs (21). This could be
due to the fact that relatively few Hi-C bins in this data set
are spanned largely by Polycomb repressed regions, or
that the regions are repressed in other ways than
through chromatin interactions.

Mutated regions in leukemia cells show statistically
significant co-localization within chromosomes

Chromatin architecture increasingly appears to be of fun-
damental importance in many cancer-related processes. A
recent study has suggested that somatic cancer mutation
rates are largely influenced by chromatin organization (5).
In that article, the authors showed that several hetero-
chromatin-related epigenetic marks correlate positively
with the frequency of somatic mutations in several
cancers.

To gain further insight into the overall spatial patterns
of mutated regions, we performed a genome-wide test of
3D co-localization of somatic mutations in leukemia
samples (19) using a Hi-C data set from a human leukemia
cell line (6), with bin sizes ranging from 100 kb to 1Mb.
For bin sizes 100 kb/200 kb, 500 kb and 1Mb, bins were
classified as mutated if they had at least one, two or three
mutations within them, respectively. We then used the
global randomization and the domain randomization
methods with two different domain classifications (two
compartments, and chromosome arm position based on
six groups). All tests were performed both on intra- and
interchromosomal interactions separately, and jointly.

In Figure 7, we see the P-value and enrichment score,
and in Supplementary Figures S15–S18, we see the distri-
bution of the test statistics under H0. The top enrichment
scores accompany the lower P-values, as expected. For
intrachromosomal interactions, we have significant
P-values, together with enrichment scores � 2%. Such
low enrichment scores, accompanied by significant
P-values, indicate that either a small subset of the inter-
actions have a large contribution, or that all interactions
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Figure 4. Evaluating random query sets with genomic elements in the
closed (left panel) or open compartments (right panel). On the x-axis
we see the P-values using the domain randomization, and on the y-axis
we see the P-values using the global randomization. The results are
based on both inter- and intrachromosomal interactions using the
hESC data (9) with bin size 1Mb.
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contribute slightly to the significance. To get a better
insight into the individual contributions of interactions
in the query set, it is possible to look at a heat map over
all individual test statistic terms for each interaction (see
Supplementary Figures S15–S18). In our case, it seems
that only a subset of interactions contribute to the
enrichment.

It is interesting to note the difference in enrichment
score when taking the domain structure of the query set
into account in the randomization. We know that the
query set initially is enriched in heterochromatin regions
[as shown in (5)], which has lower co-localization
compared with non-heterochromatin regions. As a result
of this, the global randomization will place elements into
open regions with generally higher co-localization. The
domain randomization procedure will maintain the struc-
tural properties of the original query set, and will result in
a more realistic enrichment score.

The reason why intrachromosomal interactions show a
statistically significant enrichment could be owing to rep-
lication timing-related processes, as recently shown in
(22). Here, they showed that the mutational landscape

differ in early and late replication regions, with higher
mutation frequencies in late replication regions. They
also found that regions with similar mutational
frequencies were close in 3D inside the nucleus. We also
note that the observed co-localization could arise owing to
reduced access of the repair machinery at inaccessible het-
erochromatic regions (23), or the increased exposure of
mutagens in peripheral parts of the nucleus, causing mu-
tations to cluster in specific regions of chromatin (24). If
such clusterings of mutations are numerous and spatially
separated in the nucleus, the 3D co-localization would
mainly be enriched intrachromosomally, as the distance
between clusters could be much larger than the distance
within clusters. A consequence of this is low enrichment
scores because interaction frequencies within clusters
would typically be larger than its expected value, and
interaction frequencies between clusters would typically
be lower than its expected value.
The results emphasize the need for running tests at dif-

ferent resolutions, as P-values and enrichment scores can
be radically different depending on the resolution chosen.
We observe a trend toward lower P-values at lower reso-
lutions, which probably can be attributed to reduced
noise. The point at which the P-values stabilize could be
the appropriate choice of bin size. We also note that any
statistical test of 3D co-localization should be run on
intra- and interchromosomal interactions both separately
and jointly, as these could have different interpretations.

The specificity of 3D co-localization

To determine how specific the co-localization is, we per-
formed a series of hypothesis tests where we shifted the
elements in the query set away from their original pos-
itions. We did this by shifting each element in the query
set in a random direction in steps varying from 1 up to 5
bins. In cases where a new position was invalid (typically
for large k), we chose their position at random. Figure 8
shows the result of this analysis. The somatic mutations
have low, but significant 3D co-localization, and we find
significance in some of the query sets in the neighboring
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Figure 5. Evaluating random query sets with genomic elements close to the telomeres (left panel), close to the center of the chromosome arms
(middle panel) or close to the centromeres (right panel). On the x-axis we see the P-values using the domain randomization, and the y-axis shows the
P-values using the global randomization. The results are based on both inter- and intrachromosomal interactions using the hESC data (9) with bin
size 1Mb.
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Figure 6. P-values and enrichment scores (in parenthesis) after testing
on regions containing promoters (left) and enhancers (right) in hESC
cells using 100 kb bins where we randomize globally (Global), within
open and closed compartments (2 comp.), and within regions by
dividing chromosome arms into six groups (Positional). Analysis was
done on intra- and/or interchromosomal contacts.
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bins k=1, but when moving further away from the
original query set, we lose both statistical significance
and the quantified enrichment. A similar trend is seen
for promoter-centered elements selected from (25),
except for a steep drop in enrichment when shifting one
bin, probably owing to the high specificity of promoter-
centered interactions.

DISCUSSION

We have in this article addressed the important issue of
dependencies between interaction frequencies in 3D data
sets when estimating P-values in a hypothesis test context.
We find strong dependency of interaction frequencies
between contacts with low sequence-based distance

(Figure 2), and show that such structures strongly affect
the P-value estimation (Figure 3). We resolve such
dependencies by using the CCD randomization strategy.
We show that maintaining additional structural properties
during randomization is necessary for biologically mean-
ingful P-value estimation if the structures are not globally
homogeneous. In mammalian genomes, for example, it
was recently shown that interaction frequencies were
highly dependent on GC-content and relative positioning
along chromosome arms. We maintain such structure by
randomizing within predefined domains, while simultan-
eously using the CCD randomization strategy. This article
also presents methods for analyzing both intra- and
intrerchromosomal interactons, separately and jointly.
The results are presented with P-values and enrichment
scores.

We have shown the importance of looking at both stat-
istical significance and quantified contact enrichment, as
significant P-values may be associated with different en-
richments scores. Factors like sample size can modulate
the P-value, meaning that larger query sets are more likely
to be significant, given a signal. Given the low, yet signifi-
cant, enrichments for intrachromosomal interactions
between mutated elements in the leukemia cells, it is diffi-
cult to establish the biological meaningfulness of this
result. Regardless, significance is found for all choices of
bin size, and randomization methods. It can also be prob-
lematic to directly compare enrichment scores of func-
tional interactions involving promoters and enhancers
with 3D proximity of elements peripheral in the nucleus,
as these can have different biological functions.

We have used a Monte Carlo strategy in the estimation
of the P-value, as there is no adequate choice for the dis-
tribution of the test statistic. The main problem is to find a
convincing distribution for all types of interaction
frequencies that covers all the different aspects of the bio-
logical 3D structure. It is therefore highly important to
critically evaluate the underlying null models and their
relevant Monte Carlo options when using resampling
methods in hypothesis testing to take into account the
relevant structural properties. To do so, it is essential to
know the data and their properties.

100kb 200kb 500kb 1Mb 100kb 200kb 500kb 1Mb 100kb 200kb 500kb 1Mb

Positional

2 comp.

Global

Interchromosomal Intrachromosomal Both

0.8162
(−0.41%)

0.9111
(−0.58%)

0.8601
(−0.6%)

0.8352
(−0.28%)

0.8631
(−0.29%)

0.969
(−0.69%)

0.1359
(0.46%)

0.2378
(0.26%)

0.7123
(−0.38%)

0.1379
(0.52%)

0.4875
(0.02%)

0.6444
(−0.3%)

0.001
(2.43%)

0.001
(1.76%)

0.001
(2.02%)

0.001
(1.34%)

0.001
(1.1%)

0.001
(0.6%)

0.001
(2.42%)

0.001
(1.98%)

0.001
(0.62%)

0.001
(2.26%)

0.001
(1.92%)

0.001
(0.14%)

0.3666
(−0.17%)

0.7083
(−0.42%)

0.4176
(−0.4%)

0.4126
(−0.21%)

0.5794
(−0.22%)

0.7562
(−0.62%)

0.016
(0.55%)

0.0749
(0.34%)

0.3896
(−0.26%)

0.031
(0.59%)

0.2617
(0.11%)

0.4695
(−0.27%)

−3

−2

−1

0

1

2

3

E
nr

ic
hm

en
t s

co
re

 (
%

)

Figure 7. P-values resulting from hypothesis tests on the 3D co-localization of regions containing somatic mutations in leukemia cells. The colors
and numbers in parentheses indicate the enrichment scores. Three different randomization strategies are used: the global randomization strategy
(Global), domain randomization maintaining open and closed compartments (2 comp.) and domain randomization maintaining regional preferences
by dividing chromosome arms into six groups. Analysis was done on intra- and interchromosomal contacts separately, and also jointly (Both). In
addition, all tests were done on four different bin sizes (100 kb, 200 kb, 500 kb and 1Mb) indicated at the bottom.
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In principle, it could also be possible to randomize the
3D structure itself given that one could produce 3D struc-
tures from a valid null model universe. This, however,
appears to be challenging, as a complete definition of a
random chromatin structure needs to be established. We
therefore emphasize that randomization in the query set,
and not randomization of the 3D structure, is the natural
resampling choice.

Our CCD randomization strategy only conserves the
distance between successive genomic elements along the
genome. This means that sequence-based distances
between all possible pairs of genomic elements in the
query set are not necessarily the same in the resampled
set. It is, in theory, possible to maintain the entire struc-
ture in the query set with other choices of randomization
procedures, for example, by randomly shifting the entire
query set configuration along the genome. However, this
leads to fewer resampling outcomes, and the resampling
can rapidly become too constrained for useful analyses.
We show that the relatively simple strategy of maintaining
consecutive distances in the query set is sufficient to give
correct P-values, at least in the query set configurations
tested here. We also note that if we maintain the entire
structure of our query set of interest in every Monte Carlo
resampling, there would be no use of including the correc-
tion terms in the test statistic in Equation 2, as these would
be constant across resamplings. However, we also show
that this term is highly necessary when only consecutive
distances are conserved.

In this article, we have looked at the question of
co-localization between a set of genomic elements. Such
co-localization is caused by spatial clustering of genomic
elements in 3D, and is of interest in many settings.
However, other interesting questions are not covered by
this co-localization term, such as the 3D closeness between
certain pairs of elements, or the comparison of 3D struc-
tures across treatments. We foresee that some of the same
strategies as presented here probably will be valid in these
settings as well. In practice, significant co-localization of a
query set of interest is often resulting from a subset of the
interaction frequencies. To visualize the query set consist-
ing of mutated regions in K562, we clustered all elements
according to intrachromosomal interaction frequency and
visualized the resulting matrix as a heat map (see
Supplementary Figures S19–S41). As the figures clearly
show, only a subset of the elements seem to show enrich-
ment of contacts. Therefore, a more specific test, such as
co-localization of pairs of elements, would be able to find
more detailed co-localizations. However, such a test would
require more knowledge before running the test.

To evaluate the power of our method under various
resampling constraints, we tested whether active parts of
the genome were co-localized. We showed that active
regions of the genome, such as promoters and enhancers,
show significant and strong 3D co-localization, in contrast
to polycomb repressed regions, which show no such en-
richment. This holds true regardless of the resampling
strategy used, which emphasizes the strong connection
between genome function and structure.

While large consortia such as ENCODE (26) and the
NIH Roadmap Epigenomics Program (27) have given a

detailed annotation of epigenetic marks across several
tissues and cell lines, the spatial interactions of these
elements are not well understood. We believe rigorous
statistical and computational methods, such as the one
presented here, are needed to fill this gap.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–41 and Supplementary
Methods.
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