
Project Number:33826

CREDO

Modeling and Analysis of Evolutionary
Structures for Distributed Services

Deliverable D6.3
Final Modelling

Due Date: 01-07-2009
Submission Date: 31-06-2009

Start date of project: 01-09-2006 Duration: 3 years

Lead Participant: Almende Revision: Draft

Project funded by the European Commission
within the Sixth Framework Programme (2002-2006)

Dissemination Level: PU Public

Project Participants

Role No Name Acronym Country

CO 1 Stichting Centrum voor Wiskunde CWI NL
en Informatica

CR 2 Universitetet i Oslo UIO N

CR 3 Christian-Albrechts-Universität CAU DE
zu Kiel

CR 4 Dresden University of Technology TUD DE

CR 5 Uppsala Universitet UU S

United Nations University,
CR 6 International Institute for UNU-IIST JP

Software and Technology

CR 7 Almende B. V. ALMENDE NL

CR 8 Rikshospitalet - Radiumhospitalet HF RRHF N

CR 9 Norsk Regnesentral NR N

C0 = Coordinator CR = Contractor
NL = Netherlands N = Norway
DE = Germany S = Sweden
JP = Japan

2

Principal Contributors:

Names Affiliation

Wolfgang Leister NR

Xuedong Liang RRHF

Andries Stam Almende

Sascha Klüppelholz TUD

Mahdi Jaghoori CWI

3

Contents
1 Introduction 5

2 Case study 1: The ASK System 6
2.1 Final Models . 7
2.2 Relation with Requirements . 16
2.3 Lessons Learnt and Conclusion 17

3 Case study 2: Biomedical sensor networks 19
3.1 Final Models . 19
3.2 Relation with Requirements . 21
3.3 Lessons Learnt and Conclusion 22

4

1 Introduction
In this deliverable, the final models for the case study systems ASK and BSN
are presented. As far as applicable, we have used the CREDO methodology to
structure the final modeling phase: The Creol language has been used to model
parts of the systems in terms of object-oriented Creol components, while Reo and
constraint automata have been used for modeling the networks. The resulting
models can be used directly in the forthcoming validation phase of the project
(D6.4), to validate whether the CREDO modeling, simulation, verification and
analysis tools meet the user driven requirements identified (See deliverable D6.1
and the Methodology Document).

Section 2 is devoted to the ASK system. We explain what has been modeled
and why, briefly present the final models (more details on them can be found
in the technical annexes provided with this deliverable), and comment on the
modeling trajectory and lessons learnt. In Section 3, we present the final models
for the BSN case study, which focus on different aspects of a biomedical sensor
network. We present a selection of models related to BSNbriefly, while the
details for each model are presented in Annex D6.3.3. Then we relate these
models to the requirements, and conclude with lessons learnt for this case study.

Live-CD
All models presented in Deliverable D6.3 and its annexes can be found on the
latest version of the Credo Live-CD. The Live-CD contains the tools and the
documentation necessary to view, execute and/or analyze the models.

5

2 Case study 1: The ASK System
Within the ASK case study, the final modeling exercise serves three different
purposes. Firstly, we gain more insight into the complexity of creating abstract
Credo models of concrete software. Secondly, we assess the quality and useful-
ness of the basic Credo languages (Creol and REO) and the Credo methodology.
Finally, the final models can directly be used for the testing and validation of
the Credo tool suite (Deliverable 6.4).

Overview of the ASK System

In order for the reader to understand the ASK final models and the notions
used in them, we first provide a short revised overview of the ASK system.

As we explained in Deliverable D6.2, the ASK system can be technically
divided into three parts: the web front-end, the database and the contact engine
(see Figure 1). The web front-end acts as a configuration dashboard, via which
typical domain data like users, groups, phone numbers, mail addresses, inter-
active voice response menus, services and scheduled jobs can be created, edited
and deleted. This data is stored in a database, one for each configuration of
ASK. The feedback of users and the knowledge derived from earlier established
contacts are also stored in this database. Finally, the contact engine consists
of a quintuple of components Reception, Matcher, Executer, Resource Manager
and Scheduler, which handle inbound and outbound communication with the
system and provide the intelligent matching and scheduling functionality.

The “heartbeat” of the contact engine is the Request loop, indicated with
thick arrows. Requests loop through the system until they are fully completed.
The Reception component determines which steps must be taken by ASK in
order to fulfil (part of) a request. The Matcher component searches for ap-
propriate participants for a request. The Executer component determines the
best way in which the participants can be connected. ASK clearly separates the
medium and resource independent request loop from the level of media-specific
resources needed for fulfilling the request, called connectoids (e.g., a connected
phone line, a sound file being played, an email being written, an SMS message
to be sent). The Resource Manager component acts as a bridge between these
two levels. Finally, a separate Scheduler component schedules requests based on
job descriptions in the database.

Each of the components in the contact engine of ASK is able to handle mul-
tiple requests “at the same time”, i.e. in an interleaved manner, as to adequately
support the real-time communication taking place via ASK. To this end, each
component implements a thread-pool. The threads in each thread-pool execute
tasks from a task queue, which correspond with e.g. the handling of an incoming
request or the execution of an outbound telephone call.

6

Contact Engine

Resource
Manager

Reception Matcher Executer Scheduler

phone
connec­

toids

email
connec­

toids

sms
connec­

toids

scheduler
connec­

toids

Domain
Data

file
connec­

toids

Web
Front­end

Figure 1: ASK System Overview

Section Organization

The setup of the rest of this section is as follows. We present an overview of
the final models in Section 2.1. After that, we indicate the relationship be-
tween the final modeling effort and the requirements set at the beginning of the
project in Section 2.2. Finally, we provide lessons learnt and draw conclusions
in Section 2.3.

2.1 Final Models
We have split the final modeling effort for Case Study 1 (ASK) into three “sub-
projects”: ReASK, CreASK and tASK.

In the ReASK project, which builds upon the initial modeling presented
earlier in Deliverable D6.2, we have focused on modeling the ASK system in
terms of a REO network at various levels of abstraction. At the lowest level of
abstraction, we modeled the components in terms of automata, which resemble
the initial model of ASK. The REO network and constraint automata have been
straightforwardly converted into RSL and CARML specifications for combined
verification with the Vereofy tool (see Deliverable D5.3).

7

In the CreASK project, we have focused on a specific part of the ASK core
system, namely the thread-pools, which are present in each of the components of
the system. We have used Creol to create object-oriented models of these thread-
pools at two different levels of “declarativeness”: in the first attempts to create
models, we sticked heavily to the implementation level and represented each
implementation construct explicitly in Creol. After careful analysis, we were
able to abstract away from the implementation level and to really use Creol as
a modeling language, to create a precise but abstract model of the ASK thread-
pools. An interesting exercise for the validation phase is to verify whether the
more abstract model is indeed a valid abstraction of the more concrete model.
With the Credo testing tool suite, we plan to validate the Creol models against
the real implementations in the ASK system.

Finally, in the tASK project, we have used the Creol models of the thread-
pools as a basis for timed automata models in UPPAAL. These latter models
can be used to assess the schedulability of a particular amount of tasks with
strict deadlines.

2.1.1 ReASK: REO Models of ASK

The entire set of REO models for the ASK system can be found in Annex D6.3.2.

The REO Models serve as a vehicle to assess reconfigurability of the ASK sys-
tem. By modeling the system in terms of REO circuits or networks, we are
forced to think about the system components in a purely compositional man-
ner and with pure exogenous coordination. By the modeling exercise itself, the
appropriate “building blocks” for reconfiguration almost automatically pop up
in the modeler’s mind.

REO Networks The most difficult part of the modeling exercise was to iden-
tify useful levels of abstraction. In the end, we found that the implementation of
ASK provides the right abstractions (we restricted ourselves to the ASK core,
the contact engine). We identified the following four levels of abstraction, of
which we used the upper three levels to model the ASK system.

• At the highest level of abstraction, the Context Level, we model the system
and components in their context (e.g. the database, the communication
with the outside world) as system parts within a small network.

• At a lower level, the System Level, we model the system as a network which
connects the five ASK components (executables or processes) to each other
and to the outer world (in terms of ports exposed by the system).

• A lower level, the Process Level, focuses on the organization within each
component. At this level, the network connects threads or shared variables
to each other, and the thread-pools within ASK are modeled explicitly.

8

• At the Thread Level, we zoom in onto a single thread within a process.
Now, control flow is purely sequential: the network implements low-level
control statements like if-then and while-do, connecting C functions to
each other.

• A lower Function Level is possible, zooming in on a specific function. This
level can even be applied recursively. In our model, we did not use this
level of abstraction.

We show two examples of REO networks. In Figure 2, a network at the
System Level is shown. Connections to the outer world are shown at the border
of the system: the database (DBIn, DBOut) and the Asterisk IAX telephony
communication channels (IAXIn, IAXOut). The five components in the system
are connected to each other by means of asynchronous channels between ports.
This highest level already shows possibilities for reconfiguration, like replication
of the Resource Manager, the creation of a single component which replaces the
Reception, Matcher and Executer, etc.

IAXInIAXOut

ASK CORE

DBIn DBOut

Matcher

RequestIn RequestOut

Executer

RequestIn RequestOut

Scheduler
Happiness

RequestOut

Happiness

ResponseIn

OutboundCall

RequestOut

Reception

RequestIn
Matcher

RequestOut

Executer

RequestOut

Resource

Manager

RequestIn
Reception

RequestOut

Happiness

ResponseOut

OutBoundCall

RequestIn

OutBoundCall

RequestOut

IAXInIAXOut

DBIn DBOut DBIn DBOut DBIn DBOut

DBIn DBOut

0,12,3

4,5

6,7

Figure 2: A REO network for the ASK System

9

A lower level of abstraction is shown in Figure 3. Here, the internals of the
Scheduler component are depicted. Within the Scheduler, individual threads are
shown: Main and SchedulerMonk(1-n). In addition, shared variables are explic-
itly represented: Job Queue and Happiness Value (details about their meaning
can be found in Annex D6.3.2). Note that the entire Scheduler component can
be directly combined with the highest-level model (the ports are compatible).

SCHEDULER

Job

Queue

DBIn DBOut

Main SchedulerMonk(1)

SchedulerMonk(n)

TaskOut

TaskIn

TaskOut

TaskIn

DBIn DBOut

DBIn DBOut

TaskOut

JobMutationOut

JobMutationOut

JobIn

Happiness

RequestOut

Happiness

ResponseIn

OutboundCall

RequestOut

Happiness

RequestOut

OutboundCall

RequestOut

Happiness

RequestOut

OutboundCall

RequestOut

Happiness

ResponseIn

Happiness

ResponseIn

Happiness

Value

hIn hOut

hIn hOut

hInhOut

JobMutationIn

4

5

Figure 3: A REO network for the ASK Scheduler component

All REO networks for the ASK system created in the ReASK project have
been drawn with a general-purpose drawing tool, instead of with the Eclipse
Coordination Tools Plugin and REO network editor. The primary reason for
this is that the current REO editor does not yet adequately support top-down
modeling – it is currently not possible to draw networks which contain abstract
component “types” for which no refined representation exists. Future versions of
the editor should support top-down modeling, since we are convinced that this
is a common and useful way of working, in line with the Credo methodology.
In addition, the drawing of complex REO networks is a tedious and error-prone
task.

10

Automata During the final modeling phase, we created the REO networks
from top to bottom, starting at the highest level of abstraction, continuously
refining “black boxes” in the models until we reach a level of abstraction which is
detailed enough for assessing reconfiguration. At the lowest level of abstraction,
we still keep black boxes, though. For these black boxes, we created abstract
behavioral models in terms of automata. An example is given in Figure 4,
showing an AsteriskChannel thread inside the Resource Manager component.
As can be seen, the automaton specifies in what order reads and writes on ports
happen, and with which values. We created similar models for the Drivers of
the model: the external entities which send and receive values to and from ports
DBIn, DBOut, IAXIn and IAXOut.

In Vereofy, these abstract behavioral models can be readily combined with
the REO networks to form an executable model of the ASK system. To this end,
the REO networks and automata have been converted into RSL and CARML
specifications. It turned out that this could be done straightforwardly. The
only important and more complicated issue was to establish of a useful and
abstract enough Data Domain: a specification of the range of values which may
be passed through the channels. The size of the data domain heavily determines
the size of the state space for the combined executable model. Also note that
the conversion to CARML and RSL had to be done completely manually, which
is in itself error-prone.

0
IAXIn?(NewCall,addr) cOut!(Store,addr,ThreadID)

1

ReceptionRequestOut!(HandleRequest,InBoundCall,addr)

IAXIn?(act,ThreadID)

fdIn?(Disconnect,ThreadID)

fdIn?(Action,ThreadID)

hOut!(Sad)

4

5

ReceptionRequestOut!(HandleRequest,act,addr)hOut!(Happy)

7

IAXOut!(Accept,ThreadID)
2

6

8

IAXOut!(Disconnect,ThreadID)

3

cOut!(Remove,ThreadID)

9

Figure 4: An automaton for the ASK Resource Manager AsteriskChannel

11

2.1.2 CreASK: Creol Models of Thread-Pools in ASK

All Creol models for the ASK thread-pools can be found in Annex D6.3.1.

The Creol Models serve as a vehicle to analyze the differences between various
types of thread-pools. By choosing a sufficient abstract level of modeling, the
essence of these differences becomes apparent and can be studied separately
from implementation-level distractions. Furthermore, the Credo testing tool
suite can be used to verify, to a certain extent, whether the implementation of a
thread-pool behaves according to its Creol model. At the same time, an abstract
Creol model of a thread-pool can be used as the basis for a (manually created)
corresponding UPPAAL model of that thread-pool, with which schedulability
analysis is possible (see Section 2.1.3.

Types of Thread-Pools in ASK In the ASK system, thread-pools are called
abbeys, the threads within the pool are called monks. Two types of abbeys are
currently in use, although many more have been created in the past at Almende:

• The so-called Determinate Abbey (Dabbey) uses a fixed amount of monks,
which get their tasks from a task array with an amount of “slots” equal
to the number of monks. The operation to put a task in an empty slot in
the task array blocks if no empty slot is available.

• Another type of abbey is the Self-scaling Abbey (Sabbey). This abbey uses
an infinite task queue and a variable amount of monks. Monks are created
and “poisoned” at run-time by a special monk called the shepherd, which
does so by keeping track of the ratio between the amount of tasks to be
handled and the amount of available monks.

Creol Models at a Low Level of Abstraction We started our modeling
exercise with creating models as if we were “programming” in Creol: our first
attempts to create Creol models of the two types of abbeys were heavily related
to implementation-specific (distracting) issues, like locks on global variables,
explicit tasks and explicit task queues, etc. Figure 5 shows a UML class diagram
of this Low-Level Creol model for the Determinate Abbey. Tasks and monks are
kept in explicit lists, and tasks are explicitly implemented. An array of tasks is
“mimicked” in Creol by using a list, an index for the list and a replace method to
replace values at a specific index in the list. The task list also contains methods
which correspond to primitive “test-and-set” operations.

Clearly, this Creol model does not abstract away from the implementation.
As such, it is not suitable for analyzing the essential differences between various
types of thread-pool, although it could serve as a reference model for a concrete
implementation in a programming language.

12

Figure 5: Class Diagram of the Low-Level Determinate Abbey in Creol

Creol Models at a High Level of Abstraction Throughout the modeling
exercise, we learnt how to use Creol as a real modeling language and how to
exploit the characteristics of its underlying execution and messaging model.
This resulted in considerably smaller and cleaner models at a higher level of
abstraction, better suited for analysis. The UML class diagram of the High-
Level Creol model is shown in Figure 6. Only the Dabbey and the monks are
modeled as explicit classes. The task queue (or task array) is implicitly modeled,
by exploiting the fact that each Creol object contains a message queue. The
size of this queue can be limited by means of a class variable nofTasks which
represents the number of tasks currently in the task queue. We have abstracted
away from the actual execution of tasks.

13

To give the reader an idea of the size of the models compared to the size of the
implementation, it is interesting to mention the amount of LoC (lines of code)
for the implementation of the Determinate Abbey, its low-level and its high-level
Creol model. The implementation in the ASK system consists of 188 lines of
C code, header files included. The size of the low-level Creol model, including
interfaces, is 178 lines, while the high-level Creol model consists of only 64 lines
(including interfaces). We also managed to create a Minimal Abbey (Mabbey)
specification, as the “mother” of all different versions of the abbey, consisting of
only 50 lines of Creol code for both classes and interfaces.

Figure 6: Class Diagram of the Abstract Determinate Abbey in Creol

2.1.3 tASK: UPPAAL Models of Thread-Pools in ASK

To model a thread-pool, we can take two approaches. At a higher level of
abstraction, we can assume that the threads run in parallel as if each has its
own processing unit. We can alternatively model a time-sharing scheduling
policy where the running threads run a period of time each before they are
interrupted by the scheduler to run the next one.

To model a thread pool, we separate the task queue in two parts. The
first part is as big as the number of threads and includes the tasks that are
being executed. But before execution, tasks can be queued based on different
scheduling strategies, e.g., EDF, FPS, etc. in the rest of the queue (called the
buffer part below). When a task reaches the execution part, it will not be put
back to the buffer part.

14

Parallel Threads. This model is more accurate when we can rely on the fact
that the real system will run on a multi-core CPU and each thread will in fact
run in parallel to the others. It would also be a good approximation when the
execution time for tasks is obtained by profiling the real system. The reason is
that we get a (mean) execution time for each task as if it was the only process.

Figure 7 shows the model of a scheduler where a task queue is shared between
parallel processing units. In this model, the queue and the scheduling strategy
are modeled separately. Part (a) shows the queue which stores the tasks as
they arrive, i.e., in a FIFO order. Part (b) models the scheduling strategy and
should be replicated for every processing unit. The different instances of this
automaton will be assigned each to one slot in the queue.

In this approach, one can model tasks as timed automata; two simple task
models are given in Figure 7(c). More complicated models can include sub-task
generation. Finally a model of task generation pattern (by the environment) is
given in part (d) of this figure.

Error

counter[i] > 0
&& x[i] > d[i]

tail == MAX

invoke[msg][s][sender] ? delegate[msg][s][t] ?

msg : int[0,MSG],
t : int[0,TRD−1]

i : int[0,MAX−1]

msg : int[0,MSG],
sender : int [0,2]

tail < MAXtail < MAX

insertInvoke(msg, sender) insertDelegate(msg, t)

i < tail &&
forall (m : int[TRD,MAX−1])
(x[ca[i]] − x[ca[m]] > d[ca[i]] − d[ca[m]])

finish[t][s]? start[q[t]][t][s]!

finish[t][s]?

contextSwitch(t,TRD)

i:int[TRD,MAX−1]

tail <= TRD

contextSwitch(s, t, i)

(a) The queue model (b) An EDF scheduler model

x <= 7

finish [r][self] !
start[task1][r][self] ?

x >= 6

x = 0

x <= 8

finish [r][self] !
start[task2][r][self] ?

x >= 8

x = 0

x1 > 9

invoke[task1][self][Right]!

invoke[task2][self][Right]!

deadline=XD, x2 = 0

x2 > 9

deadline=XD, x1 = 0

(c) Two simple tasks (d) Task generation automaton

Figure 7: A queue shared between parallel threads

Time-Sharing. In this model, tasks that are executing share the same CPU
and get a time slot (called a quantum) for execution. Then the running thread
is preempted to give a chance to the next thread for execution. Note that before
entering the execution part of the queue, no preemption can occur, i.e., once a
task is in the execution part it cannot be put back into the buffer part.

15

In this model, each task is modeled only as a computation time. This sim-
plification is necessary to enable the modeling of preemption of tasks at any
arbitrary time (i.e., the selected quantum). Figure 8 shows the model the queue
combined with the scheduler (on the left). The scheduling policy can be modeled
in the insertInvoke function. In this model, the deadline or priority values
for tasks can be modeled statically. In this figure, on the right, a model of task
generation pattern is given, in which the computation and deadline values for
tasks are also given.

Error

(qc<=quantum && c[turn]<=r[turn])
 || q[turn]==EMPTY

q[turn] != EMPTY && qc == quantum &&
comp[ca[turn]]>quantum
qc := 0, update_turn(quantum)

c[turn] == r[turn] &&
q[turn] != EMPTY
rem := comp[ca[turn]], qc := 0,
shift(turn,TRD), update_turn(rem)

msg : int[0,MSG],
sender : int [0,2]

tail < MAX

invoke[msg][s][sender] ?
insertInvoke(msg, sender)

tail == MAX

i : int[0,MAX-1]
x[i] > d[i] &&
counter[i] > 0

x1 > 9

invoke[task1][self][Right]!

invoke[task2][self][Right]!

deadline=XD, x2 = 0,
computation = 6

x2 > 9

deadline=XD, x1 = 0,
computation = 3

Figure 8: A time-sharing queue and task arrival automata

2.2 Relation with Requirements
In the Addendum on Deliverable D6.1 (Requirements), we formulated the fol-
lowing requirement categories:

1. Credo should support the modeling of ASK structure, ASK behavior, lo-
cation and time;

2. Credo should support the modeling of constraints on time, memory size
and network bandwidth;

3. It must be possible to verify functional properties of a reconfigurable sys-
tem based on a Credo model created for it;

4. It must be possible to verify non-functional properties of a reconfigurable
system based on a Credo model created for it;

5. The Credo tools must be applicable to individual components as well as
compositions of components;

6. The Credo tools must provide ways to (semi-)automatically create models
based on source code of the ASK system;

7. The Credo tools must be able to verify non-functional properties at run-
time;

16

8. The Credo tools must provide information about functional and non-
functional properties in an attractive visual manner;

Categories 1, 2, 5, 6 and 8 are covered by the final modeling. We will discuss
whether these requirements are met in Section 2.3. The assessment of require-
ment categories 3, 4 and 7 is postponed until after validation (Deliverable 6.4).

2.3 Lessons Learnt and Conclusion
The subprojects within the final modeling phase of the Credo project have
gained the following insights:

ReASK. The REO network modeling language is very suitable for assessing
reconfigurability at several levels of abstraction, especially due to its drive to-
wards compositionality. Implementation concepts from the ASK system proved
useful to distinguish between multiple levels of abstraction in a REO model.
The current version of the Eclipse REO editor does not adequately support
top-down modeling as we did in this subproject. Furthermore, conversion to
CARML and RSL for verification with Vereofy currently needs to be done com-
pletely manually.

CreASK. The Creol language can be easily “abused” as an object-oriented
programming language. It takes some time to get acquainted with its underlying
execution model and language concepts based on this model. However, if used
appropriately, Creol is a very powerful instrument to model functional aspects of
software systems at a level of abstraction suitable for analysis and assessment of
alternatives. The current versions of the Creol compiler and execution platform
satisfied our requirements with regard to the size of the models that can be
handled.

tASK. Creol models can be used as a starting point for timed automata in the
UPPAAL tool. This opens up the way towards the assessment of non-functional
(timing and schedulability) properties of Creol models.

Assessment of Initial Requirements

Insights gained throughout the project make it quite difficult to use the initial
requirement categories (RCs) as a validation framework for the project results.

RC1. As we already concluded in our report on the Initial Modeling (Deliv-
erable D6.2), Credo supports the modeling of structural and behavioral aspects
of software systems, as well as of timing aspects. Location as such cannot be
explicitly represented in any of the Credo modeling languages.

17

RC2. Constraints on time can be modeled and analyzed in the UPPAAL tool.
However, the Credo tools are less suited for modeling constraints on memory
size or network bandwidth, in particular any resource constraint.

RC5. The compositionality of especially REO makes the Credo language ap-
plicable to individual components as well as component compositions.

RC6. Credo definitely does not support (semi-)automatic creation of models
based on source code of ASK, a requirement we considered as a necessity for
broader adoption of the Credo tool suite, but which proved to be infeasible
within the resource and time limits of the Credo project.

RC8. Finally, the attractive visual manner in which models can be represented
was not per se within scope.

18

3 Case study 2: Biomedical sensor networks
Based on the generic architecture of a biomedical sensor network (BSN) pre-
sented in previous deliverables D6.1, D6.1 Addendum, and D6.2 we modelled
several aspects and level of detail using the Credo tools, namely in Creol (in-
cluding several extensions), in UPPAAL, and in Vereofy, following the Credo
Methodology Document [3]. In this section we give an overview of the mod-
els, relate these models to the requirements document (D6.1 Addendum), and
present experiences while working with the models.

3.1 Final Models
The models presented here focus on different aspects of a BSN using different
selection of modelled layers in the communication stack. While the models
for flooding and the AODV routing algorithm focus entirely on aspects of the
Network Layer, we also developed models featuring aspects of the Link Layer.
We selected data forwarding and routing strategies to be modelled in the Credo
tools, because these models address the behaviour of distributed algorithms in
dynamic structures in a intuitive way.

In the following we present the models (I) to (VIII). The in-depth descrip-
tions of these models can be found in Annex D6.3.3 of this document. For a
description of Case Study 2 we refer to Deliverables D6.1 and D6.1 Addendum.

Modelling BSN using timed automata (I). We modelled a BSN using
timed automata [4], where the sensor nodes communicate using the Chipcon
CC2420 transceiver according to the IEEE 802.15.4 standard. Based on the
model, we have used UPPAAL to validate and tune the temporal configuration
parameters of a BSN in order to meet desired QoS requirements on network
connectivity, packet delivery ratio and end-to-end delay. The network studied
allows dynamic reconfigurations of the network topology due to the temporally
switching of sensor nodes to power-down mode for energy-saving or their physi-
cal movements. Both the simulator and model-checker of UPPAAL are used to
analyse the average-case and worst-case behaviours. To enhance the scalability
of the tool, we have implemented a version of the UPPAAL simulator optimised
for exploring symbolic traces of automata containing large data structures such
as matrices. Our experiments show that even though the main feature of the
tool is model checking, it is also a promising and competitive tool for efficient
simulation and parameter tuning. The simulator scales well; it can easily handle
up to 50 nodes in our experiments. The model checker installed on a notebook
can also deal with networks with 5 up to 16 nodes within minutes depending
on the properties checked; these are BSNs of reasonable size for medical appli-
cations.

Wireless Creol (II). Many distributed applications can be understood in
terms of components interacting in an open environment. This interaction can

19

Figure 9: Interfaces for AODV

use components that are tightly connected with order preservation of commu-
nicated messages, whereas others are more loosely connected not guarantee-
ing order preservation, or allowing message loss. Components of a BSN may
communicate over wireless networks, where sending and receiving must be syn-
chronised, since the wireless medium cannot buffer messages. We proposed a
formal framework for such systems, which allows high-level modelling and for-
mal analysis of distributed systems [1], and introduced this as an extension to
Creol.

We introduce a light-weight notion of multi-object network components,
where the objects inside a component are tightly connected and communicate
directly with each other. Primitives are added for broadcast communication to
objects supporting a given interface. An operational semantics for the language
is defined in rewriting logic, which directly provides an executable implementa-
tion in Maude. We applied this framework to a small wireless sensor network,
that is modelled to be evolving, which means that connections may be broken,
and new ones may appear. The executable program representing this whole
system consists of approximately 70 lines of Creol code.

Modelling of the flooding strategy in Creol (III). We modelled the
flooding strategy to forward BSN data in Creol by implementing the nodes
and the network as objects. The Network implements a broadcast method,
while the Node class implements methods to sense, receive, and send data.
The implementation of this model gave valuable input for establishing a “best
practice” for modelling in Creol.

Extended model of the flooding strategy in Creol (IV). We modelled
an extended model in Creol implementing distance between the nodes as well
as power consumption.

Modelling of AODV in Creol (V). We extended the Creol flooding model
to include the mechanisms of the AODV [2] routing protocol. When trying
to find routes to a sink node, the AODV protocol broadcasts so-called RREQ

20

messages, and gets singlecast RREP messages as replies, thus being able to build
up routing tables in the nodes. The flooding model had to be extended by the
AODV functionality and a suitable representation of messages of different kinds
(e.g., payload, RREQ, RREP, RERR). We used multiple inheritance to add the
functionality for the routing tables, and caches, while we used behaviourless
objects to represent the messages.

The implementation of the model was done from a practical point of view,
i.e., the representation of the data was done like in some real implementations,
only abstracting away technical details that do not contribute to evaluate the
properties. We managed to implement a model of an AODV-based network that
can be run in the interpreter mode. However, due to several design choices, and
technical limitations in the current version of Creol the model got quite lengthy
with about 1500 lines of code. Note that the current implementation addresses
both flooding and AODV in one model.

A simplified AODV model (VI). We also modelled an alternative, sim-
plified model of AODV using Creol and compared it with the Promela code of
the Spin model checker. This model is about 250 lines of code long in both
variations.

Modelling Flooding (VII) and AODV in Vereofy (VIII). We used
Vereofy and its input languages CARML and RSL to provide a model for both,
the flooding and the AODV routing protocol. The formal semantics of the input
relies on constraint automata and thus the model describes the behaviour of the
sensor nodes and the network at the interface level. The specification of the
interface behaviour of a sensor node is given in terms of CARML sub-modules for
sensing, receiving and sending. For unicast and broadcast the communication
media have been modelled as dynamic component connector networks composed
with the help of RSL.

3.2 Relation with Requirements
The presented models of a BSN follow the prioritised requirements S-1 to S8
of the Deliverable D6.1 Addendum. However, our models are to some extent
more abstract, since we do not specifically consider the hospital-specific re-
quirements, such as number of patients (S-1), statistical model of noise (S-6),
software update features (S-7), and the infrastructure part of the hospital (S-
8). The implemented models concentrate on supporting various number of hops
and topologies (S-2); propagation of data from the source to one or several sink
nodes (S-3) with both variants; dynamic change of topology (S-4); and dynamic
adding and removing of nodes (S-5).

We discuss in the following which of the above models address which of the
prioritised required properties in Table 1 of Deliverable D6.1. We list in Table 1
(of the current document) the models that address the respective properties.

Some of the prioritised properties are addressed by many of our presented
models, like packet delivery ration (ratio between sent and delivered packets

21

Property Model
Timing, end-to-end delay (I)
Packet delivery ratio (I)—(VIII)
Network connectivity, deadlock, isolated node (I)—(VIII)
Energy consumption (IV), (I)
Memory and Buffer (III), (IV), (V), (VII), (VIII)
Wireless channel, collisions, access failure (I), (II), (VII), (VIII)
Mobility, forwarding, routing, topology changes (III), (IV), (V), (VI), (VII), (VIII)
Interference, concurrent transmission (I), (II), (V), (VII), (VIII)

Table 1: Properties related to models

is commonly implemented), network connectivity (all models address network
connectivity to some extent) or mobility (we selected flooding and routing algo-
rithms as a main theme of our research), while other properties are addressed
specifically by one of the models developed for a specific one of the Credo-tools,
like timing or energy consumption. While some of the properties are quite obvi-
ously addressed by a model, other properties are addressed more hidden. E.g.,
interferences in Model (V) are not addressed on the lower layer communication,
but in the sense that the possible occurrence of interferences will cause indeter-
minism in the network layer since messages can arrive or be thrown away in the
case of interferences.

3.3 Lessons Learnt and Conclusion
The chosen models have their origin in practical applications in sensor networks.
For some of these models real-world implementations or simulation models al-
ready existed which we used in our work. Note that some of the real-world im-
plementations of the AODV algorithm are of substantial length, and therefore
we could only model the most essential parts of the algorithm. In some cases as-
pects the real world implementations contain elements that should be modelled
stochastically, which is beyond the scope of Credo, and therefore has been left
to other modelling tools. We found that algorithms implementing forwarding
and routing are on a suitable level with regard to the Credo methodology.

Implementations of algorithms used as an inspiration for our models often
use programming paradigms that do not fit to the Credo methodology. How-
ever, since the Credo tools offer programming constructs familiar to application
programmers, the difference between modelling and programming sometimes is
not in the mind of the developers of the models. In the absence of a best practice
for modelling with the Credo tools this led to models that were not optimal,
and sometimes other ways of modelling an aspect had to be found. In this way
we are now about to establish a best practice of modelling with the Credo tools.

The work with modelling the BSN scenario also lead to numerous ideas being
taken up and implemented in the Credo tools. Bugs in the implementations
were addressed during modelling, limitations were pushed, and extensions of

22

the languages included, thus leading to a more powerful set of tools.

About modelling in Creol. While modelling we found it rather intuitive to
start with modelling in Creol once the run-time system and compiler were in-
stalled on the computer. We found a reasonable selection of language constructs
suitable for the modelling task. Modelling with Creol is quite close to appli-
cation development, which sometimes makes the developers forget that they in
fact are modelling. While modelling we also found several issues that could be
improved from a practical point of view. We mention syntactical issues, absence
of local scoping, missing support for multiple inheritance and type casting, and
the need for data dictionaries (like struct in C) as issues that we came over.

About modelling in Vereofy. Some aspects are rather intuitive to transform
into a model, while for others, e.g., the model of broadcast and singlecast, expert
knowledge was necessary. Several missing language features were added during
the modelling phase.

About modelling in UPPAAL. The C-alike modelling language made it
intuitive to model timed automata, and use the integrated tool box. This tool
is the most finished tool in the Credo tools family, and therefore a best practice
already is established.

Conclusion. In the final modelling we developed models that address several
properties of BSN. We concentrated on forwarding and routing aspects, and
chose flooding and AODV as studies. These were modelled with a similar scope
in several of the Credo tools so that we can compare these tools later in the
verification phase to be presented in Deliverable D6.4.

23

Technical Annexes
D6.3.1 This technical annex presents the Creol models of the ASK system, in

which the basic thread-pool architecture of each component is modeled.

D6.3.2 This technical annex presents the REO model of the ASK system, in
terms of REO networks and automata.

D6.3.3 This technical annex shows the final modelling of the BSN case study,
using both Creol, UPPAAL, and Vereofy.

D6.3.4 This technical annex compares AODV protocol model checking using
Spin and Creol; in this document referred to as Model VI.

References
[1] E. B. Johnsen, O. Owe, J. Bjørk, and M. Kyas. An object-oriented com-

ponent model for heterogeneous nets. In F. S. de Boer, M. M. Bonsangue,
S. Graf, and W. P. de Roever, editors, FMCO, volume 5382 of Lecture Notes
in Computer Science, pages 257–279. Springer, 2007.

[2] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.

[3] A. Salden, A. Stam, F. de Boer, I. Balasingham, X. Liang, M. Kyas, M. Stef-
fen, W. Leister, and B. M. Østvold. The Credo methodology: An end-user
perspective. Credo Deliverable, Apr. 2008.

[4] S. Tschirner, X. Liang, and W. Yi. Model-based validation of QoS properties
of biomedical sensor networks. In EMSOFT ’08: Proceedings of the 7th ACM
international conference on Embedded software, pages 69–78, New York, NY,
USA, 2008. ACM.

24

