

Time-series fusion of optical and SAR data for snow cover estimation using a Hidden Markov Model

Ragnar B. Huseby (Norsk Regnesentral) Rune Solberg (Norsk Regnesentral) Hans Koren (Norsk Regnesentral) Eirik Malnes (NORUT, Tromsø)

Outline

- Background
- ► Problem
- ► Solution
- ► Results

Mapping the snow reserves

- Sources of information:
 - meteorological data
 - field measurements
 - satellite images during the melting season
- Hydrological models
 - estimation of the amount of snow in mountain basins
 - prediction of the level of water reservoirs

Optical data from MODIS

www.nr.no earthobs.nr.no

Problem

- Estimate the current Fractional Snow Cover (FSC) per pixel and assess the uncertainty
- Data: Time-series of
 - Optical data (Terra MODIS)
 - Synthetic-aperture radar (SAR) data (ENVISAT ASAR)
- Additional data sources that may be used later:
 - Topographic information
 - Contextual information
 - Field measurements
 - Meteorological data

Properties of the data

- Optical data
 - reflectance
 - dominated by effects from photon scattering, transmission and absorption near the snow surface at the snow-grain size
 - limited by cloud cover
- Synthetic-aperture radar (SAR) data
 - backscatter
 - dominated by effects due to dielectric properties of the snow medium as well as snow surface roughness (for wet snow) or a combination of the snow pack structure and the ground below
 - higher variability than reflectance

Snow status vs optical reflectance and SAR backscatter

Hidden Markov model - motivation

- Draw inference about an unobservable process through observations from a related process.
- Assume that some prior knowledge about the unobservable process is available.
- Correction errors in single observations is possible by analysis of a sequence of observations in a context. (Filtering)

Hidden Markov model - Example

- X_t a process with two possible states at time t:
 - R is in her/his office (R is a researcher).
 - R is NOT in her/his office.

Not always possible to observe X_t at a distance.

- $Y_t a$ process with two possible states at time t:
 - Light in R's office
 - R's office is dark

 Y_t is easily observed. Y_t is influenced by X_t : Usually light when R is present and dark otherwise

• Can use Y_t to spy on R

Hidden Markov model - Basics

- Two stochastic processes: (X_t, Y_t)
 - X_t not observed
 - Y_t observed
- ► X_t is a Markov process
 - Given the present state, future states are independent of the past states

$$Pr(X_{t+1}=x | X_t=x_t,...,X_1=x_1)=Pr(X_{t+1}=x|X_t=x_t)$$

- Without memory
- ► In applications:
 - X_t has a constrained behaviour.
 - the distribution of Y_t depends on the state of X_t.
 Then Y_t provides information about X_t.
- Simple models: Given X_t , Y_t is independent of X_s and Y_s , $s \neq t$.

Hidden Markov model Snow cover estimation

- $X_t = (X_t^c, X_t^w)$ fractional snow cover, dry/wet snow
 - States:
 - 100% coverage dry snow,
 - 100% coverage wet snow,
 - 99% coverage wet snow,
 - °
 - Snow free
 - Assume decreasing coverage
 - Transition probabilities depend on prior information about the melting rate
- Y_t^{OPT} reflectance data
- Y_t^{SAR} backscatter data

Snow status – Transition probabilities

	Dry	Wet	99%	•••	50%	49%	•••	1%	Free
Dry	+	+	0	0	0	0	0	0	0
Wet	0	+	+	+	0	0	0	0	0
99%	0	0	+	+	0	0	0	0	0
•••									
50%	0	0	0	0	+	+	+	0	0
49%	0	0	0	0	0	+	+	0	0
•••									
1%	0	0	0	0	0	0	0	+	+
Free	0	0	0	0	0	0	0	0	1

Distribution of optical data -Properties

► Preprocessing:

- Reflectance data are transformed to snow cover percentages (possibly erroneous).
- Most cloud pixels are removed from further analysis
- Mode of the distribution = Actual snow cover
- Noise
 - Cloud remains and cloud shadows
 - Temporary snow (not interesting, to be eliminated)

Distribution of optical data - Examples

Distribution of SAR data

Normal distribution with mean as indicated and state independent standard deviation

Computations

- Wish to find E(Xt^c|Y1,...,Yt), the posterior expectation given the available data up to time t.
 (c indicates the coverage percentage corresponding to the state of the process)
- The algorithm for computing Pr(X_t=x|Y₁,...,Y_t), the posterior probability, is known.
- The expectation is found through $E(X_t^{c}|Y_1,...,Y_t) = \sum x^{c} Pr(X_t^{=}x|Y_1,...,Y_t),$

the sum is taken over all states.

Assessment of uncertainty

- At a given time t, L_t and U_t can be determined such that Pr(L_t < X_t < U_t |Y₁,...,Y_t) = 95%.
- (L_t, U_t) is a Bayesian confidence interval.
- Typically the confidence interval is
 - wide when no observation is available at time t
 - narrow when reflectance (in particular) or backscatter is observed at time t

Remarks

- ► Alternative approach: Monte Carlo filters
- We do not attempt to find the state sequence x₁,...,x_t

that maximises

$$Pr(X_1 = x_1, \dots, X_t = x_t | Y_1, \dots, Y_t)$$

Experimental data

- Site:
 - Valdresflya
 - Flat area
- ► Period:
 - Melting seasons
 - 2003 2006

Optical data

Possible state trajectories

2006

Likely trajectories based on data

Data available through June 5th

Results 2006

www.nr.no earthobs.nr.no

Results 2005

Results 2003 – 2006 (optical and SAR)

Conclusion

- The method estimates the fractional snow cover quite well
- The method is not used in operational snow cover monitoring
- Further work includes experiments in areas with relief.

