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Estimation of the Mean Radar Reflectivity from a
Finite Number of Correlated Samples

Roger Fjgrtoft and Armand Lopés

Abstract— We here compare estimators of the mean radar re-
flectivity on images with different spectral properties. By work-
ing on complex data rather than detected images, we can take the
speckle correlation into account and thus obtain more accurate
estimates. A robust and computationally efficient approximation
of the optimal estimator is proposed.

Indexr Terms— Estimation, mean radar reflectivity, speckle cor-
relation, synthetic aperture radar (SAR).

I. INTRODUCTION

Estimation of the mean radar reflectivity is of fundamental in-
terest in many applications and concerns various radar systems,
such as Doppler weather radars, wind scatterometers, radar al-
timeters, and synthetic aperture radars (SARs). In general,
incoherent integration is used to reduce a fading effect called
speckle, which is due to the random phase fluctuations of the re-
flected waves by random rough surfaces or volumes. The fading
effect is well modeled by a complex circular Gaussian random
distribution. Let Z represent the complex amplitude produced
by an imaging radar. For discrete data, the incoherent integra-
tion consists in computing the arithmetic mean of N samples
of a function of |Z|. The usual functions and data formats are
the detected envelope A = |Z]| (linear detector corresponding
to amplitude data) with a Rayleigh distribution, the square de-
tected envelope I = Z*Z (quadratic detector corresponding to
intensity or power data) with a negative one-sided exponential
distribution, and the logarithm of the square detected envelope
D = log I with a Fisher-Tippett distribution.

Common estimators of the reflectivity are based on the arith-
metic mean intensity (AMI), the square of the arithmetic mean
amplitude (AMA), and the exponential of the arithmetic mean
logarithm (AML) of N samples. The AML corresponds to inte-
gration in dB. The theoretical performances of these estimators
can be established when the samples are assumed to be inde-
pendent. In that case, it has been shown that the maximum
likelihood (ML) estimator of the mean reflectivity is the AMI,
which is unbiased and efficient, i.e., its variance reaches the
Cramer-Rao lower bound [1]. All other unbiased estimators are
therefore suboptimal in terms of speckle reduction.

In practice, the samples are generally correlated and the AMI
is no longer the ML estimator of the mean reflectivity. For
complex data and correlated samples, the ML estimator is the
spatial whitening filter (SWF) [2], [3], which theoretically is
unbiased and efficient. However, we show that this estimator
does not work properly on oversampled data where a part of
the frequency spectrum is null. We propose a solution to this
problem and study the influence of the spectral properties of
the speckle on the performance of the different estimators.
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II. VECTORIAL PROBABILITY DISTRIBUTION

Let us consider a set of N complex samples, corresponding
to NV adjacent pixels in a complex radar image. Z is a signal
vector containing the complex amplitudes Zi,Zs,...,Zn. If
the speckle is fully developed, the probability density function
of the signal vector is a circular complex Gaussian distribution

p(Z) = exp (—Z"*C3'Z) (1)

7N |Cgl|
where Cz is the NV X N complex covariance matrix correspond-
ing to signal vector Z.

If, furthermore, we suppose that the underlying reflectivity R
is constant, Z = v/RS, where S is the complex speckle vector,
so that the covariance matrix of the signal vector Z is given

by [4]
(2)

where Cg represents the covariance matrix of the speckle vec-
tor S. As the complex speckle has zero mean and unity vari-
ance, the elements of Cg are the spatial correlation coefficients
ps(Azx, Ay) of the speckle, rearranged in accordance with the
vector S. The spatial speckle correlation only depends on sensor
and processor parameters. If the exact correlation coefficients
cannot be obtained from the data provider, the elements of Cs
can be estimated from the complex radar image, simply by com-
puting the correlation coeflicients of the complex amplitude Z
on any part of the image where the speckle is fully developed
and where the mean reflectivity is not so low that the thermal
noise becomes dominant. The underlying reflectivity does not
need to be constant [5]. It should be noted that Cgs is con-
stant in slant range images, whereas it varies slightly between
near range and far range in ground range images. In the latter
case, it is thus preferable to estimate and use several speckle
covariance matrices when processing over the full swath.

Cz=R-Cs

III. ESTIMATORS OF THE MEAN REFLECTIVITY

It can easily be shown from (1) and (2) that the ML estimator
of the radar reflectivity R is the SWF given by
k= tz"c5'z. (3)

N S

The AMI is only a special case of (3), corresponding uncorre-
lated speckle (independent samples), for which Cs is the iden-

tity matrix:
1 N
N2
k=1

T _ ]- t*x _
I=<2"Z= (4)

If Cs is correctly computed or perfectly estimated, R is unbi-
ased [6]. The variance of R computed on N samples is N times
lower than that of the observed intensity, and R is Gamma
distributed. This also applies to the AMI when the speckle is
uncorrelated. However, for correlated speckle, the AMI reduces
the variance by a factor inferior to N, and the output is only
approximately Gamma distributed [7]-[9].

The number of multiplications per pixel for the SWF is about
NZ%4 N, so the computational cost becomes considerable for very
large windows. A practical solution is to calculate the SWF on
highly overlapping smaller windows within the big window and
then average the results in intensity. The computational com-
plexity of this hybrid whitening filter (HWF) is barely higher
than that of the SWF for the smaller window.

The square AMA A” and the exponential of the AML exp(D)
are both biased estimators of R. However, they can be made
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TABLE I
CORRELATION COEFFICIENTS OF THE CRITICALLY SAMPLED SIMULATED
COMPLEX SPECKLE.

| lps| ]| Az=0 | Az=1 | Az=2 |
Ay=0 1.00 0.29 0.02
Ay=1 0.42 0.12 0.01
Ay=2 0.05 0.02 0.01

unbiased through multiplication with appropriate factors. An-
alytic expressions for these factors as a function of NV for uncor-
related speckle are given in [1].

IV. EXPERIMENTAL RESULTS

The performance of the above mentioned estimators in terms
of bias and variance has been studied experimentally on three
simulated SAR images (512 x 512 pixels) with constant reflec-
tivity but different spectral properties.

The first image represents the idealized case of uncorrelated
speckle, corresponding to complex circular white noise with
the experimental amplitude spectra in azimuth and range il-
lustrated by Fig. 1.

In the second image, the speckle is correlated due to the non-
constant transfer function of the radar system (antenna gain
pattern and/or raw data prefiltering). The experimental am-
plitude spectrum in azimuth is shown in Fig. 2. The spectral
properties in range are only slightly different. The correlation
coefficients up to a two pixel lag in both directions are given in
Table I.

The third image is similar to the second one, except that it
has been oversampled in the spectral domain so that about 20%
of the frequency components are null in azimuth as well as in
range. The azimuth spectrum is represented in Fig. 3. The
first correlation coefficients are given in Table II. The spectral
properties of this image are very close to those of the speckle
in ERS single look complex (SLC) SAR images. The second
image, with the azimuth spectrum shown in Fig. 2, is there-
fore representative for a resampled ERS SLC image, where the
unused frequency components have been eliminated.

The equivalent number of independent looks (ENIL)

L' = E*|R]/Var|R) (5)

is used to quantify the reduction of the variance of the estimate
R as a function of the number of samples N. It should be
noted that the ENIL is the same for a biased estimator as for
its unbiased counterpart, obtained by multiplying the former by
a constant factor.

Let us first consider the case of uncorrelated speckle, where
the SWF reduces to the AMI. Fig. 4 presents the ENIL for the
AMI and for the unbiased estimators based on the AMA and the
AML. As predicted, the variance of the estimate is reduced by
a factor L' = N when the AMI is computed on N independent
samples. For the estimators based on the AMA and the AML,
L' < N by approximately 7% and 39%, respectively, for N
large. We note in particular the strong performance loss for
the estimator that effectuates the incoherent summation on the
logarithm of the detected image.

For the critically sampled correlated speckle, the perfor-
mances of the estimators working on detected data are sub-
stantially poorer than that of the optimal estimator, as can be
seen from Fig. 5. The ENIL of the AMI is here 35% lower than
that of the SWF, and the ENIL of the estimator based on the
AML is 55% lower. The performance loss of the HWF, based on

TABLE II
CORRELATION COEFFICIENTS OF THE OVERSAMPLED SIMULATED COMPLEX
SPECKLE.

| lps] ]| Az=0 | Az=1 | Az=2 |
Ay=0 1.00 0.48 0.01
Ay=1 0.60 0.29 0.00
Ay=2 0.12 0.06 0.00

the SWF computed on maximally overlapping 3 x 3 windows,
compared to the true SWF, is only 20%.

Even though we use estimated speckle covariance matrices,
the bias measured for the SWF (and the HWF) is less than
0.5%, which is close to that of the AMI and thus insignificant.
The speckle correlation does not change the bias of the square
AMA and of the exponential of the AML much, but a small
bias (of the order of 1%) may remain if we use the theoretical
debiasing factors for uncorrelated samples given in [1].

For the image where a part of spectrum is null, as in ERS
SLC images, the SWF encounters serious problems in terms of
variance reduction and bias when the number of samples ex-
ceeds about 50. For a 3 x 3 window, neither of the problems
occur. The HWF based on the 3 x 3 SWF is practically unbi-
ased, and the ENIL, represented in Fig. 6, is only 38% below N.
In fact, this corresponds approximately to the percentage of the
two-dimensional spectrum which is null. Adding null frequency
components obviously does not add information. The maximum
number of uncorrelated samples of the image in the spatial do-
main is equal to the number of non-null frequency components.
Moreover, the frequency components that are null cannot, in
principle, be raised to the same level as the others through a
whitening process without deteriorating the signal. Neverthe-
less, our experiments indicate that it is possible to locally decor-
relate a small number of pixels (3 x 3) with the SWF, despite
the null frequency components. As the correlation is stronger
than for the critically sampled image, the performances of the
estimators based on the AMI, AMA and AML are further re-
duced. The relative differences between the performances of
these three estimators are, however, not significantly altered by
the speckle correlation.

V. DiSCUSSION

Complex radar data can be given any of the spectral forms
shown in Figs. 1-3 without loss of information. Each represen-
tation has its advantages and disadvantages.

Complex SAR images from sensors such as ERS and Radarsat
are generally oversampled with spectra similar to the one shown
in Fig. 3. The speckle is strongly correlated, but the side-lobes of
strong scatterers in the detected image are moderate. The nec-
essary bandwidth doubles when transforming the image into in-
tensity, so the detected image will actually be somewhat under-
sampled. Due to the null frequency components, we cannot use
the optimal SWF estimator, but the HWF can be used as an
approximation.

Critically sampled complex data, as shown in Fig. 2, seems
to be the ideal representation for automatic analysis tasks, as it
permits the use of the SWF. This estimator is, however, com-
putationally complex, and it is necessary to oversample such
images before detection and visualization.

The advantage of critically sampled and whitened complex
radar images, illustrated by Fig. 1, is that the optimal estimator
reduces to the AMI, which only demands one multiplication per
pixel within the analysis window. Unfortunately, the side-lobes
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Fig. 1. Spectrum of the uncorrelated complex speckle.
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Fig. 2. Spectrum of the critically sampled correlated complex speckle.

35

301

[N N
o ol
T T

Amplitude spectrum
&
T

10r

| | |
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Relative frequency

Fig. 3. Spectrum of the oversampled correlated complex speckle.

of strong scatterers become very pronounced and will generally
complicate the analysis of the image.

VI. CONCLUSION

The experimental results clearly demonstrate that it is ad-
vantageous to estimate the mean radar reflectivity from com-
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Fig. 4. ENIL for the uncorrelated complex speckle.
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Fig. 5. ENIL for the critically sampled correlated complex speckle.
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Fig. 6. ENIL for the oversampled correlated complex speckle.

plex data when the samples are correlated. This is particularly
important for the analysis of SAR images. However, complex
SAR images are usually oversampled, with a significant portion
of null frequency components (more than 35% in the case of ERS
SLC images). This poses a problem for the use of the optimal
ML estimator, which is the SWF. One solution is to eliminate
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the superfluous frequency components and thus reduce the size
of the image before applying the SWF. Alternatively, a new
hybrid filter combining the SWF computed on a small num-
ber of samples and incoherent summation can be applied to the
initial complex image. The usual estimators, based on averag-
ing in intensity, amplitude or dB (logarithm of the intensity),
have substantially poorer performance. In particular, the use
of logarithmic summation should be avoided. We have recently
demonstrated the improvement brought by the SWF in point
target detection [3], edge detection and SAR image segmenta-
tion [10], [11].
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