


# **CO<sub>2</sub> Storage**

## An overview



Note no Authors Date

#### SAND/18/10

Heidi Kjønsberg Anne Randi Syversveen December 2010

© Copyright: Norsk Regnesentral



#### About the authors

Heidi Kjønsberg and Anne Randi Syversveen are senior research scientists at Norwegian Computing Center.

#### **Norsk Regnesentral**

Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-profit foundation established in 1952. NR carries out contract research and development projects in the areas of information and communication technology and applied statistical modelling. The clients are a broad range of industrial, commercial and public service organizations in the national as well as the international market. Our scientific and technical capabilities are further developed in co-operation with The Research Council of Norway and key customers. The results of our projects may take the form of reports, software, prototypes, and short courses. A proof of the confidence and appreciation our clients have for us is given by the fact that most of our new contracts are signed with previous customers.

Norsk Regnesentral Norweglan Computing Center Postboks 114, Blindern NO-0314 Oslo, Norway Besøksadresse Office address Gaustadalléen 23 NO-0373 Oslo, Norway Telefon · telephone (+47) 22 85 25 00 Telefaks · telefax (+47) 22 69 76 60 internett • internet www.nr.no E-post • e-mail nr@nr.no

#### Title

## CO<sub>2</sub> Storage

AuthorsHeidi Kjønsberg and Anne Randi SyversveenQuality assuranceDateDateDecemberYear2010Publication numberSAND/18/10

#### Abstract

This note is a brief introduction to why, where and how to store CO<sub>2</sub>.

Figure on front page is taken from CARBON DIOXIDE CAPTURE AND STORAGE, Intergovernmental Panel on Climate Change (IPCC) Special Report (2005).

| Keywords        |                    |
|-----------------|--------------------|
| Target group    |                    |
| Availability    | Open               |
| Project number  |                    |
| Research field  | CO <sub>2</sub>    |
| Number of pages | 16                 |
| © Copyright     | Norsk Regnesentral |

NR€ 3

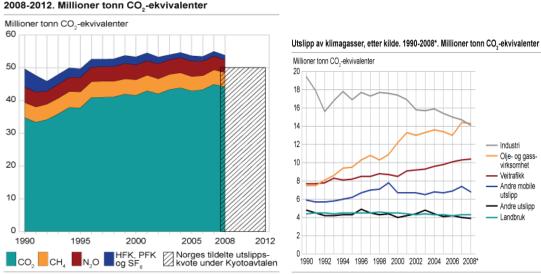
# Contents

| 1 | Intro      | duction                               | 7 |  |  |  |
|---|------------|---------------------------------------|---|--|--|--|
| 2 | Basic      | cs on $CO_2$ emission                 | 7 |  |  |  |
|   | 2.1        | CO <sub>2</sub> monitoring            | 8 |  |  |  |
|   | 2.2        | CO <sub>2</sub> physical properties   | 8 |  |  |  |
| 3 | Exist      | ing storage programs around the world | 9 |  |  |  |
| 4 | Stora      | ge life cycle 1                       | 2 |  |  |  |
|   | 4.1        | Storage site characteristics 1        | 2 |  |  |  |
|   | 4.2        | CO <sub>2</sub> trapping mechanisms1  | 3 |  |  |  |
| 5 | Moni       | toring methods1                       | 3 |  |  |  |
| 6 | Open       | ) issues 1                            | 5 |  |  |  |
| 7 | References |                                       |   |  |  |  |

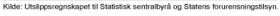


# 1 Introduction

Geological storage of CO<sub>2</sub> is a technology for reducing the rate with which anthropogenic CO<sub>2</sub> is emitted into the atmosphere, and thereby mitigate the amount of greenhouse gases and limit the rise in global temperatures. Geological storage aims at being a bridging technology on the road towards widespread use of renewable energy resources and other sustainable technologies. It should not serve as a means to continue the high use of fossil fuels [1].


The idea is to inject CO<sub>2</sub> into underground storage sites and make sure it stays there for the unforeseeable future. This raises concerns and challenges on many different levels, such as what are appropriate storage sites, how to capture, transport, and inject the CO<sub>2</sub>, how to ensure it stays underground, how to ensure the storage does not have unwanted consequences.

This note provides a limited overview of some aspects related to CO<sub>2</sub> storage. For selected topics, such as monitoring, we provide more in-depth information for specific cases. The note does not discuss CO<sub>2</sub> capture and transport. Our main concerns are related to the petroleum industry, and not with for instance coal beds.


# 2 Basics on CO<sub>2</sub> emission

Anthropogenic CO<sub>2</sub> is presently emitted at an annual rate of around 10 gigatons [2]. Important sources are combustion of coal, oil, and natural gas; and also cement manufacturing, fertilizer plants, petrochemical industry, and industry gas contribute significantly.

The annual Norwegian emittance of greenhouse gases for the years 1990 through 2008 is shown in Figure 1, taken from [3]. In 2008 CO<sub>2</sub> contributed with close to 45 million tons.



Utvikling i klimagassutslipp 1990-2008\* og utslippskvote 2008-2012. Millioner tonn CO<sub>2</sub>-ekvivalenter



Kilde: Utslippsregnskapet til Statistisk sentralbyrå og Statens forurensningstilsyn



To put numbers into even finer perspective:

- Statistics Norway (Statistisk Sentralbyrå) reports that the annual Norwegian CO<sub>2</sub> emittance from private cars and other light vehicles in 2007 was roughly 7.3 million tons [3].
- According to <u>http://www.carpages.co.uk/co2/</u> the average CO<sub>2</sub> emission from a car in the UK is 173 g/km. Hence a car that drives 10,000 km a year has an annual emittance rate of 1.73 tons CO<sub>2</sub>.

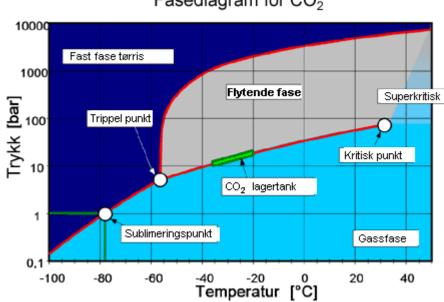
## 2.1 CO<sub>2</sub> monitoring

CO<sub>2</sub> is normally not toxic to living organisms. The amount of CO<sub>2</sub> in the atmosphere is slightly lower than 0.04%, and a small leakage from a geological storage would normally not be hazardous. Large CO<sub>2</sub> concentrations do however imply real danger; in a meeting room a fraction of 1% makes us feel drowsy and uncomfortable, while a concentration of 8% is life threatening. Life threatening concentrations can be reached if CO<sub>2</sub> is trapped in for instance deep, not-aired valleys. Hence it is imperative to ensure that leakage from geological storage will never give high concentrations in air, not even locally. There are two main reasons for also wanting to prevent smaller, non-hazardous leaks through the earth's crust:

- The public opinion and general feel of safety demands operators to ensure leakage does not happen;
- From an environmental perspective the whole point about geological storage is to prevent CO<sub>2</sub> from entering the atmosphere.

Furthermore, for onshore storage it is also important to ensure that injected CO<sub>2</sub> does not affect the ground water resources. If CO<sub>2</sub> leaks into drinking water reservoirs it may cause leaching, release, and mobilization of contaminants such as arsenic, lead, and organic compounds, or degrade water quality by forcing saltier formation fluid into the reservoir [4].

It is obvious that proper control, such as site characterization and monitoring, of geologically stored CO<sub>2</sub> is a strongly advisable ingredient of any storage project. Two more aspects make sound control paramount as CO<sub>2</sub> capture and storage increasingly gain interest from the society:


- Legal regulations for CO<sub>2</sub> storage already exist, for instance in the European Union [1], and there is no reason to believe regulation requirements will be lessened in the future;
- Commercial interests, for instance trade of emission quotas, will increasingly demand reliable monitoring programs.

#### 2.2 CO<sub>2</sub> physical properties

The melting point of CO<sub>2</sub> is -78°C (sublimation), and the boiling point is -57°C, both for a pressure of 1 bar. Source: <u>http://en.wikipedia.org/wiki/Carbon\_dioxide</u>. The phase diagram of CO<sub>2</sub> (Figure 2) shows that the critical point is at 73.8 bar<sup>i</sup> and 31.1 °C. These temperature and pressure values often correspond to physical conditions at injection point. Near the critical point a small change in temperature has a huge impact on density. For this reason the density is

<sup>&</sup>lt;sup>i</sup> 1 bar = 10<sup>5</sup> Pa = 10<sup>5</sup> N/m<sup>2</sup>. 1 bar is roughly equal to the atmospheric pressure on Earth at sea level.

hard to monitor, and thus it is difficult to be very precise on mass monitoring. CO<sub>2</sub> is highly compressive [5], and hence a large change in seismic velocity will often be expected.



Fasediagram for CO<sub>2</sub>

#### Existing storage programs around the world 3

There are several modes of geological storage of CO<sub>2</sub>:

- Depleted gas and oil reservoirs
- Deep saline aquifer formations
- Enhanced Oil Recovery •
- Coalbed formations •

There are two purposes for geological storage of CO<sub>2</sub>. One is for enhanced oil recovery, where CO<sub>2</sub> is pumped into the reservoir to be able to get more oil out. The other purpose is storage for environmental reasons, to reduce  $CO_2$  emitted to the atmosphere. The Sleipner field was the first place with CO2 storage for environmental reasons. The Utsira formation, used for CO2 storage at the Sleipner field, is a deep saline aquifer formation.

Depleted reservoirs are readily available storage sites because they are thoroughly characterized, with large amounts of data being available. They often offer suitable pressure regimes for CO<sub>2</sub> injection and storage, and there are already existing wells.

Figure 2: CO<sub>2</sub> phase diagram.

Deep saline formations are promising for storage because they are larger than depleted reservoirs, and they are often located above or below known oil or gas reservoirs. The site characterization methods are similar to those for oil and gas reservoirs.

In Figure 3, planned and current locations for CO<sub>2</sub> storage are shown in a map. For some selected sites, Table 1 provides more information.

There are also projects on so-called Enhanced Coal Bed Methane recovery (ECMR), the use of CO<sub>2</sub> to enhance the recovery of the methane present in unminable coal beds through the preferential adsorption of CO<sub>2</sub> on coal. Examples of such projects are Frio (USA), Fenn Big Valley (Canada), Quinshui Basin (China), Yubari (Japan), and Recopol (Poland).

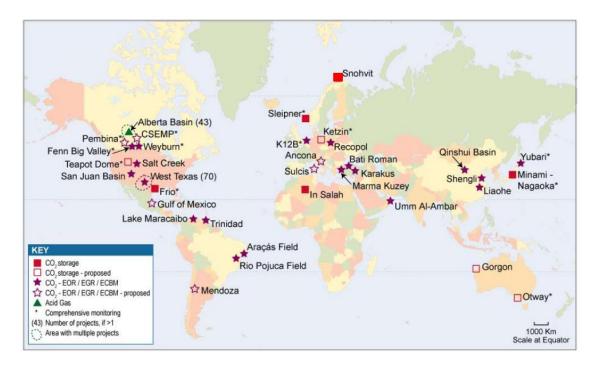



Figure 3: Planned and current locations for geological storage. From [6].

Table 1 Detailed information for some selected CO<sub>2</sub> storage locations.

|           | Purpose                    | Start year                | Annual<br>storage /<br>Total<br>capacity<br>(million<br>tons) | Geological features        | Monitoring<br>techniques |
|-----------|----------------------------|---------------------------|---------------------------------------------------------------|----------------------------|--------------------------|
| Sleipner, | Gas production             | Gas                       | 1 / 600,000                                                   | Saline aquifer. The Utsira | Seismic (1994,           |
| Norway    | from Ty                    | production                | in all of                                                     | formation is a long,       | 1999, 2001,              |
|           | formation, CO <sub>2</sub> | from 1993,                | Utsira <sup>ii</sup> .                                        | narrow sand stone, 800-    | 2002, 2004,              |
|           | separated out              | CO <sub>2</sub> injection | Planned                                                       | 1100 m bsl, capped by 200- | 2006, 2009?);            |
|           | and injected into          |                           | storage is 20                                                 | 300 m shale, and water     | gravity (2002,           |

<sup>ii</sup> This corresponds to 600 years of the current CO<sub>2</sub> emission rate from all of Europe's gasworks; 1000 MT per year.

| In Salah [7],<br>Algeria                  | the higher lying<br>Utsira formation.<br>(Statoil)<br>Gas production,<br>separating out<br>and reinjecting<br>CO <sub>2</sub> for storage.<br>(BP, Sonatrach,<br>Statoil) | from 1996<br>2004        | million<br>tons. | depth around 80 m.<br>Unconsolidated sand with<br>porosity 35-40%. Thin<br>intra- reservoir shales, 1 m<br>thick, 30 m vertical<br>separation. Injection point<br>1012 m bsl.<br>Deep saline downdip of<br>gas producing horizon: 20<br>meters sand stone interval,<br>1850 m below ground;<br>porosity 13-20 %;<br>permeability 10 mD.<br>Overburden: 950 m<br>mudstone + 900 m<br>sandstone/mudstone. | 2005); EM (?);<br>Seismic (1997,<br>2009); InSAR<br>(since 2004);<br>Also tracers;<br>well head<br>preassure; well<br>head fluid<br>samples |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Snøhvit,<br>Norway                        | CO <sub>2</sub> extracted<br>from produced<br>gas and injected<br>into a formation<br>deeper than the<br>gas reservoir.<br>(Statoil)                                      | 2008                     | 0.7 /<br>unknown | Storage in saline aquifer in<br>the sand formation<br>Tubåen, at 2600 m bsl. A<br>shale cap rock prevents<br>the CO2 from moving to<br>the surface.                                                                                                                                                                                                                                                     |                                                                                                                                             |
| Weyburn,<br>Canada                        | CO2 is<br>transported from<br>North Dakota,<br>USA, to<br>Saschatchewan,<br>Canada and used<br>for Enhances Oil<br>Recovery<br>combined with<br>storage.                  | 2000                     | 1.8 / 20         |                                                                                                                                                                                                                                                                                                                                                                                                         | Oil reservoir<br>(EOR)                                                                                                                      |
| Gorgon,<br>Australia                      |                                                                                                                                                                           | 2009<br>(started?)       | 3.5 /<br>unknown | Saline aquifer                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |
| Longyearbyen,<br>Svalbard                 | Pilot project<br>aiming at making<br>Longyearbyen<br>CO2 neutral (coal<br>mines and energy<br>plant).                                                                     |                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |
| Stogit's<br>Cortemaggiore<br>field, Italy | Current Eni-<br>Stogit system is<br>underground<br>storage of natural<br>gas, but the<br>Cortemaggiore is<br>planned to be a<br>CO2 injection                             | Monitoring<br>since 2002 |                  | Eni-Stogit consists of eight<br>fields, 1000-1500 m, sealed<br>by shale.<br>High operating pressures<br>desired for the natural gas<br>storage, mentioned<br>numbers are 159-180 bar,                                                                                                                                                                                                                   | Pressure data,<br>microgravity,<br>seismic, ++                                                                                              |

|                                    | pilot project (CO2<br>as cushion gas<br>during storage of<br>natural gas)                                                                 |                                                   | but not clear of these are<br>the pressures the CO <sub>2</sub> will<br>be exposed to.                                                 |                                                                                 |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Vacuum field,<br>New Mexico<br>[7] | Classic HC<br>production area,<br>with CO <sub>2</sub><br>injection for<br>tertiary recovery                                              | Discovered<br>1929. CO2<br>injection<br>from 1990 | Carbonate formation at<br>1500 m. Many faults, poor<br>lateral and vertical<br>connectivity. Porosity 5-20<br>%, permeability 5-100 mD | Multi-<br>component<br>seismic                                                  |
| Prudhoe Bay,<br>Alaska [7]         | Enormous oil<br>field, with water<br>injection into gas<br>cap. Valuable<br>analog for CO <sub>2</sub><br>injection into<br>saline water. | 1977. Water<br>injection<br>from 2002             | Sandstone at 2750 m,<br>overlain by<br>shale/mudstone. Porosity<br>18-28 %, permeability 450<br>mD.                                    | Gravity<br>(baseline in<br>2002 and 2003;<br>yearly<br>monitoring<br>from 2005) |

# 4 Storage life cycle

CO2 capture and storage projects are divided in four phases [7]:

- Site selection and development (3 10 years).
- Operation (over decades). This period includes the entire period of gas injection, plus some years of additional monitoring.
- Closure (over years). Begins when monitoring indicates that injected CO<sub>2</sub> is wellmanaged. Most wells are plugged and infrastructure is removed.
- Post-closure. The operator is no longer involved.

The risk associated with injected CO<sub>2</sub> is not constant with time. The probability of leakage increases as volumes and subsurface pressure increase and this requires close monitoring during the operation phase. The most effective way to minimize risk is to start with wisely chosen storage sites.

#### 4.1 Storage site characteristics

Three elements are essential to consider CO<sub>2</sub> storage in a location:

- Sufficient pore volume to store all the gas.
- An overlying sealing to ensure containment.

• Injection from the wellbore must be possible.

The depth should be below 800-1000m, where CO<sub>2</sub> is compressed to a dense phase. This enhances both capacity and containment ability. The pore volume available for containment depends on formation thickness, porosity, density of CO<sub>2</sub> and storage efficiency (fraction of pore volume actually saturated with CO<sub>2</sub>). Containment depends on geometry and distribution of rocks and pressure systems that avoid fluid to flow in the subsurface. Injectivity depends on permeability.

## 4.2 CO<sub>2</sub> trapping mechanisms

When CO<sub>2</sub> is injected in a reservoir, the pores are being filled. In most cases the pores were already filled with water, which is then replaced by CO<sub>2</sub>.

A number of different trapping mechanisms exist:

- Structural trapping accumulation under cap rock. This is the most important mechanism.
- CO<sub>2</sub> residual gas trapping. Pores are so small that CO<sub>2</sub> can not move upwards.
- Geochemical trapping mechanisms CO<sub>2</sub> reacts with natural fluids and minerals and leads to permanent storage of CO<sub>2</sub> in the subsurface.

At Utsira it is expected that geochemical reaction between CO<sub>2</sub> and the sand stone will be rather limited, but it may react stronger with the intra-reservoir mudstones layers [8].

# 5 Monitoring methods

Monitoring is done to verify that storage is working as expected. Successful monitoring depends on selecting the right tool for the job.

Table 2 and Table 3 give an overview of important monitoring techniques for detecting seal integrity, fault integrity, well integrity, ground movement and/or leakage of saline fluids. The two tables refer to the use of (near) surface methods and monitoring wells, respectively, and are taken from [9]. In addition, well integrity can be monitored by various injection well monitoring techniques, while pressure and chemical sniffers can be buried above top-seal and used to detect pressure increase and CO<sub>2</sub> concentrations above some threshold.

|                       | Seal integrity             | Fault<br>integrity | Well integrity      | Ground<br>movement | Leakage of saline fluids |
|-----------------------|----------------------------|--------------------|---------------------|--------------------|--------------------------|
| Time-lapse<br>seismic | Gas pocket<br>detection    | Gas chimney        |                     | Not likely         | Not likely               |
|                       |                            |                    | Only                |                    |                          |
| Time-lapse            | Anomalies in<br>overburden | Possibly gas       | accumulations<br>at | Possible           |                          |

Table 2 Monitoring techniques, (near) surface methods.

| gravity                                     | (low<br>resolution)                                          | chimneys                       | intermediate<br>levels |              |                          |
|---------------------------------------------|--------------------------------------------------------------|--------------------------------|------------------------|--------------|--------------------------|
| Time-lapse<br>EM                            | Anomalies in<br>shallow<br>overburden<br>(low<br>resolution) | Not likely                     | _                      | _            | Possibly very<br>shallow |
| Concentration<br>measurements<br>(sniffers) |                                                              |                                | _                      | _            |                          |
| Flux<br>measurements                        | Only when s                                                  | eafloor is reached<br>location | _                      | _            |                          |
| Isotop<br>contents                          |                                                              |                                | _                      | _            |                          |
| Groundwater<br>samples                      | Only when ac                                                 | luifer below seafle            | _                      |              |                          |
| InSar<br>(onshore<br>only)                  | _                                                            | _                              | _                      | Only onshore | _                        |

Table 3 Monitoring techniques, monitoring wells.

|                        | Seal integrity                                                | Fault<br>integrity                                  | Well integrity                                        | Ground<br>movement     | Leakage of saline fluids                              |
|------------------------|---------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|------------------------|-------------------------------------------------------|
| Offset VSP             | Gas pocket<br>detection                                       | Gas chimney                                         | Only<br>accumulations<br>at<br>intermediate<br>levels | _                      | _                                                     |
| Cross-well<br>seismics | Gas pocket<br>detection                                       | Gas chimney                                         | Anomalies in first arrivals                           | _                      | _                                                     |
| Cross-well<br>EM       | Gas pocket<br>detection (low<br>resolution)                   | Possibly gas<br>chiemney<br>detection as<br>anomaly | _                                                     | _                      | Possibly<br>changes in<br>signal (not<br>very likely) |
| Microseismic           | In case the<br>seal is<br>fractured by<br>the CO <sub>2</sub> | In case of fault<br>(re-)activation                 | -                                                     | Yes (if<br>detectable) | _                                                     |

|                                                                       | pressure                                                  |                       |                                                           |   |                                                 |
|-----------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------|---|-------------------------------------------------|
| Pressure<br>(BHP)                                                     | Anomaly in behaviour indicates leakage                    |                       |                                                           | _ | Anomaly in<br>behaviour<br>indicates<br>leakage |
| DTS or<br>repeated<br>Temp-logging                                    |                                                           |                       |                                                           | _ | -                                               |
| Fluid Ph (BH)                                                         | Only when measured above the seal                         |                       | _                                                         | _ | _                                               |
| CO2 detection<br>(neutron,<br>resistivity,<br>gravity,<br>accoustic,) | In the near-<br>well region<br>measured<br>above the seal | _                     | In the near-<br>well region<br>measured<br>above the seal | _ | _                                               |
| Fluid<br>sampling                                                     |                                                           | sured above the<br>al | _                                                         | - | Only when<br>measured<br>above the seal         |

# 6 Open issues

The lack of uncertainty modeling reported in [10] is a key problem that has not yet been resolved. From [10] "...This demonstrates the resolving power of this technique assuming there is uncertainty only in the gravity; however, there are unaccounted for uncertainties in the modeling, which arise from uncertainties in the seismic data, uncertainties in determining CO<sub>2</sub> saturation from seismic pushdown, and unknown flow geometry from 2002 to 2005."

# 7 References

[1] EU Directive. Directive 2009/31/EC of the European Parliament and of the Council of 23 April 2009 on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0114:0135:EN:PDF (Feb. 4, 2010)

[2] L.S. Melzer and T.L. Davis. A pragmatic look at carbon capture and storage: from global issues to the technical details. First Break, 28, 85-90, 2010.

[3] Statistisk Sentralbyrå, Statistics Norway. http://ssb.no/emner/01/04/10/klimagassn (Feb. 4, 2010).

[4] D. Jackson. *How injection well regulation is planned for CO2 sequestration in the US.* First Break, 28, 97-101, 2010.

[5] O. Eiken, I. Brevik, R. Arts, E. Lindeberg, K. Fagervik. *Seismic monitoring of CO2 injected into a marine aquifer*. SEG International conference and 70th Annual meeting, Calgary, 2000.

[6] O. Eiken. *Geophysical challenges in monitoring of the Sleipner CO2 storage*. Presentation at Sound of Geology, Bergen, May 6, 2009.

[7] Cal Cooper, ed. A Technical Basis For Carbon Dioxide Storage. CO2 Capture Project, 2009.

[8] R.A. Chadwick, R. Arts, and O. Eiken. *4D seismic quantification of a growing CO2 plume at Sleipner, North Sea.* In A.G. Doré, B.A. Vining (eds.), Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6<sup>th</sup> Petroleum Geology Conference, 1385-1399. 2005.
[9] R. Arts, F. Neele, and V. Vandeweijer. *Monitoring underground CO2 storage.* In CO2 Capture and Storage, TNO-report TNO-034-UT-2009-02240/A, TNO Built Environment and Geosciences, The Netherlands, 2009.

[10] S. Nooner, O. Eiken, C. Hermanrud, G. Sasagawa, T. Stenvold, and M. Zumberge. *Constraints on the in situ density of CO2 within the Utsira formation from time.lapse seafloor gravity measurements*. Int. J. of Greenhouse Gas Control, 1, 2007, 198-214.