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Abstract

Gaussian particles provide a flexible framework for modelling and simulating

three-dimensional star-shaped random sets. In our framework, the radial

function of the particle arises from a kernel smoothing, and is associated with

an isotropic random field on the sphere. If the kernel is a von Mises–Fisher

density, or uniform on a spherical cap, the correlation function of the associated

random field admits a closed form expression. The Hausdorff dimension of the

surface of the Gaussian particle reflects the decay of the correlation function at

the origin, as quantified by the fractal index. Under power kernels we obtain

particles with boundaries of any Hausdorff dimension between 2 and 3.
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1. Introduction

Mathematical models for three-dimensional particles have received great interest in astronomy, botany, geology,

material science, and zoology, among many other disciplines. While some particles such as crystals have a rigid

shape, many real-world objects are star-shaped, highly structured, and stochastically varying (Wicksell, 1925; Stoyan

and Stoyan, 1994). As a result, flexible yet parsimonious models for star-shaped random sets have been in high

demand. Grenander and Miller (1994) proposed a model for two-dimensional featureless objects with no obvious

landmarks, which are represented by a deformed polygon along with a Gaussian shape model. This was investigated
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further by Kent et al. (2000) and Hobolth et al. (2002), and a non-Gaussian extension was suggested by Hobolth

et al. (2003). Miller et al. (1994) proposed an isotropic deformation model that relies on spherical harmonics and

was studied by Hobolth (2003), where it was applied to monitor tumour growth. A related Gaussian random shape

model was studied by Muinonen et al. (1996) and used by Muñoz et al. (2007) to represent Saharan desert dust

particles.

In this paper we propose a flexible framework for modelling three-dimensional star-shaped particles, where the

radial function is a random field on the sphere that arises through a kernel smoothing. Specifically, let Y ⊂ R
3 be a

three-dimensional compact set, which is star-shaped with respect to an interior point o. Then there is a one-to-one

correspondence between the set Y and its radial function X = {X(u) : u ∈ S
2}, where

X(u) = max{r ≥ 0 : o+ ru ∈ Y }, u ∈ S
2,

with S
2 = {x ∈ R

3 : ‖x‖ = 1} denoting the unit sphere in R
3. We model X as a real-valued random field on S

2 via

a kernel smoothing of a Gaussian measure, in that

X(u) =

∫

S2

K(v, u)L( dv), u ∈ S
2, (1)

where K : S2 × S
2 → R̄ is a suitable kernel function, and L is a Gaussian measure on the Borel subsets of S2. That

is, L(A) ∼ N
(

µλ(A), σ2λ(A)
)

with parameters µ ∈ R and σ2 > 0, where λ(A) denotes the surface measure of a

Borel set A ⊆ S
2, with λ(S2) = 4π.

If X were a nonnegative process, the random particle could be described as the set

Y =
⋃

u∈S2

{o+ ru : 0 ≤ r ≤ X(u)} ⊂ R
3,

so that the particle contains the centre o, which without loss of generality can be assumed to be the origin, and the

distance in direction u from o to the particle boundary is given by X(u). A potentially modified particle Yc arises

in the case of a general, not necessarily nonnegative process, where we replace X(u) by Xc(u) = max(c,X(u)) for

some c > 0. We call Y or Yc a Gaussian particle, with realisations being illustrated in Figure 1. The Gaussian

particle framework is a special case of the linear spatio-temporal Lévy model proposed by Jónsdóttir et al. (2008)

in the context of tumour growth. Alternatively, it can be seen as a generalisation and a three-dimensional extension

of the model proposed by Hobolth et al. (2003), while also being a generalisation of the Gaussian random shape

models of Miller et al. (1994) and Muinonen et al. (1996).

The realisations in Figure 1 demonstrate that the boundary or surface of a Gaussian particle allows for regular

as well as irregular behaviour. The roughness or smoothness of the surface in the limit as the observational scale

becomes infinitesimally fine can be quantified by the Hausdorff dimension, which for a surface in R
3 varies between

2 and 3, with the lower limit corresponding to a smooth, differentiable surface, and the upper limit corresponding to

an excessively rough, space-filling surface (Falconer, 1990). The Hausdorff dimension of the surface of an isotropic

Gaussian particle is determined solely by the behaviour of the correlation function of the associated random field
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Figure 1: Gaussian particles with mean µX = 100 and variance σ2
X = 10, using the power kernel (8) with q = 0.05 (left),

q = 0.25 (middle) and q = 0.5 (right). The Hausdorff dimension of the particle surface equals 2 + q.

on the sphere. We investigate the properties of Gaussian particles under parametric families of isotropic kernel

functions, including power kernels, and kernels that are proportional to von Mises–Fisher densities (Fisher et al.,

1987), or uniform on spherical caps. Under power kernels we obtain particles with boundaries of any Hausdorff

dimension between 2 and 3. Von Mises–Fisher and uniform kernels generate Gaussian particles with boundaries of

Hausdorff dimension 2 and 2.5, respectively.

The remainder of the paper is organised as follows. Section 2 recalls basic properties of the radial function in the

Gaussian particle model (1). In Section 3 we show how to derive the Hausdorff dimension of an isotropic Gaussian

particle from the infinitesimal behaviour of the correlation function of the underlying random field at the origin.

Section 4 introduces the aforementioned families of isotropic kernels and discusses the properties of the associated

correlation functions and Gaussian particles, with some technical arguments referred to an appendix. Section 5

presents a simulation algorithm and simulation examples, including a case study on celestial bodies and a discussion

of planar particles. The paper ends with a discussion in Section 6.

2. Preliminaries

The properties of the random function (1) that characterises a Gaussian particle process depend on the kernel

function K. We assume that K is isotropic, in that K(v, u) = k(d(v, u)) depends on the points v, u ∈ S
2 through

their great circle distance d(v, u) ∈ [0, π] only. As d(v, u) = arccos(u · v), this is equivalent to assuming that the

kernel depends on the inner product u · v only. Results of Jónsdóttir et al. (2008) in concert with the rotation

invariance property following from an isotropic kernel imply that the mean function E(X(u)) and the variance

function Var(X(u)) are constant, that is,

µX = E(X(u)) = µ c1 and σ2
X = Var(X(u)) = σ2 c2

for u ∈ S
2, where we assume that

cn =

∫

S2

k(d(v, u))n dv

is finite for n = 1, 2.
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Note that X is a stochastic process on the sphere (Jones, 1963), whose covariance function is given by

Cov(X(u1), X(u2)) = σ2

∫

S2

k(d(v, u1)) k(d(v, u2)) dv, u1, u2 ∈ S
2,

Under an isotropic kernel, the random field X is isotropic as well, and it is readily seen that Corr(X(u1), X(u2)) =

C(d(u1, u2)), where

C(θ) =
2

c2

∫ π

0

∫ π

0

k(η) k(arccos(sin θ sin η cosφ+ cos θ cos η)) dφ sin η dη, 0 ≤ θ ≤ π, (2)

is the correlation function of the random field X . As recently shown by Ziegel (2014), any continuous isotropic

correlation function on a sphere admits a representation of this form.

3. Hausdorff dimension

The Hausdorff dimension of a set Z ⊂ R
d is defined as follows (Hausdorff, 1919). For ǫ > 0, an ǫ-cover of Z is a

countable collection {Bi : i = 1, 2, . . .} of balls Bi ⊂ R
d of diameter |Bi| less than or equal to ǫ that covers Z. With

Hδ(Z) = lim
ǫ→0

inf
{
∑|Bi|δ : {Bi : i = 1, 2, . . .} is an ǫ-cover of Z

}

denoting the δ-dimensional Hausdorff measure of Z, there exists a unique nonnegative number δ0 such that Hδ(Z) =

∞ if δ < δ0 and Hδ(Z) = 0 if δ > δ0. This number δ0 is the Hausdorff dimension of the set Z. Note that we have

defined the Hausdorff measure using coverings with balls. This approach is consistent with the treatments given by

Adler (2010) and Hall and Roy (1994) and simplifies the presentation.

As X is a kernel smoothing of a Gaussian measure, X has Gaussian finite dimensional distributions and thus

is a Gaussian process. While there is a wealth of results on the Hausdorff dimension of the graphs of stationary

Gaussian random fields on Euclidean spaces, which is determined by the infinitesimal behaviour of the correlation

function at the origin, as formalised by the fractal index (Hall and Roy, 1994; Adler, 2010), we are unaware of any

extant results for the graphs of random fields on spheres, or for the surfaces of star-shaped random particles.

We now state and prove such a result. Toward this end, we say that an isotropic random field X on the sphere

with correlation function C : [0, π] → R has fractal index α > 0 if there exists a constant b > 0 such that

lim
θ↓0

C(0)− C(θ)

θα
= b. (3)

The fractal index exists for essentially all correlation functions of practical interest, and it is always true that

α ∈ (0, 2]. To see this, suppose that C : [0, π] → R is an isotropic correlation function on the two-dimensional

sphere. Clearly, C also is an isotropic correlation function on the circle, and its even, 2π periodic continuation to

R is a stationary correlation function on the real line. Therefore, the corresponding restriction on Euclidean spaces

(Adler, 2010, p. 200) applies, in that α ∈ (0, 2].

The following theorem relates the Hausdorff dimension of the graph of an isotropic Gaussian random field X on
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the sphere S
2 to its fractal index. The proof employs stereographic projections that allow us to draw on classical

results in the Euclidean case.

Theorem 1. Let X be an isotropic Gaussian random field on S
2 with fractal index α ∈ (0, 2]. Consider the random

surface

Zc =
{

(u,Xc(u)) : u ∈ S
2
}

,

where Xc(u) = max(c,X(u)) with c > 0. Then with probability one either of the following alternatives holds:

(a) If maxu∈S2 X(u) ≤ c, the realisation of Zc is the sphere with radius c and so its Hausdorff dimension is 2.

(b) If maxu∈S2 X(u) > c, the realisation of Zc has Hausdorff dimension 3− α
2 .

Proof. The claim in alternative (a) is trivial. To prove the statement in alternative (b), we assume without loss

of generality that X(u0) > c, where u0 = (0, 0, 1). The sample paths of X are continuous almost surely according

to Gangolli (1967, Theorem 7.2). Thus, there exists an ǫ ∈ (0, 1
2 ) such that X(u) > c for u in the spherical cap

S
2
ǫ = {u ∈ S

2 : d(u, u0) ≤ ǫ} of radius ǫ centred at u0. Let Π : S
2
ǫ → Bǫ denote a stereographic projection

that maps (0, 0, 1) to (0, 0), where Bǫ = {x = (x1, x2) ∈ R
2 : x2

1 + x2
2 ≤ ǫ2}. A stereographic projection is a

local diffeomorphism, Π thus is differentiable and has a differentiable inverse Π−1, which is locally bi-Lipschitz

(do Carmo, 1976). We may therefore assume that ǫ is small enough so that for all x, x′ ∈ Bǫ there exists a constant

A ≥ 1 with
1

A
‖x− x′‖ ≤ ‖Π−1(x)−Π−1(x′)‖ ≤ A‖x− x′‖, (4)

where ‖·‖ denotes the Euclidean norm on R
2 or R3, respectively. Without loss of generality, we may in the following

consider conditional probabilities which depend on the choice of u0 and ǫ. Let the Gaussian random field W on

Bǫ ⊂ R
2 be given by W (x) = X(Π−1(x)). From Xue and Xiao (2011, Theorem 5.1), see also Chapter 8 in Adler

(2010), the graph GrW = {(x,W (x)) : x ∈ Bǫ} has Hausdorff dimension 3 − α
2 almost surely if there exists a

constant M0 > 1 such that

1

M0

2
∑

j=1

|xj − x′
j |α ≤ E(W (x) −W (x′))2 ≤ M0

2
∑

j=1

|xj − x′
j |α (5)

for all x, x′ ∈ Bǫ. Letting ϑ(x, x′) = d(Π−1(x),Π−1(x′)), we have

E(W (x) −W (x′))2 = 2σ2
X [C(0)− C(ϑ(x, x′))], (6)

where C : [0, π] → R is the correlation function of the isotropic random field X . As chord length and great circle

distance are bi-Lipschitz equivalent metrics, there exists a constant B > 1 such that

1

B
‖Π−1(x) −Π−1(x′)‖ ≤ ϑ(x, x′) ≤ B ‖Π−1(x) −Π−1(x′)‖. (7)
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As the random field X is of fractal index α, there exists a constant M1 > 0 such that

2
∑

j=1

|xj − x′
j |α ≤ 21−

α
2 ‖x− x′‖α ≤ 21−

α
2 AαBα ϑ(x, x′)α ≤ M1 [C(0)− C(ϑ(x, x′))]

for x, x′ ∈ Bǫ and ǫ > 0 sufficiently small, where the first estimate is justified by Jensen’s inequality and the second

by (4) and (7). Similarly, there exists a constant M2 > 0 such that

M2 [C(0)− C(ϑ(x, x′))] ≤
2
∑

j=1

|xj − x′
j |α

for all x, x′ ∈ Bǫ and ǫ > 0 sufficiently small. In view of equation (6), this proves the existence of a constant M0 > 1

such that (5) holds, given that ǫ > 0 is sufficiently small.

Now, consider the mapping ζ from Bǫ × R to S
2
ǫ × R defined by ζ(x, r) = (Π−1(x), r), so that ζ(GrW ) =

{(u,X(u)) : u ∈ S
2
ǫ}. The identity

‖ζ(x, r) − ζ(x′, r′)‖2 = ‖Π−1(x) −Π−1(x′)‖2 + |r − r′|2.

along with (4) implies ζ to be bi-Lipschitz. Therefore by Proposition 3.3 of Falconer (1990), the partial surface

{(u,X(u)) : u ∈ S
2
ǫ} has Hausdorff dimension 3 − α

2 almost surely. Invoking the countable stability property

(Falconer, 1990, p. 49), we see that the full surface Zc = {(u,Xc(u)) : u ∈ S
2
ǫ} also has Hausdorff dimension 3− α

2

almost surely.

4. Isotropic kernels

It is often desirable that the surface of the particle process possesses the same Hausdorff dimension as that of

the real-world particles to be emulated (Mandelbrot, 1982; Orford and Whalley, 1983; Turcotte, 1987). With this

in mind, we introduce and study three one-parameter families of isotropic kernels for the Gaussian particle process

(1). The families yield interesting correlation structures, and we study the asymptotic behaviour at zero, which

determines the Hausdorff dimension of the Gaussian particle surface.

4.1. Von Mises–Fisher kernel

Here, we consider k to be the unnormalised von Mises–Fisher density,

k(θ) = ea cos θ, 0 ≤ θ ≤ π,

with parameter a > 0. The von Mises–Fisher density with parameter a > 0 is widely used in the analysis of spherical

data (Fisher et al., 1987), and in this context a is called the precision. Straightforward calculations show that

C(θ) =
2

sinh(2a)

sinh
(

a
√

2(1 + cos θ)
)

√

2(1 + cos θ)
, 0 ≤ θ ≤ π,
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from which it is readily seen that the fractal index is α = 2. The surfaces of the corresponding Gaussian particles

are smooth and have Hausdorff dimension 2, independently of the value of the parameter a ∈ R.

4.2. Uniform kernel

We now let the kernel k be uniform, in that

k(θ) = 1(θ ≤ r), 0 ≤ θ ≤ π,

with cut-off parameter r ∈ (0, π
2 ]. As shown in the appendix of Tovchigrechko and Vakser (2001), the associated

correlation function is

C(θ) =
1

π (1− cos r)

(

π − arccos

(

cos θ − cos2 r

1− cos2 r

)

− 2 cos r arccos

(

cot r
1− cos θ

sin θ

))

1(θ ≤ 2r), 0 ≤ θ ≤ π.

In particular, if r = π
2 then C(θ) = 1− θ

π decays linearly throughout. Taylor expansions imply that the correlation

function has fractal index α = 1 for all r ∈ (0, π
2 ), so that the corresponding Gaussian particles have non-smooth

boundaries of Hausdorff dimension 5
2 .

4.3. Power kernel

Our third example is the power kernel where the isotropic kernel k is defined as

k(θ) =

(

θ

π

)−q

− 1, 0 < θ ≤ π, (8)

with power parameter q ∈ (0, 1). The associated correlation function (2) takes the form

C(θ) =
2

c2

∫ π

0

(

πqλ−q − 1
)

sinλ

∫

A(λ)

(

πqa(θ, λ, φ)−q − 1
)

dφ dλ, (9)

where

t(θ, λ, φ) = sin θ sinλ cosφ+ cos θ cosλ, a(θ, λ, φ) = arccos t(θ, λ, φ),

and

A(λ) = {φ ∈ [0, π] : 0 < a(θ, λ, φ) ≤ π}.

The normalising constant c2 is here given by

c2 = 2π

∫ π

0

(πqλ−q − 1)2 sinλ dλ =
(q)3
6

∞
∑

j=0

(−1)jπ2j+3

(2j + 1)!

1

(1− q + j)3
,

where (a)3 ≡ a(a+ 1)(a+ 2). This expression for c2 is obtained by expanding sinλ in a Maclaurin series and then

integrating the series termwise.
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Our next result shows that the correlation function (9) has fractal index α = 2 − 2q, so that the corresponding

Gaussian particles have surfaces with Hausdorff dimension 2 + q, as illustrated in Figure 1.

Theorem 2. If 0 < q < 1, the correlation function (9) satisfies

lim
θ↓0

C(0)− C(θ)

θ2−2q
= bq, (10)

where

bq =
2π2q

c2

∫ ∞

0

x1−q

∫ π

0

(

x−q −
(

x2 + 1− 2x cosφ
)−q/2

)

dφ dx (11)

=
π2q+1

c2(1− q)2
Γ(1− 1

2q)
2 Γ(q)

Γ(12q)
2 Γ(1− q)

. (12)

In particular, the correlation function has fractal index α = 2− 2q.

We defer the proof of this result to the Appendix. The power kernel (8) has a negative exponent and thus is

unbounded, which may lead to unbounded particle realisations. While values of q < 0 are feasible, they are of less

interest, as the associated correlation functions have fractal index α = 2, thereby generating smooth particles only.

5. Examples

Here, we demonstrate the flexibility of the Gaussian particle framework in simulation examples. First, we

introduce a simulation algorithm. Then we simulate celestial bodies whose surface properties resemble those of the

Earth, the Moon, Mars, and Venus, as reported in the planetary physics literature. Furthermore, we study and

simulate the planar particles that arise from the two-dimensional version of the particle model.

5.1. Simulation algorithm

To sample from the Gaussian particle model (1), we utilise the property that the underlying measure is indepen-

dently scattered. Specifically, for every sequence (An) of disjoint Borel subsets of S
2, the random variables L(An),

n = 1, 2, . . . are independent and L(∪An) =
∑

L(An) almost surely. Let (An)
N
n=1 denote an equal area partition

of S2, so that λ(An) = 4π/N for n = 1, . . . , N . The random field X in (1) can then be decomposed into a sum of

integrals over the disjoint sets An, in that

X(u) =

N
∑

n=1

∫

An

k(v, u)L( dv), u ∈ S
2.

For n = 1, . . . , N fix any point vn ∈ An. We can then approximate the random field X by setting

x(u) =

N
∑

n=1

k(vn, u)L(An), u ∈ S
2.
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Table 1: Mean radius r0, difference d+ between maximal and mean radius, and difference d− between minimal and mean
radius, for Venus, Dry Earth, the Moon, and Mars, in kilometres.

Body Venus Dry Earth Moon Mars

r0 6051.8 6367.2 1737.1 3389.5
d+ 11.0 8.8 5.5 21.2
d− −3.0 −11.0 −12.0 −8.2

Let us denote the multivariate normal joint distribution of L(A1), . . . , L(AN ) by FN . To simulate a realisation y of

the particle Yc, we use the following algorithm.

Algorithm 1.

1. Set M = M1M2, where M1 and M2 are positive integers, and construct a grid u1, . . . , uM on S
2. Using

spherical coordinates, let um = (θm, φm) and put θm = iπ/M1 and φm = 2πj/M2, where m = iM2 + j for

i = 0, 1, . . . , M1 − 1 and j = 1, . . . ,M2.

2. Apply the method of Leopardi (2006) to construct an equal area partition A1, . . . , AN of S
2.

3. For n = 1, . . . , N , let vn have spherical coordinates equal to the mid range of the latitudes and longitudes

within An, respectively.

4. For n = 1, . . . , N , generate independent random variables Ln from FN .

5. For m = 1, . . . ,M , set x(um) = max(c,
∑N

n=1 k(vn, um)Ln).

6. Set y to be the triangulation of {(um, x(um)) : m = 1, . . . ,M}.

The equal area partitioning algorithm of Leopardi (2006) is a recursive zonal partitioning algorithm. That is,

after appropriate polar cap areas have been removed, the sphere is divided into longitudinal zones, each of which is

subsequently divided by latitude. By construction, the equal areal partition cells are continuity sets with respect

to the intensity of the Gaussian measure, and in all our examples the kernel k is continuous almost everywhere.

This simulation procedure has been implemented in R (R Development Core Team, 2009), and code is available

from the authors upon request. It can be considered an analogue of the moving average method (Oliver, 1995; Cressie

and Pavlicová, 2002; Hansen and Thorarinsdottir, 2013) for simulating Gaussian random fields on Euclidean spaces.

In principle, M and N can take any positive integer values. However, the usual trade-off applies, in that the quality

of the realisations increases with M1, M2, and N , at the expense of prolonged run times. For the realisations in

Figures 1–5, we used M1 = 200 and M2 = 400, or M = 8× 104, and N = 105.

5.2. Celestial bodies

The geophysical literature has sought to characterise the surface roughness of the Earth and other celestial bodies

in the solar system via the Hausdorff dimension of their topography (Mandelbrot, 1982; Kucinskas et al., 1992),

with Turcotte (1987) arguing that the dimension is universal and equals about 2.5. Here, we provide simulated

version of the planets Earth, Venus, and Mars, and of the Moon, under the Gaussian particle model (1), with k

being the power kernel (8). We set q = 1
2 , which gives the desired fractal dimension for a Gaussian particle surface,

and choose the parameters µ = r0/c1 and σ2 = (d+ − d−)
2/c2 of the Gaussian measure such that they correspond
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Figure 2: Simulations of Venus, the Earth, the Moon, and Mars in true relative size.

0 90 180 270 360

6048

6051

6054

6057

0 90 180 270 360

6363

6366

6369

6372

0 90 180 270 360

1732

1735

1738

1741

0 90 180 270 360

3380

3384

3388

3392

Figure 3: Radial function along the equator for the simulated bodies in Figure 2 in kilometres. Clockwise from upper left:
Venus, the Earth with ocean level indicated by a dashed horizontal line, Mars, and the Moon.

to reality. For this we use the information listed in Table 1, which was obtained from Price (1988), Jones and Stofan

(2008), and online sources. The values concerning the Earth describe ‘Dry Earth’; to simulate ‘Wet Earth’ we make

a cut-off that corresponds to the Gaussian particle Yc with truncation parameter c = 6371 kilometres. In principle,

we also need to make a cut-off at c = 0 for ‘Dry Earth’, but this is unnecessary in essentially all realizations. In our

simulation algorithm, we use M1 = 200, M2 = 400, and N = 106 to obtain the celestial bodies in Figure 2. The

corresponding radial functions along the equator are shown in Figure 3.

5.3. Planar particles

We now reduce the dimension and consider the planar Gaussian random particle

Yc =
⋃

u∈S1

{o+ ru : 0 ≤ r ≤ max(X(u), c)} ⊂ R
2.
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Table 2: Analytic form, parameter range, constants and associated fractal index for parametric families of isotropic kernels
k : [0, 2π) → R̄ on the circle S

1.

Kernel von Mises–Fisher Uniform Power

Analytic Form k(θ) = ea cos θ k(θ) = 1(θ ≤ r) k(θ) =
(

θ
π

)−q − 1

Parameter a > 0 r ∈ (0, π
2 ] q ∈ (− 1

2 , 0) ∪ (0, 1
2 )

c1 2πI0(a) 2r 2π
q

1− q

c2 2πI0(2a) 2r 4π
q2

1− 3q + 2q2

Fractal Index 2 1 1− 2q

Table 3: Values of the parameter a for the von Mises–Fisher kernel, the parameter r for the uniform kernel, and the
parameter q for the power kernel used to generate the planar particles in Figure 4.

Row a r q

1 3 1.5 0.05
2 30 1.0 0.25
3 300 0.5 0.45

Here c > 0, o ∈ R
2 is an arbitrary centre, and the radial function X(u) is modelled as

X(u) =

∫

S1

K(v, u)L( dv), u ∈ S
1,

with a suitable kernel function K : S1 × S
1 → R̄ and a Gaussian measure L on the Borel subsets of the unit sphere

S
1 = {x ∈ R

2 : ‖x‖ = 1}. We further construct planar gamma particles where L is a gamma measure on the

Borel subsets of the unit sphere, L(A) ∼ Gamma (κλ(A), τ) with shape κ > 0 and rate τ > 0. Under this model,

µX = κ c1/τ and σ2
X = κ c2/τ

2. The Gamma measure is independently scattered and we can thus apply the same

simulation method as for the Gaussian particles.

As previously, we assume that the kernel function K is isotropic, in that K(v, u) = k(d(v, u)) depends on the

points v, u ∈ S
1 through their angular or circular distance d(v, u) ∈ [0, π], only. Table 2 lists circular analogues of

von Mises–Fisher, uniform, and power kernels along with analytic expressions for the integrals

cn =

∫

S1

k(d(v, u))n dv = 2

∫ π

0

k(η)n dη,

where n = 1, 2, and the fractal index, α, of the associated correlation function, as defined in equation (3). The

power kernel model has previously been studied by Wood (1995, Example 3.3). In analogy to the respective result

on S
2, if maxu∈S1 X(u) > c, the boundary of the Gaussian particle Yc has Hausdorff dimension D = 2− α

2 almost

surely.
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Figure 4: Planar particles with mean µX = 25 and variance σ2
X = 10. Columns 1 and 2 show particles generated using

a von Mises–Fisher kernel, columns 3 and 4 particles using a uniform kernel, and columns 5 and 6 particles using a power
kernel, with parameters varying by row as described in Table 3. The particles in columns 1, 3, and 5 are generated under a
Gaussian measure, those in columns 2, 4, and 6 under a gamma measure.

The general form of the associated correlation function is

C(θ) =
1

c2

(

∫ π

π−θ

k(φ)k(2π − φ− θ) dφ+

∫ π−θ

0

k(φ)k(θ + φ) dφ

+

∫ θ

0

k(φ)k(θ − φ) dφ+

∫ π

θ

k(φ)k(φ − θ) dφ

)

, 0 ≤ θ ≤ π.

For the von Mises–Fisher kernel with parameter a > 0, the correlation functions admits the closed form

C(θ) =
I0

(

a
√

2(1 + cos θ)
)

I0(2a)
, 0 ≤ θ ≤ π,

where I0 denotes the modified Bessel function of the first kind and of order 0, and for the uniform kernel with

cut-off parameter r ∈ (0, π
2 ], we have

C(θ) =

(

1− θ

2r

)

1(θ ≤ 2r), 0 ≤ θ ≤ π.

For the power kernel with parameter q ∈ (0, 1
2 ), tedious but straightforward computations result in a complex closed

form expression, and a Taylor expansion about the origin yields the fractal index, α = 1− 2q, stated in Table 2.

Thus, the von Mises–Fisher and uniform kernels result in Gaussian particles with boundaries of Hausdorff

dimension 1 and 3
2 , respectively. Under the power kernel, the Hausdorff dimension of the Gaussian particle surface
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Figure 5: Gamma particles with mean µX = 100 and variance σ2
X = 10, using a gamma measure in (1) and the power

kernel (8) with q = 0.05 (left), q = 0.25 (middle) and q = 0.5 (right).

is 3
2 + q. Simulated planar Gaussian and gamma particles with von Mises–Fisher, uniform, and power kernels

are shown in Figure 4, with the parameter values varying by row, as listed in Table 3. The simulation algorithm

of Section 5.1 continues to apply with natural adaptions, such as defining the simulation grid um = 2πm/M for

m = 1, . . . ,M , where we use M = 5,000 and N = 105.

6. Discussion

We have proposed a flexible framework for modelling and simulating star-shaped Gaussian random particles.

The particles are represented by their radial function, which is generated by an isotropic kernel smoothing on

the sphere. From a theoretical perspective, the construction is perfectly general, as every continuous isotropic

correlation function on a sphere admits an isotropic convolution root (Ziegel, 2014). The Hausdorff dimension of

the particle surface depends on the behaviour of the associated correlation function at the origin, as quantified by

the fractal index. Under power kernels we obtain Gaussian particles with boundaries of any Hausdorff dimension

between 2 and 3.

While a non-Gaussian theory remains elusive, we believe that similar results hold for gamma particles where

L(A) ∼ Gamma (κλ(A), τ) in (1) with shape κ > 0 and rate τ > 0. For instance, Figures 1 and 5 show Gaussian

and gamma particles under the power kernel, respectively. The surface structure for the different bases resemble

each other, even though the particles exhibit more pronounced spikes under the gamma basis, see also the planar

particles in Figure 4. Similar particle models may be generated using different types of Lévy bases L, such as

Poisson or inverse Gaussian (Jónsdóttir et al., 2008).

We have focused on three-dimensional particles, except for brief remarks on planar particles in the preceding

section. However, the Gaussian particle approach generalises readily, to yield star-shaped random particles in R
d

for any d ≥ 2. The particles are represented by their radial function and associated with an isotropic random

field on the sphere S
d−1. In this setting, Estrade and Istas (2010) derive a recursion formula that yields closed

form expressions for the isotropic correlation function on S
d−1 that arises under a uniform kernel. In analogy to

terminology used in the Euclidean case (Gneiting, 1999), we refer to this correlation function as the ‘spherical hat’

function with cut-off parameter r ∈ (0, π
2 ]. Any spherical hat function has a linear behaviour at the origin, and thus

has fractal index α = 1. Estrade and Istas (2010) also show that scale mixtures of the spherical hat function provide
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correlation functions of any desired fractal index α ∈ (0, 1], similarly to the corresponding results of Hammersley

and Nelder (1955) and Gneiting (1999) in the Euclidean case.

A far-reaching, natural extension of our approach uses non-isotropic kernels to allow for so-called multifractal

particles, where the roughness properties and the Hausdorff dimension may vary locally on the particle surface.

This fits the framework of Gagnon et al. (2006), who argue that the topography of Earth is multifractal, and allows

for multifractal simulations of three-dimensional celestial bodies, as opposed to extant work that applies to the

topography of ‘Flat Earth’.

We have not discussed parameter estimation under our modelling approach, leaving this to future work. In a

Bayesian setting, inference could be performed similarly to the methods developed by Wolpert and Ickstadt (1998),

who use a construction akin to the random field model in (1) to represent the intensity measure of a spatial point

process, and propose a simulated inference framework, where the model parameters, the underlying random field,

and the point process are updated in turn, conditional on the current state of the other variables. Alternatively,

Ziegel (2013) proposes a non-parametric inference framework based on series of Gegenbauer polynomials.
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Appendix A. Proof of Theorem 2

We proceed in two parts, demonstrating first the asymptotic expansion (10) with the constant bq in (11), and

then establishing the equality of the expressions in (11) and (12), which confirms that bq is strictly positive. The

claim about the fractal index then is immediate from Theorem 1.

In what follows, if A(·) and B(·) are nonnegative functions on a common domain, we write

A . B

if there is a constant C > 0 such that A ≤ CB and C is independent of any parameters or arguments appearing in

A and B when the latter are allowed to vary in their specified domains.

A.1. Asymptotic expansion (10)

Recall that

C(θ) =
2

c2

∫ π

0

(

πqλ−q − 1
)

sinλ

∫

A(λ)

(

πqa(θ, λ, φ)−q − 1
)

dφ dλ,

where

t(θ, λ, φ) = sin θ sinλ cosφ+ cos θ cosλ, a(θ, λ, φ) = arccos t(θ, λ, φ),

and

A(λ) = {φ ∈ [0, π] : 0 < a(θ, λ, φ) ≤ π}.
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Therefore,

c2
2

(

C(0)− C(θ)
)

=

∫ π

0

(

πqλ−q − 1
)

sinλ

{

∫ π

0

(

πqλ−q − 1
)

dφ−
∫

A(λ)

(

πqa(θ, λ, φ)−q − 1
)

dφ

}

dλ.

Since A(λ) = [0, π] for λ ∈ (0, π−θ] and A(λ) ⊂ [0, π] for λ ∈ (π−θ, π), we decompose the integral on the right-hand

side as P1q(θ) + P2q(θ), where P1q(θ) and P2q(θ) correspond to the integral with respect to λ over (0, π − θ) and

(π − θ, π), respectively. The first mean value theorem for integration implies that there exists a t ∈ (π − θ, π) such

that

P2q(θ) = θ
(

πqt−q − 1
)

sin t

{

∫ π

0

(

πqt−q − 1
)

dφ−
∫

A(t)

(

πqa(θ, t, φ)−q − 1
)

dφ

}

.

Hence, P2q(θ) decays at least as fast as O(θ2) as θ ↓ 0.

As regards the first term, substituting λ = θx yields

P1q(θ) = θ2−2q π2q

∫ (π−θ)/θ

0

sin(θx)

θ

(

x−q − π−qθq
)

∫ π

0

(

x−q − a(θ, θx, φ)−qθq
)

dφ dx.

In order to prove the asymptotic behaviour (10) it now suffices to show that

lim
θ↓0

I(θ) =
c2

2π2q
bq =

∫ ∞

0

x1−qf(0, x) dx, (13)

where

I(θ) =

∫ (π−θ)/θ

0

sin(θx)

θ
(x−q − π−qθq)f(θ, x) dx

for θ > 0, with

f(θ, x) =

∫ π

0

(

x−q − a(θ, θx, φ)−qθq
)

dφ

for x > 0 and θ ≥ 0. As we aim to find the limit limθ↓0 I(θ), we may assume that θ ∈ (0, θ0) for some 0 < θ0 ≪ 1,

and that λ ∈ [0, π − θ].

Lemma 1. We have t(θ, λ, φ) ≤ cos(θ − λ) and

a(θ, λ, φ)−q ≤ |θ − λ|−q
.

Proof. We write

t(θ, λ, φ) = sin θ sinλ cosφ+ cos θ cosλ = cos(θ − λ) + sin θ sinλ(cosφ− 1).

Since cosφ− 1 ∈ [−2, 0] and the inverse cosine function is monotonically decreasing, the claims follow.

Lemma 2. Define f(0, x) = limθ↓0 f(θ, x). Then the limit exists and equals

f(0, x) =

∫ π

0

(

x−q − (x2 − 2x cosφ+ 1)−q/2
)

dφ



18 L. V. Hansen et al.

for x 6∈ {0, 1}.

Proof. For x 6∈ {0, 1} fixed, the integrand in the definition of f(θ, x) is bounded in φ. The claim follows

immediately from the limit

lim
θ↓0

=
a(θ, θx, φ)

θ
= (x2 − 2x cosφ+ 1)1/2

along with Lebesgue’s dominated convergence theorem. Indeed, noting that

arccos(t)

θ
=

arccos
(

1− y2
)

y

y

θ

∣

∣

∣

∣

∣

y=(1−t)1/2

for t ∈ (0, 1), we find that

lim
θ↓0

a(θ, θx, φ)

θ
=

d

dy
arccos

(

1− y2
)

∣

∣

∣

∣

y=0

lim
θ↓0

(

1− cos θ cos θx

θ2
− sin θ sin θx

θ2
cosφ

)1/2

=
(

x2 − 2x cosφ+ 1
)1/2

.

Lemma 3. We have

|f(θ, x)| ≤ π(x−q + |x− 1|−q
),

for x ∈ [0, (π − θ)/θ].

Proof. We find from Lemma 1 that

a(θ, θx, φ)−qθq ≤ |x− 1|−q
,

and the claim follows.

For later purposes we need to find the Taylor expansion of a(θ, λ, φ)−q around θ = 0,

a(θ, λ, φ)−q = a(0, λ, φ)−q +
d

dθ
a(θ, λ, φ)−q

∣

∣

∣

θ=0
θ +R(θ, λ, φ),

where R denotes the error term.

Lemma 4. We have

a(θ, y, φ)−q = y−q +
q cosφ

yq+1
θ +R(θ, y, φ),

where the error term satisfies

|R(θ, y, φ)| . θ2

(

1

|y − θ|q+2 +
1

|y − θ|q+1
sin(y − θ)

)

for y ∈ [2θ, π − θ].

Proof. From t(0, y, φ) = cos y, the zeroth-order term is immediately seen to be y−q. For the first-order term, we

compute
d

dθ
a(θ, y, φ) = − 1√

1− t2
(cos θ sin y cosφ− sin θ cos y),
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so
d

dθ
a(θ, y, φ)

∣

∣

∣

θ=0
= − cosφ.

Hence,
d

dθ
a(θ, y, φ)−q

∣

∣

∣

θ=0
= − q

a(0, y, φ)q+1

d

dθ
a(θ, y, φ)

∣

∣

∣

θ=0
=

q cosφ

yq+1
.

To estimate R, we present it in Lagrange form,

R(θ, y, φ) =
1

2

d2

dθ2
a(θ, y, φ)−q

∣

∣

∣

θ=θ̂
θ2,

for some θ̂ ∈ [0, θ]. Then, we have

d2

dθ2
a(θ, y, φ)−q =

d

dθ

(

− q

a(θ, y, φ)q+1

d

dθ
a(θ, y, φ)

)

=
q(q + 1)

a(θ, y, φ)q+2

(

d

dθ
a(θ, y, φ)

)2

− q

a(θ, y, φ)q+1

d2

dθ2
a(θ, y, φ)

= A(θ, y, φ) +B(θ, y, φ).

Let us now estimate A(θ, y, φ) from above for y ∈ [2θ, π − θ]. From

1√
1− t2

≤ 1
√

1− cos2(y − θ)
=

1

sin(y − θ)

we get
∣

∣

∣

∣

d

dθ
a(θ, y, φ)

∣

∣

∣

∣

≤ sin y + sin θ

sin(y − θ)
.

By monotonicity, we have sin θ ≤ sin(y − θ) and sin y ≤ 2 sin(y − θ). Hence, in view of Lemma 1, we find that

|A(θ, y, φ)| . |y − θ|−q−2

for y ∈ [2θ, π − θ].

To estimate B(θ, y, φ) in the same range, we compute

d2

dθ2
a(θ, y, φ) = C(θ, y, φ) +D(θ, y, φ),

where

C(θ, y, φ) =
d

dθ

(

− 1√
1− t2

)

(cos θ sin y cosφ− sin θ cos y) = − t

(1− t2)3/2
(cos θ sin y cosφ− sin θ cos y)2

and

D(θ, y, φ) = − 1√
1− t2

d

dθ
(cos θ sin y cosφ− sin θ cos y) =

1√
1− t2

(sin θ sin y cosφ+ cos θ cos y).
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We have
|t|

(1 − t2)3/2
≤ |cos(y − θ)|

sin3(y − θ)
≤ 1

sin3(y − θ)

for y ∈ [2θ, π − θ]. Hence,

|C(θ, y, φ)| ≤ (sin y + sin θ)2

sin3(y − θ)
.

1

sin(y − θ)
.

Similarly, |D(θ, y, φ)| . 1/(sin(y − θ)). Hence,

|B(θ, y, φ)| . 1

|y − θ|q+1
sin(y − θ)

for y ∈ [2θ, π − θ].

Finally, for θ̂ ∈ [0, θ],
∣

∣

∣
A(θ̂, y, φ)

∣

∣

∣
.

1

(y − θ̂)q+2
≤ 1

|y − θ|q+2 ,

and similarly,
∣

∣

∣
B(θ̂, y, φ)

∣

∣

∣
.

1

(y − θ̂)q+1 sin(y − θ̂)
.

1

|y − θ|q+1
sin(y − θ)

.

Combining the estimates for A and B, the proof of the lemma is complete.

In what follows, we need the classical estimate

0 ≤ sin θx

θ
≤ x, (14)

for x ≥ 0 and θ > 0.

Lemma 5. We have
sin θx

θ
|f(θ, x)| . (x− 1)−1−q

for x ∈ [2, (π − θ)/θ].

Proof. From Lemma 4 and
∫ π

0
cosφdφ = 0, we find

f(θ, x) = θq+2

∫ π

0

R(θ̂, θx, φ) dφ.

Using Lemma 4 and (14), we get

sin θx

θ
|f(θ, x)| . sin θx

θ
(x− 1)−2−q +

sin θx

sin θ(x− 1)
(x− 1)−1−q . (x− 1)−1−q.

Lemma 6. We have that x1−qf(0, x) is Lebesgue integrable and

lim
θ↓0

I(θ) =

∫ ∞

0

x1−qf(0, x) dx.
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Proof. From (14), Lemma 3, and Lemma 5, we find that

∣

∣

∣

∣

sin(θx)

θ
(x−q − π−qθq)f(θ, x)

∣

∣

∣

∣

.











x1−2q + |x− 1|−q
, x ∈ [0, 2]

(x − 1)−1−2q + (x− 1)−1−q, x ∈ [2,∞)

uniformly in θ ∈ (0, θ0], where 0 < θ0 ≪ 1. Since the latter function is Lebesgue integrable, the claims follow from

Lebesgue’s dominated convergence theorem along with Lemma 2.

This completes the proof of (13) and therefore of the asymptotic relationship (10) with the constant bq in (11).

A.2. Equality of the expressions in (11) and (12)

We now show that the constant bq is strictly positive. Specifically, we demonstrate the equality of the expressions

in (11) and (12) for q ∈ (0, 1). Toward this end, we first prove that

bq =
π2q+1Γ(1− 1

2q)

c2Γ(
1
2q)

∫ ∞

0

tq−1
(

1− e−t
1F1(1− 1

2q; 1; t)
) dt

t
, (15)

where with (x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) for n = 1, 2, . . ., the classical confluent hypergeometric

function (Digital Library of Mathematical Functions, 2011, Chapter 13) can be written as

1F1(a; b; t) =

∞
∑

k=0

(a)k
(b)k

tk

k!
.

We establish this representation as follows. With a keen eye on the inner integral in (11), we note that for x > 0

and φ ∈ (0, π),

x−q = (x2)−q/2 =
1

Γ(12q)

∫ ∞

0

e−tx2

tq/2
dt

t
,

and

(1 + x2 − 2x cosφ)−q/2 =
1

Γ(12q)

∫ ∞

0

e−t(1+x2−2x cosφ) tq/2
dt

t
.

Substituting these formulae into (11), and interchanging the order of the integration with respect to φ and t, we

obtain

bq =
2π2q

c2Γ(
1
2q)

∫ ∞

0

x1−q

∫ ∞

0

tq/2e−tx2

∫ π

0

(

1− e−t(1−2x cosφ)
)

dφ
dt

t
dx. (16)

By well-known formulae,
∫ π

0

et cosφ dφ = π I0(t) = π 0F1(1;
1
4 t

2),

where I0 denotes the modified Bessel function of the first kind of order 0, and 0F1 is a special case of the generalised

hypergeometric series (Digital Library of Mathematical Functions, 2011, formulae 10.32.1 and 10.39.9). Therefore,

∫ π

0

(

1− e−t(1−2x cosφ)
)

dφ = π
(

1− e−t
0F1(1; t

2x2)
)

.
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Substituting this result into (16), and interchanging the order of the integration, we obtain

bq =
2π2q+1

c2Γ(
1
2q)

∫ ∞

0

tq/2
∫ ∞

0

x1−qe−tx2 (

1− e−t
0F1(1; t

2x2)
)

dx
dt

t
. (17)

With the substitution x = u1/2, we get

∫ ∞

0

x1−qe−tx2

dx =
1

2
t
1
2 q−1Γ(1− 1

2q).

We apply next a well-known formula for the Laplace transforms of generalised hypergeometric series (Digital Library

of Mathematical Functions, 2011, formula 16.5.3) to obtain, with the substitution x = t−1/2 u1/2,

∫ ∞

0

x1−q e−tx2

0F1(1; t
2x2) dx =

1

2
t
1
2 q−1Γ(1− 1

2q) 1F1(1− 1
2q; 1; t).

Consequently, by (17), we have established the representation (15).

Finally, we apply the Kummer formula for the 1F1 function (Digital Library of Mathematical Functions, 2011,

formula 13.2.39) to show that

1− e−t
1F1(1− 1

2q; 1; t) =
1

2
qt 2F2(

1
2q + 1, 1; 2, 2;−t).

Thus, by the representation (15),

bq =
π2q+1q

2c2

Γ(1− 1
2q)

Γ(12q)

∫ ∞

0

tq 2F2(
1
2q + 1, 1; 2, 2;−t)

dt

t
,

and this integral is a well-known Mellin transform; see Digital Library of Mathematical Functions (2011, formula

16.5.1), where the integral is given in inverse Mellin transform format (Digital Library of Mathematical Functions,

2011, Section 1.14(iv)). The proof of the equality of the expressions in (11) and (12) is now complete.


