Introduction to cryptography

Ragni Ryvold Arnesen Ragni.Ryvold.Arnesen@nr.no Norsk Regnesentral

Contents

- Security characteristics
- Symmetric crypto algorithms
- Stream ciphers
- Block ciphers
- Asymmetric crypto algorithms
- Factorisation problem
- RSA
- Hashing
- Digital signatures
- ElGamal

Terminology

- P is a finite set of possible plaintexts
- C is a finite set of possible cryptotexts
- K is a finite set of possible keys (keyspace)
- For each $k \in K$ there is an encryption function $e_{k}: P \rightarrow C$, and a corresponding decryption function $d_{k}: C \rightarrow P$ such that $d_{k}\left(e_{k}(x)\right)=x$ for every plaintext $x \in P$

Security characteristics

- Perfect Secrecy (or unconditional security):
- The system is unbreakable even with infinite computational resources
- Computational Security:
- The perceived level of computation required to break the security exceeds, by a comfortable margin, the computational resources of the adversary

Perfect secrecy

- A cryptosystem has perfect secrecy if $p_{P}(x \mid y)=p_{P}(x)$ for all $x \in P$
- In other words: The a posteriori probability that the plaintext is x, given that the ciphertext y is observed, is identical to the a priori probability that the plaintext is x
- It follows that not even exhaustive search through the entire keyspace will give any knowledge of the plaintext or the key
- Disadvantage: The amount of key needed is at least as big as the amount of plaintext

One-time pad

- The one-time pad is the only known cryptoalgorithm that achieves perfect secrecy
- Let $P=C=K=\left(\mathbb{Z}_{2}\right)^{n}$,
- plaintext $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$,
- key $k=\left(k_{1}, k_{2}, k_{3}, \ldots, k_{n}\right)$, must be truly random!
- cryptotext $y=\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)$

Encryption:

$$
e_{k}(x)=\left(x_{1} \oplus k_{1}, x_{2} \oplus k_{2}, x_{3} \oplus k_{3}, \ldots, x_{n} \oplus k_{n}\right)
$$

Decryption:

$$
d_{k}(y)=\left(y_{1} \oplus k_{1}, y_{2} \oplus k_{2}, y_{3} \oplus k_{3}, \ldots, y_{n} \oplus k_{n}\right)
$$

Norsk Regnesentral Norwegian Computing Center

Confusion and diffusion

- A good algorithm should ensure a high level of confusion and diffusion.

Confusion:

- Relationship between key and ciphertext is as complex as possible.
- One bit change in the key should result in change in approximately half of the ciphertext bits.
Diffusion:
- Redundancy of the plaintext is spread out over the ciphertext.
- One bit change in the plaintext should result in change in approximately half of the ciphertext bits.

Symmetric crypto algorithms

- The same key is used for encryption and decryption.
- The keys must be secret and shared in advance (off-line or by some key exchange mechanism)
- Symmetric cryptoalgorithms are used mainly to ensure
- Confidentiality (conceal contents of data)
- Integrity (protect data from change)

Stream ciphers

plaintext m_{i} ciphertext c_{i} key k keystream z_{i}

Properties of a stream cipher:

- encrypts individual characters, one at a time
- the encryption transformation varies with time
- usually fast and simple in hardware
- no need for buffering plaintext or cryptotext
- limited or no error propagation
- much of the theory dates back to around World War II and is extensively analysed
- few algorithms published in the open literature
- widely used in telecommunications, radios and military communication equipment

LFSR Linear Feedback Shift Register

State polynomial: $a_{1} x^{9}+a_{2} x^{8}+a_{3} x^{7}+a_{4} x^{6+} a_{5} x^{5}+a_{6} x^{4}+a_{7} x^{3}+a_{8} x^{2}+a_{9} x+a_{10}$

- Corresponds to the connection polynomial

$$
x^{10}+x^{6}+1
$$

- If the polynomial is primitive, the LFSR will have its maximum possible period $2^{n}-1$, where n is the length of the LFSR
- Stepping the LFSR once corresponds to multiplying the state polynomial with x and reducing modulo the connection polynomial
- LFSRs are very often used as parts of a stream cipher

Norsk Regnesentral Norwegian Computing Center

GSM cipher - A5/1

R1

R2

- A register is clocked if its clocking tap (marked grey) agrees with the majority of the three clocking taps.

Norsk Regnesentral Norwegian Computing Center

Cryptanalysis of A5/1

- 64-bit keys, but in all implementations 10 bits are set to zero
- Anderson and Roe, 1994
- Guess R1 and R2 (41 bits) and derive R3 from the output, complexity about $O\left(2^{45}\right)$
Time/memory trade-off (Babbage 1995, Golic 1997)
- Complexity $O\left(2^{22}\right)$ with 64 TB diskspace, or - Complexity $O\left({ }^{28}\right)$ with $862 G B$ diskspace
- Best attack known : Alex Biryukov, Adi Shamir and David Wagner, 1999-2000
- Preparation: 2^{48} (carried out only once)
- 2 min known plaintext: key computed in 1 sec.
- 2 sec known plaintext: key computed in a few minutes
- Question: How to get hold of the plaintext?

Norsk Regnesentral Norwegian Computing Center

Block ciphers

encryption function E plaintext m_{i} ciphertext c_{i} key k

Properties of a block cipher:

- maps n-bit plaintext blocks to n-bit ciphertext blocks
- pure block ciphers are memoryless
- many algorithms in the open literature that have been extensively analysed (DES, IDEA, AES, etc.)
- widely used in e-commerce and banking

UMTS cipher - KASUMI

Fig.2: FO Function

Fig. 1: Modified MISTY1
Fig.4: FL Function

S-boxes: S7

Input: ($\left.\mathrm{x}_{6}, \mathrm{x}_{5}, \mathrm{x}_{4}, \mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{0}\right)$
Output: $\quad\left(y_{6}, y_{5}, y_{4}, y_{3}, y_{2}, y_{1}, y_{0}\right)$

Gate Logic:

$$
\begin{aligned}
& y_{0}=x_{1} x_{3}+x_{4}+x_{0} x_{1} x_{4}+x_{5}+x_{2} x_{5}+x_{3} x_{4}{ }_{4}{ }_{5}+x_{6}+x_{0} x_{6}+x_{1} x_{6}+x_{3} x_{6}+x_{2} x_{4} x_{6}+x_{1} x_{5} x_{6}+x_{4} x_{5} x_{6} \\
& y_{1}=x_{0} x_{1}+x_{0} x_{4}+x_{2}{ }_{2}{ }_{4}+x_{5}+x_{1} x_{2} x_{5}+x_{0} X_{3} X_{5}+x_{6}+x_{0} X_{2}{ }_{2}{ }_{6}+x_{3}{ }_{3}{ }_{6}+x_{4} x_{5}{ }_{5}{ }_{6}+1 \\
& y_{2}=x_{0}+x_{0} x_{3}+x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{0} x_{3} x_{4}+x_{1} x_{5}+x_{0} x_{2} x_{5}+x_{0} x_{6}+x_{0} x_{1} x_{6}+x_{2} x_{6}+x_{4} x_{6}+1 \\
& y_{3}=x_{1}+x_{0} x_{1} X_{2}+x_{1} X_{4}+x_{3} X_{4}+x_{0} X_{5}+x_{0} X_{1} X_{5}+x_{2} X_{3} X_{5}+x_{1} X_{4} X_{5}+x_{2} X_{6}+x_{1} X_{3} X_{6} \\
& y_{4}=x_{0} X_{2}+x_{3}+x_{1} x_{3}+x_{1} X_{4}+x_{0} X_{1} X_{4}+x_{2} x_{3}{ }_{3}{ }_{4}+x_{0} X_{5}+x_{1} X_{3} X_{5}+x_{0} X_{4} X_{5}+x_{1} X_{6}+x_{3} X_{6}+x_{0}{ }_{0} X_{3} X_{6}+x_{5} x_{6}+1 \\
& y_{5}=x_{2}+x_{0} X_{2}+x_{0} X_{3}+x_{1}{ }_{1}{ }_{2}{ }_{3}+x_{0} X_{2}{ }_{2}{ }_{4}+x_{0} X_{5}+x_{2} X_{5}+x_{4} X_{5}+x_{1} X_{6}+x_{1} X_{2}{ }_{2}{ }_{6}+x_{0} X_{3}{ }_{3}{ }_{6}+x_{3}{ }_{3}{ }_{4} X_{6}+x_{2}{ }_{2}{ }_{5} X_{6}{ }_{6}+1 \\
& y_{6}=x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{4}+x_{1} x_{5}+x_{3} x_{5}+x_{6}+x_{0} x_{1} x_{6}+x_{2} x_{3} x_{6}+x_{1} x_{4}{ }_{4}{ }_{6}+x_{0} x_{5}{ }_{5} x_{6}
\end{aligned}
$$

Decimal Table:

54	50	62	56	22	34	94	96	38	6	63	93	2	18	123	33
55	113	39	114	21	67	65	12	47	73	46	27	25	111	124	81
53	9	121	79	52	60	58	48	101	127	40	120	104	70	71	43
20	122	72	61	23	109	13	100	77	1	16	7	82	10	105	98
117	116	76	11	89	106	0	125	118	99	86	69	30	57	126	87
112	51	17	5	95	14	90	84	91	8	35	103	32	97	28	66
102	31	26	45	75	4	85	92	37	74	80	49	68	29	115	44
64	107	108	24	110	83	36	78	42	19	15	41	88	119	59	3

S9 is constructed similarly, but with $2^{9}=512$ entries in the table.

Key schedule

Secret Key
K
128 bit
Subkey
$\begin{array}{ll}\text { Ki }(1<=\mathrm{i}<=8) & 16 \mathrm{bit} \\ \text { Ki' }(1<=\mathrm{i}<=8) & 16 \text { bit }\end{array}$

$$
\begin{aligned}
& \text { K = K1 || K2 || K3 || || K8 } \\
& \text { Ki' = Ki XOR Ci }
\end{aligned}
$$

Key Symbols

KLi ($1<=\mathrm{i}<=8$) 32 bit
KLij ($1<=\mathrm{i}<=8$) 16 bit ($1<=\mathrm{j}<=2$)

KOi ($1<=\mathrm{i}<=8$) 48 bit
KOij ($1<=\mathrm{i}<=8$) 16 bit ($1<=\mathrm{j}<=3$)

KIi ($1<=\mathrm{i}<=8$) 48 bit

KIi = KIi1 || KIi2 || KIi3
KIi $=$ KIij1 $|\mid$ KIij2
KLi $=$ KLi1 || KLi2

KOi = KOi1 || KOi2 || KOi3

KIij ($1<=\mathrm{i}<=8$) 16 bit ($1<=\mathrm{j}<=3$)
KIij1 ($1<=\mathrm{i}<=8$) 9 bit ($1<=\mathrm{j}<=3$)
KIij2 ($1<=\mathrm{i}<=8$) 7 bit ($1<=\mathrm{j}<=3$)

Subkey - KeySymbol Relation

	$\mathrm{i}=1$	$\mathrm{i}=2$	$\mathrm{i}=3$	$\mathrm{i}=4$	$\mathrm{i}=5$	$i=6$	$\mathrm{i}=7$	$\mathrm{i}=8$
KLi1	K1 $\lll 1$	$\mathrm{K} 2 \lll 1$	K3 $\lll 1$	K4 $\lll 1$	K5 $\lll 1$	K6<<<1	K7 $\lll 1$	K8<<<1
KLi2	K3'	K4'	K5'	K6'	K7 ${ }^{\prime}$	K8'	K1'	K2'
KOi1	K2<<<5	K3<<< 5	K4<<< 5	K5 $\lll 5$	K6<<<5	K7<<<5	K8<<< 5	K1<<<5
KOi2	K6<<<8	K7<<<8	K8<<<8	K1 $\lll 8$	K2 $\lll 8$	K3 $\lll 8$	K4<<<8	K5 $\lll 8$
KOi3	K7 $\lll 13$	K7<<<13	K7<<<13	K7<<<13	K7 $\lll 13$	K7<<<13	K7<<<13	K7<<<13
KIi1	K5'	K6'	K7 ${ }^{\prime}$	K8'	K1 ${ }^{\prime}$	K2'	K3'	K4'
KIi2	K4'	K5'	K6'	K7'	K8'	K1'	K2'	K3'
KIi3	K8'	K1 ${ }^{\prime}$	K2'	K3'	K4'	K5'	K6'	K7'

Constant Values
$\mathrm{C} 1=0 \times 0123$
$\mathrm{C} 2=0 \times 4567$
C3 $=0 \times 89 \mathrm{ab}$
C4 $=0 \mathrm{xcdef}$
C5 $=0 \mathrm{xfedc}$
C6 $=0 \times \mathrm{ba} 98$
$\mathrm{C} 7=0 \times 7654$
$\mathrm{C} 8=0 \times 3210$
Norsk Regnesentral

Modes of use

- A block cipher is seldom used in its pure form (n bits plaintext in, n bits plaintext out)
- Instead it is used in one of several possible modes depending on the objectives:
- Confidentiality protection
- Integrity protection
- Key generation
- Key exchange
- Challenge-response protocol
- etc.

UMTS Confidentiality algorithm - f8

Parameters

COUNT	32 bits
BEARER	5 bits
DIRECTION	1 bit
BLKCTR	64 bits
LENGTH	? bits
CK	128 bits
$\left\{\mathrm{PT}_{\mathrm{i}}\right\}_{\mathrm{i}=0,1,1, \ldots, \text { LENGTH-1 }}$	
$\left\{\mathrm{CT}_{\mathrm{i}}\right\}_{\mathrm{i}=0,1,1, \ldots, \text { LENGTH- }}$	
$\left\{\mathrm{KS}_{\mathrm{i}}\right\}_{\mathrm{i}=0,1,1, \ldots, \text { LENGTH-1 }}$	

time dependent input bearer identity direction of transmission block counter
length of key stream cipher key
plaintext bit sequence
ciphertext bit sequence
output key stream

COUNT || BEARER || DIRECTION || 0... 0

$\mathrm{CT}[\mathrm{i}]=\mathrm{PT}[\mathrm{i}] \operatorname{XOR} \mathrm{KS}[\mathrm{i}]$

Message Authentication Code (MAC)

- Used to ensure integrity of data
- Maps an arbitrary-length message onto a fixed-length output (MAC)
- Key dependent
- Often based on a block-cipher
- The MAC is attached to the cryptotext, and by verifying it, the receiver knows two things:
- the message was produced by the someone holding the secret integrity key
- the message has not been changed during transmission

UMTS Integrity algorithm - f9

Parameters

COUNT	32 bits	time dependent input
FRESH	32 bits	random number
DIRECTION	1 bit	direction of transmission
IK	128 bits	integrity key
$\{\text { MESSAGE }\}_{i=0,1,1, \ldots, \text { LENGTH-1 }}$		plaintext bit sequence
MAC-I	32 bits	message authentication code

MAC-I (left 32 bits)

Norsk Regnesentral

Asymmetric (public key) crypto algorithms

- Encrypt with receiver's public key
- Receiver decrypts with his private key
- N public keys for N parties (as opposed to $N(N-1)$ for symmetric cryptosystems)

Norsk Regnesentral Norwegian Computing Center

Services

- Confidentiality
- Conceal contents of data
- Integrity
- Detect change of data
- Authentication
- Establish identity of communicating parties
- Establish identity of data origin
- Non-repudiation
- Convince third party that an action
- has been executed by a certain individual
- has been executed at a given point in time

The integer factorisation problem

- Given a positive integer n, find its prime factorisation, i.e. write $n=p_{1}{ }^{e 1} p_{2}{ }^{e 2} \ldots p_{k}{ }^{e k}$ where the p_{i} are pairwise distinct primes and each $e_{i} \geq 1$
- Factoring algorithms:
- Trial division
- Pollard rho method
- Pollard's p-1 method
- Quadratic sieve
- Lenstra's elliptic curve method
- Number field sieve

Number theory

Definition:

- Two positive integers x and y are relatively prime if they have no common factors, i.e. their greatest common divisor is 1 .
We write $\operatorname{gcd}(x, y)=1$.
- Euler phi function:
- Let n be a positive integer. The Euler phi function $\varphi(n)$ is the number of positive integers not exceeding n that are relatively prime to n
- Theorem:
- If p is prime, then $\varphi(p)=p-1$
- Theorem:
- Let m and n be relatively prime positive integers. Then $\varphi(m n)=\varphi(m) \varphi(n)$

Euler's theorem:

- If m is a positive integer and a is an integer with $\operatorname{gcd}(a, m)=1$, then $a^{\varphi(m)} \equiv 1(\bmod m)$
- Fermat's theorem:
- Special case of Euler's theorem: If $\operatorname{gcd}(a, p)=$ 1 , then $a^{p-1} \equiv 1(\bmod p)$

RSA - key generation

- Each entity A should do the following:
- Generate large primes p and q
- Compute $n=p q$ and $\varphi=(p-1)(q-1)$
- Select random integer $e, 1<e<\varphi$, such that $\operatorname{gcd}(e, \varphi)=1$
- Compute the unique integer $d, 1<d<\varphi$, such that $e d \equiv 1(\bmod \varphi)$
- A's public key is (n, e), A's private key is d
- (Note that p, q and φ must also be kept secret)
- Conjecture:
- Nobody can compute
- p, q or φ from knowledge of n, or
- d from knowledge of n and e

RSA - encryption

- Encryption. B should do the following:
- Obtain A's public key (n, e)
- Represent the message as an integer m in the interval [0, $n-1$]
- Compute $c=m^{e} \bmod n$
- Send the ciphertext c to A
- Decryption. A should do the following
- Use the private key d to recover $m=c^{d} \bmod n$

RSA - proof that decryption works

- $e d \equiv 1(\bmod \varphi) \Rightarrow$ there exists integer k such that ed $=1+k \varphi$
- By Euler's theorem: $m^{\varphi} \equiv 1(\bmod n)$
- (This is true only if $\operatorname{gcd}(m, n)=1$. But if not, then we have found a factor of n, and the key is broken! The probability for this is extremely small.)

$$
\begin{aligned}
& \Rightarrow m^{k \varphi} \equiv 1(\bmod n) \\
& \Rightarrow m^{k \varphi+1} \equiv m(\bmod n) \\
& \Rightarrow m^{e d} \equiv m(\bmod n)
\end{aligned}
$$

$$
\Rightarrow c^{d}=\left(m^{e}\right)^{d}=m^{e d} \equiv m(\bmod n)
$$

Hybrid method

Symmetric key

Receiver's public key

Hashing

- One-way function:
- A function f such that $f(x)$ is easy to compute for each x in the domain of f; but it is computationally infeasible to find any x such that $f(x)=y$, for essentially all y in the range of f
- It is not known whether real one-way functions exist
- Hash function
- A one-way function where variable-length input is mapped to fixed-length output

I, Alice, hereby declare that I will pay Bob \$ 10.000 .000 when I have received the following: ...

Norsk Regnesentral Norwegian Computing Center

Security properties for hash functions

- Let h be a hash function with inputs x, x^{\prime} and outputs y, y^{\prime}.
- Preimage resistance (or one-way):
- For essentially all pre-specified outputs y, it is computationally infeasible to find any preimage x 'such that $h(x)=y$
2nd preimage resistance (or weak collision resistance):
- Given x, it is computationally infeasible to find any $x^{\prime} \neq x$ such that $h(x)=h(x)$
- Collision resistance (strong c.r.):
- It is computationally infeasible to find any two distinct inputs x, x^{\prime} such that $h(x)=h(x)$

Digital signatures

- Sign with sender's private key
- Verify signature with public key

Norsk Regnesentral Norwegian Computing Center

Digital signatures

- When the receiver has verified the signature he knows that:
- the document is really written by the person who owns the public key, i.e. the person who knows the corresponding private key (authentication of data origin)
- the document has not been changed after the sender signed it since the hashes match (integrity of data)
- And:
- The receiver can convince a third party that the contents of the document was really written by the sender (non-repudiation)

RSA signature

- Key generation as for encryption
- Signature generation. A should do the following:
- if M is the message, compute $m=h(M)$, an integer in the range $[0, n-1]$
- compute $s=m^{d} \bmod n$
- A 's signature for M is s
- Verification. B should:
- obtain A's public key (n, e)
- compute $m^{\prime}=s^{e} \bmod n$ and $h(M)$
- verify that $m^{\prime}=h(M)$
- $(h()$ is a hash function)

Discrete logarithm problem (DLP)

- The generalised discrete logarithm problem is the following:
- Given a finite cyclic group G of order n, a generator α of G, and an element $\beta \in \mathcal{G}$, find the integer $x, 0 \leq x \leq n-1$, such that $\alpha^{x}=\beta$
- Algorithms for solving the DLP:
- Exhaustive search
- Baby-step giant-step
- Pollard's rho algorithm
- Pohlig-Hellman algorithm
- Index calculus algorithms

ElGamal - key generation

- Each entity A should do the following:
- Generate a large random prime p and a generator α of the multiplicative group \mathbb{Z}_{p}^{*}
- Select random integer a such that $1 \leq a \leq p-2$
- Compute $y=\alpha^{a} \bmod p$
- A's public key is (p, α, y), A^{\prime} 's private key is a
- Conjecture:
- Nobody can compute a from knowledge of y and α

ElGamal - signature

- Signature generation. A should do the following:
- Select random secret integer $k, 1<k<p-2$ with $\operatorname{gcd}(k, p-1)=1$
- Compute $r=\alpha^{k} \bmod p$
- Compute $k^{-1} \bmod (p-1)$
- Compute $s=k^{-1}(h(m)-\operatorname{ar}) \bmod (p-1)$
- A's signature for m is the pair (r, s)
- Verification. B should:
- Obtain A's authentic public key (p, α, y)
- Verify that $1 \leq r \leq p-1$; if not, reject signature
- Compute $v_{1}=y^{r} r^{r} \bmod p$
- Compute $h(m)$ and $v_{2}=a^{h(m)} \bmod p$
- Accept the signature if and only if $v_{1}=v_{2}$
$(h()$ is a hash function)

ElGamal proof that signature verification works

- Assume (r, s) is a legitimate signature of entity A on message m

$$
\begin{aligned}
& \Rightarrow s \equiv k^{-1}(h(m)-\operatorname{ar})(\bmod p-1) \\
& \Rightarrow h(m) \equiv a r+k s(\bmod p-1) \\
& \Rightarrow a^{h(m)} \equiv a^{a r+k s} \equiv\left(\alpha^{a}\right)^{r} r^{s}(\bmod p) \\
& \Rightarrow v_{2}=v_{1}
\end{aligned}
$$

- Between (2) and (3):
- Theorem: Let a, n be relatively prime integers and $n>0$. Then $a^{i}=a^{i}(\bmod n)$ where i and j are positive integers, if and only if $i \equiv j(\bmod$ ord_{n} a).
- Here, ord ${ }_{n}$ a is the least positive integer x such that $a^{x} \equiv 1(\bmod n)$, so if a is a generator of $\mathbf{Z}_{p}{ }^{*}$ then $\operatorname{ord}_{n} a=p-1$

