

Introduction to cryptography

Ragni Ryvold Arnesen Ragni.Ryvold.Arnesen@nr.no Norsk Regnesentral

Norsk Regnesentral Norwegian Computing Center

Ragni Ryvold Arnesen

Contents

- Security characteristics
- Symmetric crypto algorithms
 - Stream ciphers
 - Block ciphers
- Asymmetric crypto algorithms
 - Factorisation problem
 - RSA
 - Hashing
 - Digital signatures
 - ElGamal

Terminology

- *P* is a finite set of possible *plaintexts*
- *C* is a finite set of possible *cryptotexts*
- K is a finite set of possible keys (keyspace)
- For each $k \in K$ there is an *encryption* function $e_k: P \to C$, and a corresponding decryption function $d_k: C \to P$ such that $d_k(e_k(x))=x$ for every plaintext $x \in P$

Security characteristics

- Perfect Secrecy (or *unconditional* security):
 - The system is unbreakable even with infinite computational resources
- Computational Security:
 - The perceived level of computation required to break the security exceeds, by a comfortable margin, the computational resources of the adversary

Perfect secrecy

- A cryptosystem has *perfect secrecy* if *p*_P(x|y) = p_P(x) for all x∈P
- In other words: The *a posteriori* probability that the plaintext is *x*, given that the ciphertext *y* is observed, is identical to the *a priori* probability that the plaintext is *x*
- It follows that not even exhaustive search through the entire keyspace will give any knowledge of the plaintext or the key
- Disadvantage: The amount of key needed is at least as big as the amount of plaintext

One-time pad

- The one-time pad is the only known cryptoalgorithm that achieves perfect secrecy
- Let $P = C = K = (\mathbb{Z}_2)^n$,
 - plaintext $x = (x_1, x_2, x_3, ..., x_n)_{,}$
 - key $k = (k_1, k_2, k_3, \dots, k_n)$, must be truly random!
 - cryptotext $y = (y_1, y_2, y_3, ..., y_n)$

Encryption: $e_k(x) = (x_1 \oplus k_1, x_2 \oplus k_2, x_3 \oplus k_3, \dots, x_n \oplus k_n)$

Decryption:

 $d_k(y) = (y_1 \oplus k_1, y_2 \oplus k_2, y_3 \oplus k_3, \dots, y_n \oplus k_n)$

Norsk Regnesentral Norwegian Computing Center

Confusion and diffusion

• A good algorithm should ensure a high level of confusion and diffusion.

Confusion:

- Relationship between key and ciphertext is as complex as possible.
- One bit change in the key should result in change in approximately half of the ciphertext bits.

Diffusion:

- Redundancy of the plaintext is spread out over the ciphertext.
- One bit change in the plaintext should result in change in approximately half of the ciphertext bits.

Symmetric crypto algorithms

- The same key is used for encryption and decryption.
- The keys must be secret and shared in advance (off-line or by some key exchange mechanism)
- Symmetric cryptoalgorithms are used mainly to ensure
 - Confidentiality (conceal contents of data)
 - Integrity (protect data from change)

Stream ciphers

plaintext m_i ciphertext c_i key kkeystream z_i

Properties of a stream cipher:

- encrypts individual characters, one at a time
- the encryption transformation varies with time
- usually fast and simple in hardware
- no need for buffering plaintext or cryptotext
- limited or no error propagation
- much of the theory dates back to around
 World War II and is extensively analysed
- few algorithms published in the open literature
- widely used in telecommunications, radios and military communication equipment

LFSR -Linear Feedback Shift Register

State polynomial: $a_1 x^9 + a_2 x^8 + a_3 x^7 + a_4 x^6 + a_5 x^5 + a_6 x^4 + a_7 x^3 + a_8 x^2 + a_9 x + a_{10}$

Corresponds to the connection polynomial

 $x^{10} + x^6 + 1$

- If the polynomial is *primitive*, the LFSR will have its maximum possible *period* 2ⁿ-1, where *n* is the length of the LFSR
- Stepping the LFSR once corresponds to multiplying the *state polynomial* with x and reducing modulo the *connection polynomial*
- LFSRs are very often used as parts of a stream cipher

GSM cipher - A5/1

 A register is *clocked* if its *clocking tap* (marked grey) agrees with the majority of the three clocking taps.

Cryptanalysis of A5/1

- 64-bit keys, but in all implementations 10 bits are set to zero
- Anderson and Roe, 1994
 - Guess R1 and R2 (41 bits) and derive R3 from the output, complexity about O(2⁴⁵)
- Time/memory trade-off (Babbage 1995, Golic 1997)
 - Complexity $O(2^{22})$ with 64TB diskspace, or
 - Complexity $O(2^{28})$ with 862GB diskspace
- Best attack known : Alex Biryukov, Adi Shamir and David Wagner, 1999-2000
 - Preparation: 2⁴⁸ (carried out only once)
 - 2 min known plaintext: key computed in 1 sec.
 - 2 sec known plaintext: key computed in a few minutes
 - Question: How to get hold of the plaintext?

Block ciphers

encryption function Eplaintext m_i ciphertext c_i key k

Properties of a block cipher:

- maps *n*-bit plaintext blocks to *n*-bit ciphertext blocks
- pure block ciphers are *memoryless*
- many algorithms in the open literature that have been extensively analysed (DES, IDEA, AES, etc.)
- widely used in e-commerce and banking

UMTS cipher - KASUMI

Fig. 1: Modified MISTY1

Fig.4: FL Function

S-boxes: S7

Input: $(x_6, x_5, x_4, x_3, x_2, x_1, x_0)$ Output: $(y_6, y_5, y_4, y_3, y_2, y_1, y_0)$

Gate Logic:

 $y_{0} = x_{1}x_{3} + x_{4} + x_{0}x_{1}x_{4} + x_{5} + x_{2}x_{5} + x_{3}x_{4}x_{5} + x_{6} + x_{0}x_{6} + x_{1}x_{6} + x_{3}x_{6} + x_{2}x_{4} + x_{1}x_{5}x_{6} + x_{4}x_{5}x_{6} + x_{4}x_{6}x_{6} + x_{4}x_{6} + x_{4}x_{6}$

Decimal Table:

54	50	62	56	22	34	94	96	38	6	63	93	2	18	123	33
55	113	39	114	21	67	65	12	47	73	46	27	25	111	124	81
53	9	121	79	52	60	58	48	101	127	40	120	104	70	71	43
20	122	72	61	23	109	13	100	77	1	16	7	82	10	105	98
117	116	76	11	89	106	0	125	118	99	86	69	30	57	126	87
112	51	17	5	95	14	90	84	91	8	35	103	32	97	28	66
102	31	26	45	75	4	85	92	37	74	80	49	68	29	115	44
64	107	108	24	110	83	36	78	42	19	15	41	88	119	59	3

S9 is constructed similarly, but with $2^9 = 512$ entries in the table.

Key schedule

Secret Key

Κ

128 bit

Subkey

Ki (1 <= i <= 8)	16 bit	$K = K1 \parallel K2 \parallel K3 \parallel \parallel K8$
Ki' (1 <= i <= 8)	16 bit	Ki' = Ki XOR Ci

Key Symbols

KLi KLij	$(1 \le i \le 8)$ $(1 \le i \le 8)$ $(1 \le j \le 2)$	32 bit 16 bit	KLi = KLi1 KLi2
KOi KOij	$(1 \le i \le 8)$ $(1 \le i \le 8)$ $(1 \le j \le 3)$	48 bit 16 bit	KOi = KOi1 KOi2 KOi3
KIi KIij	$(1 \le i \le 8)$ $(1 \le i \le 8)$ $(1 \le j \le 3)$	48 bit 16 bit	KIi = KIi1 KIi2 KIi3 KIi = KIij1 KIij2
KIij1	$(1 \le i \le 8)$ $(1 \le i \le 3)$	9 bit	
KIij2	$(1 \le i \le 8)$ $(1 \le j \le 3)$	7 bit	

Subkey - KeySymbol Relation

i = 2i = 3 i = 4i = 8i = 1i = 5 i = 6 i = 7 KLi1 K1<<<1 K2<<<1 K3<<<1 K4<<<1 K5<<<1 K6<<<1 K7<<<1 K8<<<1 KLi2 K3' K4' K5' K6' K7' K8' K1' K2' KOi1 K2<<<5 K3<<<5 K4<<<5 K5<<<5 K6<<<5 K7<<<5 K8<<<5 K1<<<5 KOi2 K6<<<8 K7<<<8 K8<<8 K1<<<8 K2<<8 K3<<<8 K4<<<8 K5<<<8 KOi3 K7<<<13 K7<<13 K7<13 KIi1 K5' K6' K7' K8' K1' K2' K3' K4' KIi2 K4' K5' K6' K7' K8' K1' K2' K3' KIi3 K8' K1' K2' K3' K4' K5' K6' K7'

Constant Values

 $\begin{array}{l} C1 = 0x0123\\ C2 = 0x4567\\ C3 = 0x89ab\\ C4 = 0xcdef\\ C5 = 0xfedc\\ C6 = 0xba98\\ C7 = 0x7654\\ C8 = 0x3210 \end{array}$

Modes of use

- A block cipher is seldom used in its pure form (*n* bits plaintext in, *n* bits plaintext out)
- Instead it is used in one of several possible *modes* depending on the objectives:
 - Confidentiality protection
 - Integrity protection
 - Key generation
 - Key exchange
 - Challenge-response protocol
 - etc.

NR UMTS Confidentiality algorithm - f8

Parameters

COUNT	32 bits
BEARER	5 bits
DIRECTION	1 bit
BLKCTR	64 bits
LENGTH	? bits
CK	128 bits
$\{PT_i\}_{i=0,1,1,\dots,LENGTH\text{-}1}$	
$\{CT_i\}_{i=0,1,1,\dots,LENGTH\text{-}1}$	
$\{KS_i\}_{i=0,1,1,\ldots,LENGTH\text{-}1}$	

COUNT || BEARER || DIRECTION || 0...0

time dependent input bearer identity direction of transmission block counter length of key stream cipher key plaintext bit sequence ciphertext bit sequence output key stream

СК⊕КМ ► KASUMI Æ BLKCTR = 2BLKCTR = 1₩Ð BLKCTR = n-1₩Ð BLKCTR = 0CK CK _ CK _ KASUMI CK KASUMI KASUMI KASUMI KS[0] ... KS[63] KS[64] ... KS[127] KS[128] ... KS[191] CT[i] = PT[i] XOR KS[i] **Norsk Regnesentral Norwegian Computing Center**

Message Authentication Code (MAC)

- Used to ensure *integrity* of data
- Maps an arbitrary-length message onto a fixed-length output (MAC)
 - Key dependent
 - Often based on a block-cipher
- The MAC is attached to the cryptotext, and by verifying it, the receiver knows two things:
 - the message was produced by the someone holding the secret integrity key
 - the message has not been changed during transmission

UMTS Integrity algorithm - f9

Parameters

COUNT	32 bits	time dependent input
FRESH	32 bits	random number
DIRECTION	1 bit	direction of transmission
IK	128 bits	integrity key
{MESSAGE} _{i=0,1,1,,LENGTH-1}		plaintext bit sequence
MAC-I	32 bits	message authentication code

Asymmetric (public key) crypto algorithms

- Encrypt with *receiver's* public key
- Receiver decrypts with his private key
- *N* public keys for *N* parties (as opposed to *N*(*N*-1) for symmetric cryptosystems)

Services

- Confidentiality
 - Conceal contents of data
- Integrity
 - Detect change of data
- Authentication
 - Establish identity of communicating parties
 - Establish identity of data origin
- Non-repudiation
 - Convince third party that an action
 - has been executed by a certain individual
 - has been executed at a given point in time

The integer factorisation problem

- Given a positive integer *n*, find its prime factorisation, i.e. write $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 1$
- Factoring algorithms:
 - Trial division
 - Pollard rho method
 - Pollard's p -1 method
 - Quadratic sieve
 - Lenstra's elliptic curve method
 - Number field sieve

Number theory

- Definition:
 - Two positive integers x and y are *relatively* prime if they have no common factors, i.e. their greatest common divisor is 1. We write gcd(x, y) = 1.
- Euler phi function:
 - Let *n* be a positive integer. The Euler *phi* function $\varphi(n)$ is the number of positive integers not exceeding *n* that are relatively prime to *n*
- Theorem:
 - If *p* is prime, then $\varphi(p) = p 1$
- Theorem:
 - Let *m* and *n* be relatively prime positive integers. Then $\varphi(mn) = \varphi(m) \varphi(n)$
- Euler's theorem:
 - If *m* is a positive integer and *a* is an integer with gcd(a,m) = 1, then $a^{\varphi(m)} \equiv 1 \pmod{m}$
- Fermat's theorem:
 - Special case of Euler's theorem: If gcd(a, p) = 1, then $a^{p-1} \equiv 1 \pmod{p}$

RSA - key generation

Each entity A should do the following:

- Generate large primes *p* and *q*
- Compute n = pq and $\varphi = (p 1)(q 1)$
- Select random integer *e*, $1 < e < \varphi$, such that $gcd(e, \varphi) = 1$
- Compute the unique integer d, $1 < d < \varphi$, such that $ed \equiv 1 \pmod{\varphi}$
- A's public key is (*n*, *e*), A's private key is *d*
- (Note that *p*, *q* and *φ* must also be kept secret)

• Conjecture:

- Nobody can compute
 - p, q or φ from knowledge of n, or
 - d from knowledge of n and e

RSA - encryption

 $B \xrightarrow{m} A$

- Encryption. *B* should do the following:
 - Obtain A's public key (n, e)
 - Represent the message as an integer *m* in the interval [0, *n*-1]
 - Compute $c = m^e \mod n$
 - Send the ciphertext c to A
- Decryption. A should do the following
 - Use the private key *d* to recover $m = c^d \mod n$

RSA - proof that decryption works

- $ed \equiv 1 \pmod{\varphi} \Rightarrow$ there exists integer k such that $ed = 1 + k\varphi$
- By Euler's theorem: $m^{\varphi} \equiv 1 \pmod{n}$
 - (This is true only if gcd(*m*,*n*) = 1. But if not, then we have found a factor of *n*, and the key is broken! The probability for this is extremely small.)

$$\Rightarrow m^{k\varphi} \equiv 1 \pmod{n}$$

- $\Rightarrow m^{k\varphi+1} \equiv m \pmod{n}$
- $\Rightarrow m^{ed} \equiv m \pmod{n}$

$$\Rightarrow c^d = (m^e)^d = m^{ed} \equiv m \pmod{n}$$

 Public key is used to encrypt symmetric key

Hashing

- One-way function:
 - A function *f* such that f(x) is easy to compute for each *x* in the domain of *f*; but it is computationally infeasible to find any *x* such that f(x) = y, for essentially all *y* in the range of *f*
 - It is not known whether real one-way functions exist
- Hash function
 - A one-way function where variable-length input is mapped to fixed-length output

I, Alice, hereby declare that I will pay Bob \$ 10.000.000 when I have received the following: ...

Security properties for hash functions

- Let h be a hash function with inputs x, x' and outputs y, y'.
- Preimage resistance (or *one-way*):
 - For essentially all pre-specified outputs y, it is computationally infeasible to find any preimage x' such that h(x') = y
- 2nd preimage resistance (or weak collision resistance):
 - Given x, it is computationally infeasible to find any $x' \neq x$ such that h(x) = h(x')
- Collision resistance (*strong* c.r.):
 - It is computationally infeasible to find any two distinct inputs x, x' such that h(x) = h(x')

Digital signatures

- Sign with sender's private key
- Verify signature with public key

Digital signatures

- When the receiver has verified the signature he knows that:
 - the document is really written by the person who owns the public key, i.e. the person who knows the corresponding private key (authentication of data origin)
 - the document has not been changed after the sender signed it since the hashes match (integrity of data)
- And:
 - The receiver can convince a *third party* that the contents of the document was really written by the sender (non-repudiation)

RSA signature

- Key generation as for encryption
- Signature generation. A should do the following:
 - if *M* is the message, compute *m* = *h*(*M*), an integer in the range [0, *n*-1]
 - compute $s = m^d \mod n$
 - A's signature for *M* is s
- Verification. *B* should:
 - obtain A's public key (*n*, *e*)
 - compute $m' = s^e \mod n$ and h(M)
 - verify that m' = h(M)
- (h() is a hash function)

Discrete logarithm problem (DLP)

- The generalised discrete logarithm problem is the following:
 - Given a finite cyclic group *G* of order *n*, a generator α of *G*, and an element $\beta \in G$, find the integer *x*, $0 \le x \le n 1$, such that $\alpha^{x} = \beta$
- Algorithms for solving the DLP:
 - Exhaustive search
 - Baby-step giant-step
 - Pollard's rho algorithm
 - Pohlig-Hellman algorithm
 - Index calculus algorithms

ElGamal - key generation

• Each entity A should do the following:

- Generate a large random prime p and a generator α of the multiplicative group \mathbb{Z}_{p}^{*}
- Select random integer *a* such that $1 \le a \le p$ -2
- Compute $y = a^a \mod p$
- A's public key is (p, α, y) , A's private key is a
- Conjecture:
 - Nobody can compute *a* from knowledge of *y* and α

ElGamal - signature

- Signature generation. A should do the following:
 - Select random secret integer k, 1 < k < p 2with gcd(k, p - 1) = 1
 - Compute $r = \alpha^k \mod p$
 - Compute $k^{-1} \mod (p 1)$
 - Compute $s = k^{-1}(h(m) ar) \mod (p 1)$
 - A's signature for m is the pair (r, s)
- Verification. *B* should:
 - Obtain A's authentic public key (p, α , y)
 - Verify that $1 \le r \le p$ -1; if not, reject signature
 - Compute $v_1 = y^r r^s \mod p$
 - Compute h(m) and $v_2 = a^{h(m)} \mod p$
 - Accept the signature if and only if $v_1 = v_2$

(*h*() is a hash function)

ElGamal -

proof that signature verification works

 Assume (r, s) is a legitimate signature of entity A on message m

$$\Rightarrow s \equiv k^{-1}(h(m) - ar) \pmod{p - 1}$$
(1)

$$\Rightarrow h(m) \equiv ar + ks \pmod{p-1}$$
 (2)

$$\Rightarrow \alpha^{h(m)} \equiv \alpha^{ar+ks} \equiv (\alpha^a)^r \, r^s \, (\text{mod } p) \tag{3}$$

 $\Rightarrow v_2 = v_1$

- Theorem: Let *a*, *n* be relatively prime integers and n > 0. Then $a^i \equiv a^j \pmod{n}$ where *i* and *j* are positive integers, if and only if $i \equiv j \pmod{n}$ ord_n *a*).
- Here, $ord_n a$ is the least positive integer x such that $a^x \equiv 1 \pmod{n}$, so if a is a generator of \mathbf{Z}_p^* then $ord_n a = p - 1$ Norsk Regresentral

Norwegian Computing Center