

Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm By Mihir Bellare and Chanathip Namprempre

Some slides were also taken from Chanathip Namprempre's defense

DBSEM, May 11, 2004 http://www.ifi.uio.no/dbsem/

Habtamu Abie Norwegian Computing Center http://www.nr.no/

Outline

Introduction

- Authenticated encryption scheme
- Relations among notions
- Analysis of generic composition
- Authenticated Encryption
 - Basic Schemes
 - Generalized Schemes
 - Security of the composite schemes
- Conclusions
- References

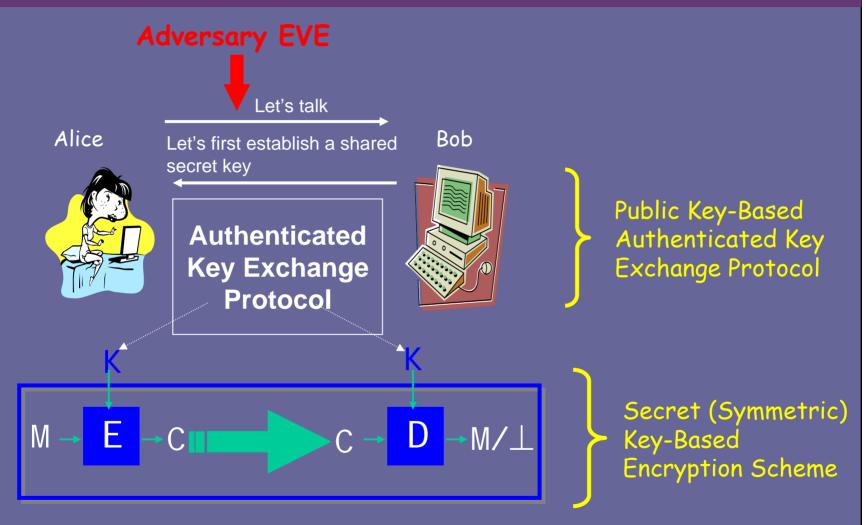
Introduction

- Considers two notions of authenticity for symmetric encryption schemes
 - integrity of plaintexts
 - integrity of cipher-texts
- Relates these to the standard notions of privacy for symmetric encryption schemes
 - by implications and separations between all notions
- Analyzes the security of authenticated encryption schemes designed by
 - "generic composition," making black-box use of a given Symmetric Encryption scheme and a given MAC.

Introduction...

- Authenticated encryption schemes
 - symmetric-key mechanisms by which a message M is transformed into a ciphertext C
 - C protects both privacy and authenticity
- Tools for achieving Privacy and Authenticity
 - Encryption schemes for privacy
 - Message authentication schemes for authenticity
 - Provable security analyses
- Simultaneously achieving privacy and authenticity by combining these tools

Symmetric Encryption Setting



Authenticated Encryption Scheme

Authenticated Key Exchange (KE) Protocol

- Constructions: Variants of Diffie-Hellman, protocols based on public-key encryption and signature schemes
- Security Notions: Entity authentication and key exchange
- Symmetric Key-Based Encryption Scheme
 - Constructions: CBC-mode encryption, CTR-mode encryption, OFB mode
 - Security notions: Authenticity and Privacy
 - Authenticity: Integrity of both plaintexts and ciphertexts
 - Privacy: Indistinguishability and Non-malleability under either chosenplaintext attacks or adaptive chosen-ciphertext attacks

Relevance to Internet Security

- Many popular Internet protocols rely on authenticated encryption schemes for privacy and authenticity.
 - Examples: SSL, TLS, SSH, IPSEC, etc.
- Many applications on the Internet require both privacy and integrity
 - Examples: online banking, retail, and auctions, secure file transfer

NR

Attack Models

Ciphertext-only attack

- deduce the decryption key or plaintext by only observing ciphertext

Known plaintext attack

 reveal further secret information (typically the secret key) by making use of samples of both plaintext and ciphertext

Chosen plaintext attack

 gain further secret information by choosing arbitrary plaintexts to be encrypted and obtaining the corresponding ciphertexts

Adaptive chosen-plaintext attack

 choose subsequent plaintexts based on the information received from previous requests

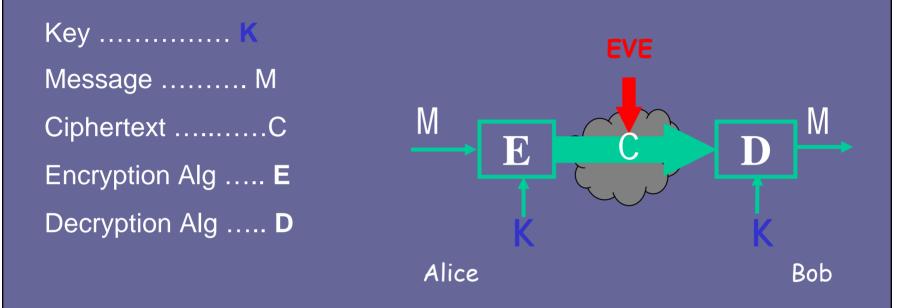
Chosen-ciphertext attack

 deduce the plaintext from (different) ciphertext by selecting the ciphertext and acquiring the corresponding plaintext

Adaptive chosen-ciphertext attack

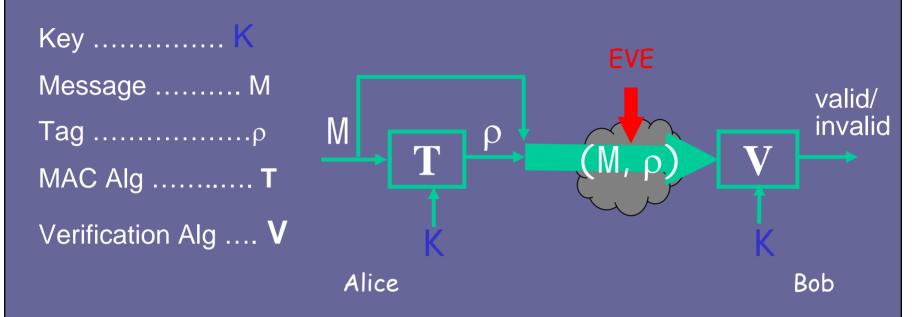
 choose subsequent ciphertexts based on the information received from previous requests

Privacy: Symmetric Encryption Scheme



<u>Goal</u>: It should be hard for EVE to obtain partial information about M Thus preventing exposure of transmitted information

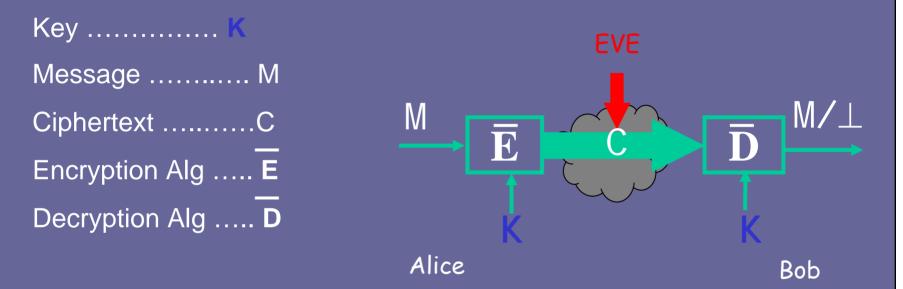
Authenticity: Message Authentication Codes (MACs)



<u>Goal</u>: It should be hard for EVE to forge a valid new pair (M,ρ) Thus preventing modification of transmitted information

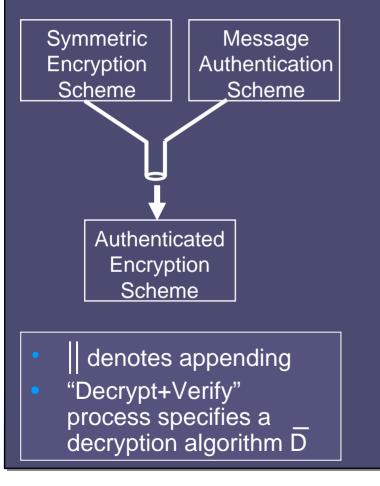
Constructions: CBC MAC, HMAC, UMAC

Privacy and Authenticity: Authenticated Encryption Scheme



Generic Composition Paradigm

Combine the base schemes as black-boxes



Three composition methods are considered

- 1) Encrypt-and-MAC $E_{Ke,Km}(M) = E_{Ke}(M) || T_{Km}(M)$
- 2) MAC-then-Encrypt $E_{Ke,Km}(M) = E_{Ke}(M || T_{Km}(M))$

3) Encrypt-then-MAC $E_{Ke,Km}(M) = E_{Ke}(M) || T_{Km}(E_{Ke}(M))$

Generic Composition Results

Composition Method	Privacy			Integrity	
	IND-CPA	IND-CCA	NM-CPA	INT-PTXT	INT-CTXT
Encrypt-and-MAC	insecure	insecure	insecure	secure	insecure
MAC-then-Encrypt	secure	insecure	insecure	secure	insecure
Encrypt-then-MAC	secure	insecure	insecure	secure	insecure

Under the assumption that the MAC scheme is weakly unforgeable

Composition Method	Privacy			Integrity	
	IND-CPA	IND-CCA	NM-CPA	INT-PTXT	INT-CTXT
Encrypt-and-MAC	insecure	insecure	insecure	secure	insecure
MAC-then-Encrypt	secure	insecure	insecure	secure	insecure
Encrypt-then-MAC	secure	secure	secure	secure	secure

Under the assumption that the MAC scheme is strongly unforgeable

Generic Composition Results: Security

Formal security goals for authenticated encryption

- Authenticity: Integrity of ciphertexts (INT-CTXT), Integrity of plaintext (INT-PTXT)
- **Privacy**: Indistinguishability and non-malleability each of which can be considered either under chosen-plaintext or (adaptive) chosen-ciphertext attacks (IND-CPA, IND-CCA, NM-CPA, NM-CCA)

Secure: The composite encryption scheme is secure, assuming:

 The component encryption scheme is IND-CPA secure and the base MAC scheme is UF-CMA (Unforgeable under chosen-message attack) secure

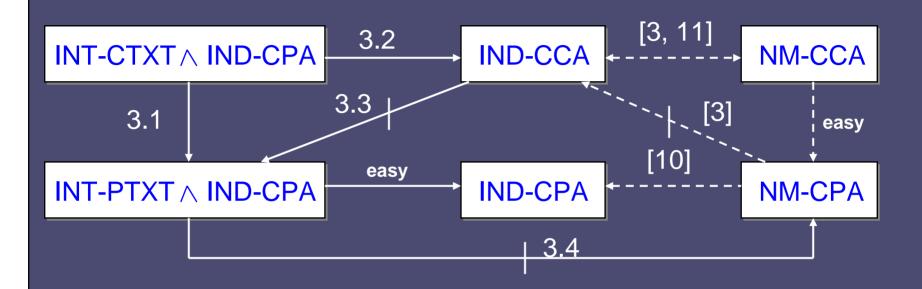
Insecure: The composite scheme is insecure:

 The exists some IND-CPA secure symmetric encryption and some MAC UF-CMA such that the composite scheme based on them does not meet the security requirement in question

Generic Composition Results: Benefits

- Any pseudorandom function is a strongly unforgeable MAC, and most practical MACs seem to be strongly unforgeable.
 - Therefore, analyzing the composition methods under this notion is a realistic and useful approach
- The use of a generic composition method secure in the above sense is advantageous from both performance and of security architecture point of view.
 - The performance benefit arises from the presence of fast MACs such as HMAC and UMAC.
 - The architectural benefits arise from the stringent notion of security being used. To be secure, the composition must be secure for all possible secure instantiations of its constituent primitives. (If it is secure for some instantiations but not others, we declare it insecure.)
 - An application can thus choose a symmetric encryption scheme and a message authentication scheme independently and then appeal to some fixed and standard composition technique to combine them.
 - No tailored security analysis of the composed scheme is required.

Relations among Notions



- INT-PTXT Integrity of Plaintext
- INT-CTXT Integrity of Ciphertext
- IND-CPA Indistinguishability of Chosen-Plaintext Attack
- IND-CCA Indistinguishability of Chosen-Ciphertext Attack
- NM-CPA Non-malleability of Chosen-Plaintext Attack
- NM-CCA Non-malleability of Chosen-Ciphertext Attack

Definition: Indistinguishability of SES

Informally, two different messages cannot be distinguished

$$\begin{split} & \text{Experiment } \mathbf{Exp}_{\mathcal{S\mathcal{E}}, A_{\text{cpa}}}^{\text{ind-cpa-b}}(k) \\ & K \stackrel{R}{\leftarrow} \mathcal{K}(k) \\ & x \leftarrow A_{\text{cpa}}^{\mathcal{E}_{\mathcal{K}}}(\mathcal{LR}(\cdot, \cdot, b))}(k) \\ & \text{Return } x \end{split} \\ & \text{Return } x \end{aligned} \\ \begin{array}{l} \text{Experiment } \mathbf{Exp}_{\mathcal{S\mathcal{E}}, A_{\text{cca}}}^{\text{ind-cpa-b}}(k) \\ & K \stackrel{R}{\leftarrow} \mathcal{K}(k) \\ & x \leftarrow A_{\text{cca}}^{\mathcal{E}_{\mathcal{K}}}(\mathcal{LR}(\cdot, \cdot, b)), \mathcal{D}_{\mathcal{K}}(\cdot)}(k) \\ & \text{Return } x \end{aligned} \\ \begin{array}{l} \text{Adversary} \\ \text{Adversary} \\ \text{Adversary} \\ \text{Adversary} \\ \text{Advantages} \end{aligned} \\ & \text{Adversary} \\ \text{Adversary} \\ & \text{Adversary} \\ &$$

time-complexity t, $E_K(LR(;;b))$ encryption oracle, q_e queries, μ_e bits sum lengths, $D_K(.)$ decryption oracle, q_d queries, μ_e bits sum lengths

Definition: Non-malleability of SES

Informally, given the ciphertext, it must be impossible to generate a different ciphertext such that the respective plaintexts are "meaningfully" related.

Experiment $\mathbf{Exp}_{\mathcal{SE},A_{\text{cpa}}}^{\text{nm-cpa-}b}(k)$	Experiment $\mathbf{Exp}_{\mathcal{SE},A_{cca}}^{\text{nm-cca-}b}(k)$			
$K \xleftarrow{^R} \mathcal{K}(k)$	$K \stackrel{\scriptscriptstyle R}{\leftarrow} \mathcal{K}(k)$			
$(\vec{c}, s) \leftarrow A_{\text{cpa}_1}^{\mathcal{E}_K(\mathcal{LR}(\cdot, \cdot, b))}(k)$	$(\vec{c}, s) \leftarrow A_{\text{cca}_1}^{\mathcal{E}_K(\mathcal{LR}(\cdot, \cdot, b)), \mathcal{D}_K(\cdot)}(k)$			
$ec{p} \leftarrow ec{\mathcal{D}}_K(ec{c})$	$\vec{p} \leftarrow \vec{\mathcal{D}}_K(\vec{c})$			
$x \leftarrow A_{\text{cpa}_2}(\vec{p}, \vec{c}, s)$	$x \leftarrow A_{\text{cca}_2}(\vec{p}, \vec{c}, s)$			
Return x	Return x			
$\mathbf{Adv}_{\mathcal{SE},A_{\text{cpa}}}^{\text{nm-cpa}}(k) = \Pr\left[\mathbf{Exp}_{\mathcal{SE},A_{\text{cpa}}}^{\text{nm-cpa-1}}(k) = 1\right] - \Pr\left[\mathbf{Exp}_{\mathcal{SE},A_{\text{cpa}}}^{\text{nm-cpa-0}}(k) = 1\right]$				
$\mathbf{Adv}_{\mathcal{SE},A_{\mathrm{cca}}}^{\mathrm{nm-cca}}(k) = \Pr\left[\mathbf{Exp}_{\mathcal{SE},A}^{\mathrm{nm-cc}}\right]$	$\operatorname{ca-1}_{\operatorname{cca}}(k) = 1 \left[-\Pr\left[\operatorname{\mathbf{Exp}}_{\mathcal{SE},A_{\operatorname{cca}}}^{\operatorname{nm-cca-0}}(k) = 1 \right] \right]$			
nm-(n)	nm=(n)			
$\mathbf{Adv}_{\mathcal{SE}}^{\mathrm{nm-cpa}}(k,t,q_e,)$	$\mu_e) = \max_{A_{\text{cpa}}} \{ \mathbf{Adv}_{\mathcal{SE}, A_{\text{cpa}}}^{\text{nm-cpa}}(k) \}$			
$\mathbf{Adv}_{\mathcal{SE}}^{\mathrm{nm-cca}}(k,t,q_e,q_d,\mu_e,\mu_e)$	$(\mu_d) = \max_{A_{\text{cca}}} \{ \mathbf{Adv}_{\mathcal{SE}, A_{\text{cca}}}^{\text{nm-cca}}(k) \}$			

Definition: Integrity of AES

Algorithm $\mathcal{D}_{K}^{*}(C)$			
If $\mathcal{D}_K(C) \neq \bot$, then return 1			
Else return 0.			
Experiment $\mathbf{Exp}_{\mathcal{SE},A_{\text{ptxt}}}^{\text{int-ptxt}}(k)$ $K \stackrel{R}{\leftarrow} \mathcal{K}(k)$ If $A_{\text{ptxt}}^{\mathcal{E}_{K}(\cdot),\mathcal{D}_{K}^{*}(\cdot)}(k)$ makes a query C to the oracle $\mathcal{D}_{K}^{*}(\cdot)$ such that $-\mathcal{D}_{K}^{*}(C)$ returns 1, and	Experiment $\mathbf{Exp}_{\mathcal{SE},A_{\mathrm{ctxt}}}^{\mathrm{int-ctxt}}(k)$ $K \stackrel{R}{\leftarrow} \mathcal{K}(k)$ If $A_{\mathrm{ctxt}}^{\mathcal{E}_{K}(\cdot),\mathcal{D}_{K}^{*}(\cdot)}(k)$ makes a query C to the oracle $\mathcal{D}_{K}^{*}(\cdot)$ such that $-\mathcal{D}_{K}^{*}(C)$ returns 1, and		
$-M \stackrel{\text{def}}{=} \mathcal{D}_K(C)$ was never a query to $\mathcal{E}_K(\cdot)$ then return 1 else return 0.	- C was never a response of $\mathcal{E}_K(\cdot)$ then return 1 else return 0.		
$\begin{aligned} \mathbf{Adv}_{\mathcal{SE},A_{\text{ptxt}}}^{\text{int-ptxt}}(k) &= \Pr\left[\mathbf{Exp}_{\mathcal{SE},A_{\text{ptx}}}^{\text{int-ptxt}}\right] \\ \mathbf{Adv}_{\mathcal{SE},A_{\text{ctxt}}}^{\text{int-ctxt}}(k) &= \Pr\left[\mathbf{Exp}_{\mathcal{SE},A_{\text{ctxt}}}^{\text{int-ctxt}}\right] \end{aligned}$	$k_{t}(k) = 1$		
$\mathbf{Adv}_{\mathcal{SE}}^{\text{int-ptxt}}(k, t, q_e, q_d, \mu_e, \mu_d) =$	$\max_{A_{\text{ptxt}}} \{ \mathbf{Adv}_{\mathcal{SE},A_{\text{ptxt}}}^{\text{int-ptxt}}(k) \}$		
$\mathbf{Adv}_{\mathcal{SE}}^{\text{int-ctxt}}(k, t, q_e, q_d, \mu_e, \mu_d) =$	$\max_{A_{\text{ctxt}}} \{ \mathbf{Adv}_{\mathcal{SE},A_{\text{ctxt}}}^{\text{int-ctxt}}(k) \}$		

Definition: MAC Scheme Security

Experiment
$$\operatorname{Exp}_{\mathcal{MA},F_{w}}^{\operatorname{wuf}-\operatorname{cma}}(k)$$

 $K \stackrel{R}{\leftarrow} \mathcal{K}(k)$
If $F_{w}^{\mathcal{T}_{K}(\cdot),\mathcal{V}_{K}(\cdot,\cdot)}(k)$ makes a query (M,σ)
to the oracle $\mathcal{V}_{K}(\cdot,\cdot)$ such that
 $-\mathcal{V}_{K}(M,\sigma)$ returns 1, and
 $-M$ was never queried to
the oracle $\mathcal{T}_{K}(\cdot)$,
then return 1 else return 0.

We define the *advantages* of the forgers via

Experiment $\operatorname{Exp}_{\mathcal{MA},F_{s}}^{\operatorname{suf-cma}}(k)$ $K \stackrel{R}{\leftarrow} \mathcal{K}(k)$ If $F_{s}^{\mathcal{T}_{K}(\cdot),\mathcal{V}_{K}(\cdot,\cdot)}(k)$ makes a query (M,σ) to the oracle $\mathcal{V}_{K}(\cdot,\cdot)$ such that $-\mathcal{V}_{K}(M,\sigma)$ returns 1, and $-\sigma$ was never returned by the oracle $\mathcal{T}_{K}(\cdot)$ in response to query M, then return 1 else return 0.

$$\mathbf{Adv}_{\mathcal{M}\mathcal{A},F_{w}}^{\text{wuf-cma}}(k) = \Pr\left[\mathbf{Exp}_{\mathcal{M}\mathcal{A},F_{w}}^{\text{wuf-cma}}(k) = 1\right]$$
$$\mathbf{Adv}_{\mathcal{M}\mathcal{A},F_{s}}^{\text{suf-cma}}(k) = \Pr\left[\mathbf{Exp}_{\mathcal{M}\mathcal{A},F_{s}}^{\text{suf-cma}}(k) = 1\right]$$

We define the advantage functions of the scheme as follows. For any integers $t, q_t, q_v, \mu_t, \mu_v$,

$$\mathbf{Adv}_{\mathcal{M}\mathcal{A}}^{\text{wuf-cma}}(k, t, q_t, q_v, \mu_t, \mu_v) = \max_{F_w} \{ \mathbf{Adv}_{\mathcal{M}\mathcal{A}, F_w}^{\text{wuf-cma}}(k) \}$$
$$\mathbf{Adv}_{\mathcal{M}\mathcal{A}}^{\text{suf-cma}}(k, t, q_t, q_v, \mu_t, \mu_v) = \max_{F_s} \{ \mathbf{Adv}_{\mathcal{M}\mathcal{A}, F_s}^{\text{suf-cma}}(k) \}$$

MAC: Theorem: SUF-CMA → WUF-CMA

 $\mathbf{Adv}_{\mathcal{M}\mathcal{A}}^{\mathrm{wuf-cma}}(k, t, q_t, q_v, \mu_t, \mu_v) \leq \mathbf{Adv}_{\mathcal{M}\mathcal{A}}^{\mathrm{suf-cma}}(k, t, q_t, q_v, \mu_t, \mu_v)$

<u>Proof</u>: A tag corresponding to new message is clearly a new tag for that message

 $\mathbf{Adv}_{\mathcal{MA},F_{\mathrm{w}}}^{\mathrm{wuf-cma}}(k) \leq \mathbf{Adv}_{\mathcal{MA},F_{\mathrm{s}}}^{\mathrm{suf-cma}}(k)$

Associate Fw with WUF-CMA and Fs with SUF-CMA

Fs uses the same amount of resources as Fw does.

Set **Fs** to be exactly the same as **Fw**. Then, the theorem follows

Relations among Notions of Symmetric Encryption

Theorem 3.1 (INT-CTXT \rightarrow INT-PTXT)

$$\mathbf{Adv}_{\mathcal{SE}}^{\mathrm{int-ptxt}}(k, t, q_e, q_d, \mu_e, \mu_d) \leq \mathbf{Adv}_{\mathcal{SE}}^{\mathrm{int-ctxt}}(k, t, q_e, q_d, \mu_e, \mu_d)$$

<u>Proof</u>: This is true because an adversary that violates integrity of plaintexts of a scheme SE = (K, E, D) also violates integrity of ciphertexts of the same scheme

$$\mathbf{Adv}_{\mathcal{SE},A}^{\mathrm{int-ptxt}}(k) \leq \mathbf{Adv}_{\mathcal{SE},A'}^{\mathrm{int-ctxt}}(k)$$

Let C be winning query made by A to $D_{k}^{*}(.)$ such that it returns 1 but

$$M \stackrel{\mathrm{def}}{=} \mathcal{D}_K(C)$$

was never queried to the $E_k(.)$

A uses the same amount of resources as A' does. Set A' to be exactly the same as A. Then, the theorem follows

Encrypt-then-MAC

 $SE = (K_{e'}E,D)$ a symmetric encryption scheme $MA = (K_{m'}T,V)$ a MAC scheme $\overline{SE} = (K,\overline{E},\overline{D})$ a composite scheme

The composite scheme is defined as follows:

Algorithm $\overline{\mathcal{K}}(k)$	Algorithm $\overline{\mathcal{E}}_{\langle K_e, K_m \rangle}(M)$	Algorithm $\overline{\mathcal{D}}_{\langle K_e, K_m \rangle}(C)$
$K_e \stackrel{\scriptscriptstyle R}{\leftarrow} \mathcal{K}_e(k)$	$C' \leftarrow \mathcal{E}_{K_e}(M)$	Parse C as $C' \ \tau'$
$K_m \stackrel{\scriptscriptstyle R}{\leftarrow} \mathcal{K}_m(k)$	$\tau' \leftarrow \mathcal{T}_{K_m}(C')$	$M \leftarrow \mathcal{D}_{K_e}(C')$
Return $\langle K_e, K_m \rangle$	$C \leftarrow C' \ \tau'$	$v \leftarrow \mathcal{V}_{K_m}(C', \tau')$
· 94 · 1220 ·	$\texttt{Return}\ C$	If $v=1, {\tt return} \; M$
		else return \perp .

Encrypt-then-MAC

Security		Weak MAC		Strong MAC		
		Result	Reason	Result	Reason	
	IND-CPA	Secure	Theorem 4.7	Secure	Theorem 4.9	
Privacy	IND-CCA	Insecure	NM-CPA insecure and NM-CPA \rightarrow IND-CCA	Secure	Theorem 4.9	
	NM-CPA	Insecure	Proposition 4.6	Secure	IND-CCA secure and IND-CCA \rightarrow NM-CPA	
	INT-PTXT	Secure	Theorem 4.7	Secure	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Integrity	INT-CTXT	Insecure	IND-CPA \models secure and NM-CPA insecure and INT-CTXT \land IND-CPA \rightarrow NM-CPA	Secure	Theorem 4.9	

Summary of results for the Encrypt-then-MAC composition method

Meadows' Classification of Analysis Techniques

Type I

 models and verifies protocols using specification languages and verification tools not specifically developed for the analysis of cryptographic protocols, e.g., CSP and FDR

• Type II

 uses expert systems to create and examine different scenarios that enable protocol designers to draw conclusions about the security of the protocols being studied, e.g., ProtSpec (Snekkenes') HOL based system

• Type III

 models requirements of a protocol family using logics developed specifically for the analysis of knowledge and belief, e.g., BAN

• Type IV

- develops a formal model based on the algebraic term-rewriting properties of cryptographic systems (Can an initial state lead to an undesirable state?), e.g., NRL (Naval Research Lab) Protocol Analyzer
- Type V (an extension by a master student)
 - proves security via a complexity-theoretic approach, e.g., Bellare-Rogaway

Conclusions

Join in recommending: Use Encrypt-then-MAC

And

Thanks for your attention !

References

- M. Bellare and C. Namprempre, "Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm", Asiacrypt 2000.
 - http://www-cse.ucsd.edu/users/mihir/papers/oem.pdf
- Chanathip Namprempre's Home page
 - <u>http://www.cs.ucsd.edu/~cnamprem/</u>
- Peter Guttman's tutorial: about 500 slides covering cryptography, secure connection protocols, PKI, politics and what have you
 - http://www.cs.auckland.ac.nz/~pgut001/tutorial/
- Modes of Operation for Symmetric Block Ciphers and for authenticated Encryption
 - <u>http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/</u>