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ABSTRACT:  
 
Construction, development and maintenance of the road network are central activities for several public authorities. In cooperation 
with the Norwegian road authorities, we have developed an approach for automated vehicle detection and generation of traffic 
statistics from QuickBird images. Satellite surveillance serves several obvious advantages over the methods that are being used 
today, which consist of expensive single-point measurements made from pressure sensors, video surveillance etc., in or close to the 
road. Based on advice from the road authorities of Norway, we have selected a set of study sites from different parts of the country, 
such that our image data represents the diversity of road types and solar illumination conditions. Road and vegetation masks are 
applied to the image so that the search for vehicles is restricted to the (paved parts of the) roads only. For segmentation, we have 
applied techniques that seek to locate the modes of the image histogram. The resulting segments are then examined by feature 
extraction and classified adopting the maximum likelihood method. Additionally, we propose a new approach for car shadow 
removal. The described methods are implemented and tested against manual vehicle counts. We also compare the results to area 
traffic cover statistics estimated from single-point measurements. Manual vehicle counts indicate that there is some ambiguity in the 
interpretation of the images. Nevertheless, the automatic method that we have developed in this study performs very well compared 
with the reported manual counts. 
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1. INTRODUCTION 

1.1 Background and objectives 

The monitoring of traffic conditions is necessary for 
development and maintenance of the road network. The current 
primary source of traffic statistics is measurement stations 
based on induction loops, which count vehicles that pass a 
given point in the road system over time. The most important 
information derived from these data is the Annual Day Traffic 
(ADT), a measure of the traffic distribution during a day at a 
specific point and averaged over a year. Nevertheless, this 
methodology has evident shortcomings due to the very limited 
geographical coverage of such a system. The necessary funding 
of covering the entire road network with such in-road counters 
is far from realistic, and alternatives are needed. A potential 
alternative is traffic counting in very-high-resolution satellite 
images, like QuickBird (0.6 m resolution). A satellite image 
covers large areas instantaneously, providing a possible source 
of snapshot road traffic information. However, manual vehicle 
counting in images covering large areas would be a tremendous 
effort. A solution to this problem might be the use of automatic 
image analysis methodology – pattern recognition tailored to 
the detection of vehicles.  
 
The main objective of our study is to develop methodology for 
automatic vehicle detection using very-high-resolution satellite 
imagery, i.e., spatial resolutions of 0.6-1.0 m in the 
panchromatic band, which is available from the new generation 
of high-resolution commercial satellite images. In cooperation 
with the local road authorities, the aim was to compare ADT 

measurements with the traffic statistics that were estimated 
from automatic counts in QuickBird images. 
 
1.2 Related work 

Extensive research has been performed on vehicle detection in 
aerial imagery, (e.g., Burlina, 1997; Hinz, 2005; Schlosser, 
2003; Zhao, 2001). However, very few studies address vehicle 
detection from very-high-resolution satellite images. Jin and 
Davis detect vehicles in Ikonos (1.0 m) images (Jin, 2007). 
Their approach is based on an implicit vehicle model, and the 
classification is performed on the pixel level. The training data 
is derived from manual delineation of vehicles in the images. 
Sharma presents three different approaches for vehicle detection 
in Ikonos images (Sharma, 2006). Of these, the best 
performance is obtained using a pixel-based Bayesian 
Background Transformation approach, which requires the 
existence of a high quality background estimate. Alba-Flores 
detects vehicles in Ikonos images of US one-way highways 
using two different thresholding approaches, (Alba-Flores, 
2007). The work presented in our paper is based on the ESA 
(European Space Agency) project “Road Traffic Snapshot”, 
which concerns a possible future service for counting vehicles 
in satellite images and generating traffic information based on 
these counts (Aurdal, 2007). 
 
 

2. EXPERIMENTAL DATA 

To be able to detect vehicles, satellite images with high 
resolution are required. We have chosen the QuickBird satellite 
with 0.6 m resolution panchromatic band. Our data consists of 



 

five subsets of satellite images from the QuickBird image 
archive, and covers different parts of Norway for the period 
between 2002 and 2006. All the images are acquired in the 
summer season, i.e., without snow covering the roads and with 
enough sunlight to be able to detect vehicles. The selection of 
image data for our study was made so that it represents a 
variation of lighting conditions, i.e., the combination of road 
direction, sun elevation, and view angle, which has an 
important effect on how objects and shadows appear in the 
image. Traffic counts from in-road equipment measured at the 
same dates and times for the corresponding roads were provided 
by the Norwegian Public Roads Administration, and were used 
for comparison with the image analysis based counts. 
 
 

3. METHODOLOGY 

3.1 Road and vegetation masks  

The problem of finding vehicles in an image is substantially 
reduced in the event that the position of the road is known. We 
restrict the search for vehicles to the parts of the image 
representing paved road. 
 
Methods for both manual and automatic generation of road 
masks were investigated. See (Larsen, 2008) for a thorough 
description of this topic. Automatic generation of road masks 
faces certain difficulties; tunnels and crossing bridges should be 
removed, all gaps have to be closed, roundabouts have to be 
included, etc. In the rest of this paper we will present methods 
that have been developed on images after application of 
manually delineated road masks. 
 
In some cases, vegetation covers parts of the roads, typically 
tree canopy hiding parts of the road, or vegetation growing 
between the lanes of the road. Consequently, we also apply a 
vegetation mask. The vegetation mask is retrieved from 
multispectral imagery, which is provided by the QuickBird 
sensor at a resolution of 2.4 m, and where each resolution cell is 
referenced to 4×4 cells in the corresponding panchromatic 
image. More specifically, the normalized difference vegetation 
index (NDVI) is computed from the red and infrared image 
bands, after resampling to the resolution of the panchromatic 
image, using cubic interpolation. The vegetation mask is 
produced by thresholding the NDVI image. The appropriate 
threshold is found using Otsu’s algorithm (Otsu, 1979). 

 
3.2 Segmentation 

The main segmentation routine is based on finding segments 
that are darker or brighter than their surroundings and is applied 
to the masked panchromatic image. In the image histogram 
(Figure 1), the road (asphalt) pixels constitute the dominating 
histogram mode. Note that the background pixels are left out of 
the histogram. Dark colored vehicles and other dark segments 
are represented by a smaller peak in the histogram. The long tail 
in the high intensity part of the histogram corresponds to the 
class of bright segments on the road, appearing in a wide range 
of intensities.  
 
The panchromatic image is thresholded in two stages, for dark 
and bright segments, resepectively. We apply Otsu’s method for 
unsupervised threshold selection (Otsu, 1979). Note that Otsu’s 
method easily may be extended to the multi-class problem, e.g. 
finding two optimal thresholds simultaneously. However, 
experiments showed that using the three-class version of Otsu 
did not provide two thresholds that are able to make the desired 
separation between the classes in our application. One reason is 
perhaps the fact that the division line between the road class 
and the bright segment class is very diffuse (the histogram does 
not appear to be trimodal).  
 
For each stage of the segmentation, i.e., the dark and the bright 
stage, two thresholds were found. One threshold is strict, the 
other threshold is loose. Each threshold is found by restricting 
the focus to a subset of the image histogram. First, we locate the 
main peak of the histogram, simply by finding the mean value.  
 

 
 

 

Figure 2. Segmentation stages. Upper left: masked 
panchromatic image;. upper right: the result of 
segmentation with the loose threshold for 
bright (green) and dark (red) objects;. lower 
left: corresponding result using the strict 
thresholds; lower right: the combined result. 

Figure 1. Typical image histogram for (a subset of) a 
 panchromatic image after application of 

road and vegetation masks. 



 

The image is thresholded in two steps, using the strict and the 
loose thresholds separately. The two results are then combined 
by a kind of hysteresis thresholding; a segment resulting from 
the loose threshold is only kept if it contains a segment 
resulting from the strict threshold. Finally, the results from the 
dark and bright segmentation stages are combined. 
 
More specifically, let Ιmin and Ιmax denote the minimum and 
maximum intensity values, greater than zero, that are present in 
the image, and let μ and σ denote the mean and standard 
deviation, respectively. We define the thresholds as follows: 

• Segmentation of dark segments: 
− strict threshold: Otsu applied to the histogram on 

the interval [Ιmin , μ - σ] 
− loose threshold: Otsu applied to the histogram on 

the interval [Ιmin , μ - 0.5σ] 
• Segmentation of bright segments: 

− loose threshold: Otsu applied to the histogram on 
the interval [μ + σ , Ιmax ] 

− strict threshold: μ + 3σ 
 

Segmentation using a loose threshold tends to produce too 
many segments, while the strict threshold often yields poorly 
defined or fragmented segments. The combination of the two 
thresholds helps to provide more well-defined objects, while at 
the same time ignoring objects that are only slightly different 
from the background asphalt color, and therefore most likely 
not a vehicle (Figure 2). For illustration purposes, only a small 
part of the image is shown in the figure. 
 
3.3 Shadows 

Segmentation based on intensity values alone inevitably 
produces some unwelcome segments. Vehicle shadows, as well 
as cast shadows by trees along the road, are the main 
contributors to dark non-vehicle segments that need to be 
removed. 
 
Roadside shadows 
 
Cast shadows from trees or other objects at the roadside are 
removed using the simple assumption that no real vehicle 
segments should be located on the outer edge of the road. We 
compute a road-edge mask from the manually drawn road 
mask, using dilation of the road mask with a suitable structuring 
element. The resulting edge mask is very narrow.  Any segment 
overlapping the road-edge mask is regarded a non-vehicle 
segment, and discarded. 
 
Vehicle shadows 
 
A vehicle shadow, especially when appearing on the longer side 
of a car, is visually very similar to a dark vehicle. It is usually 
easy to separate a dark vehicle from a vehicle shadow by 
manual inspection, as the shadow must obviously reside next to 
the vehicle that casts it. In the QuickBird images that we have 
studied, vehicle shadows are only visible next to bright 
vehicles. Visually it is impossible to distinguish a dark vehicle 
from its shadow. 
 
We use information about the lighting and viewing conditions 
that existed during image acquisition in order to detect dark 
segments that are positioned in the expected shadow zone of 
bright segments. The direction and length of the shadow sector 

are estimated from the sun azimuth and sun elevation, 
respectively, at the time of image acquisition. 
 
We use four different directions to estimate the direction of the 
shadow zone, and we use a 90° wide zone, pointing north, east, 
south or west. For example, if the sun azimuth is between 135° 
and 225°, the sun enters the image scene from the south, and 
the expected shadow zone lies north of the objects. The length 
of the shadow (half the size of the structure element), is given 
by the average vehicle height divided by the tangent of the sun 
elevation angle. For QuickBird images we use an average 
vehicle height of 3 pixels, corresponding to 1.8 meters. 
 
We then create a structure element which represents the 
expected shadow zone that applies to the given image, and use 
it to perform dilation of the bright segment image. The dilation 
result represents an image of the bright objects together with 
their expected shadow zones (Figure 3b). The bright object 
segment image is subtracted from the result of dilation, yielding 
an image representing the expected shadow zones only. This 
image is then compared to a segmented image of dark objects 
situated close to a bright object. The latter image is found by 
first calculating the distance map of the bright segment image. 
This distance map is thresholded at a low value, and the result 
is multiplied with the dark segment image. Finally, we compare 
the expected shadow zone image with the image of dark 
segments that are located close to bright segments. Whereever 
there is overlap between these two images, the dark object is 
assumed to be a shadow (Figure 3). 
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Figure 3. a) Panchromatic image, vehicles and shadows. 
b) Bright segments (green) and expected 
shadow zone (white). c) The structure element 
used for dilation. d) Distance map – bright 
segments. e) Dark segments – assumed to be 
shadows (white) and assumed to be vehicles 
(red).



 

3.4 Classification 

As already mentioned the segments produced by the 
segmentation routine must be treated further because they 
include non-vehicle segments. We use a maximum likelihood 
approach and classify the segments into six classes (four vehicle 
classes + two non-vehicle classes): 

1. Bright car 
2. Dark car 
3. Bright truck 
4. Brigh vehicle fragment 
5. Vehicle shadow 
6. Road marking 

 
According to Bayesian decison theory, the probability of error 
is minimized if we assign an object with a given feature vector 
to the class for which the posterior probability of the vector 
belonging to this class is maximized (over all classes). This 
method is (among other names) called maximum likelihood, or 
minimum-error-rate classification (Duda, 2000). The maximum 
likelihood classification states that a feature vector ξ should be 
classified to class κ if the posterior probability P(ωκ⏐ξ) – the 
probability that the correct class is class κ, given that the feature 
vector ξ has been measured – is maximized, i.e., P(ωκ⏐ξ) > 
P(ωβ⏐ξ) for all β≠κ. The posterior probability is given by Bayes 
formula P(ωκ⏐ξ) = p(ξ⏐ωκ)P(ωκ) / p(ξ) , where p(ξ⏐ωκ) is the 
conditional probability of measuring feature vector ξ, given that 
the vector is a sample from class κ, P(ωκ) is the prior 
probability of class κ, and p(ξ) is the evidence p(ξ) = ∑β=1

Κ  

p(ξ⏐ωβ) P(ωβ), where K is the number of classes. 
 
It is natural to assume that the feature vectors belonging to a 
given class have a Gaussian distribution, i.e., the conditional 
probability p(ξ⏐ωκ) is a (multivariate) normal distribution. 
Studies of scatterplots indicate that it is not reasonable to 
assume that the classes have equal covariance matrices. 
Furthermore, the features are assumed to be correlated, i.e., 
have general (non-diagonal) covariance matrices.  
 
The prior probability of a given class is the probability that a 
random object, having no other information about its shape etc., 
belongs to this class. Common choices include equal, constant 
probabilities for the classes or the use of class frequencies. We 
use the latter, i.e., the prior probability P(ωκ) of belonging to 
class κ is P(ωκ) = Νκ / Ν, where Νκ  is the number of training 
samples from class κ, and Ν is the number of training samples 
from all the classes in total. 
 
Feature extraction 
 
Various features may be used in order to describe the shape and 
spectral characteristics of segments. A number of features were 
examined, using feature selection methods together with the 
available training data.  The best performance of the maximum 
likelihood classification was obtained with the following set of 
six features: 

• the mean of the region intensity 
• the mean of the region gradient (computed by the 

Sobel operator) 
• the standard deviation of the region intensity 
• the length of the region’s bounding box 
• the 1st Hu moment of the region 
• the spatial spread of the region 
  

In addition to the above features, the following features are 
used for pre- or post-classification: 

• region area 
• region elongation 
• distance to nearest vehicle shadow (assuming a 

vehicle shadow mask as given by the technique 
described in Section 3.3)  

 
Preclassification 
 
Before the statistical classification, we perform an initial, rule-
based classification in order to discard segments that are 
obvious non-vehicle segments. The region area must neither be 
too large nor too small. We also require that the elongation 
adhere to a given interval. Furthermore, we assume that the 
mean intensity value within the region is above or below preset 
thresholds, and the region gradient must also obey a minimum 
threshold value.  
 
Postclassification 
 
Vehicle shadows are often confused with dark vehicles and vice 
versa, even after application of the maximum likelihood 
classificator. We therefore seek to reduce the number of 
misclassifications between vehicle shadows by revising the 
segments that are classified into one of these classes. The 
postclassification is based on the “distance to nearest shadow” 
feature, calculated from the vehicle shadow mask, as described 
in Section 3.3. Specifically, the class label of a dark vehicle is 
changed to shadow if its shadow distance is zero.  
 
The distance-to-shadow information is also used to improve the 
classification of bright vehicle fragments into road markings. 
These two classes share similar shape and intensity features. 
However, while vehicle fragments often cast a detectable 
shadow, road markings do not. The classification of a road 
marking is changed to bright vehicle fragment if its distance to 
a shadow is less than three pixel units. 
 
 

4. CLASSIFICATION RESULTS 

The classification method was trained and tested on a selected 
set of subimages. Each of the images in the training and test sets 
were processed through the following steps: application of road 
and vegetation mask, segmentation (including shadow masks), 
feature extraction, and preclassification, before they were 
manually labeled. We used labels 1-6 for the respective classes 
(see section 3.4), and a separate label for segments that should 
be rejected. Only segments belonging to one of the six classes 
were included in the training set. A total of 787 samples were 
used for training, of which there were 123 belonging to class 1, 
152 to class 2, 37 to class 3, 152 to class 4, 206 to class 5, and 
117 to class 6. For testing, we had 310 samples. The results are 
given in Table 1. Not including the reject segments, the 
classification rate is 88.7%. Furthermore, 89.6% percent of the 
vehicles were classified as vehicles, while 70.1% percent of 
non-vehicles were classified as non-vehicles. 
  
There is a considerable amount of segments that do not belong 
to any of the six classes (Table 1). By inspecting the images and 
the segmentation results, we find that these segments constitute 
a very heterogeneous group of objects. The maximum 
likelihood classification approach might be applied with a reject  



 

Given label

True label
Bright vehicle 96 0 0 11 107
Dark vehicle 0 59 7 0 66
Vehicle shadow 0 10 62 0 72
Road marking 0 0 0 2 2
Reject 11 20 22 10 63
SUM 107 89 91 23 310

SU
M

B
rig

ht
 

ve
hi

cl
e

D
ar

k 
ve

hi
cl

e

V
eh

ic
le

 
sh

ad
ow

R
oa

d 
m

ar
k

 
 

Table 1. Classification results. 
 
 
option; if the posterior probability does not exceed a given level 
for neither of the classes, the segment should be rejected. This 
approach was tested, but did not yield any improvements. 
 
 

5. VALIDATION 

One of the main objectives of our study was to develop 
methodology that is able to make reliable estimates of the 
amount of traffic on certain roads. One important part of the 
validation has therefore been to compare the vehicle counts 
from the satellite images against counts made by the in-road 
equipment. Secondly, our results have been manually assessed. 
 
In-road equipment counts how many vehicles that pass a certain 
location during one hour. In order to compare this number with 
the counts made by our method, we must apply it to an image 
that covers the road in an area surrounding the counting station. 
We select a subset of the road so that the distance on each side 
of the counting station is maximized, while at the same time, no 
large road intersections are included. This is necessary since we 
are going to compare the number of cars in a snapshot in time to 
the number of cars during a one hour period. The data which is 
available from the in-road stations include the average vehicle 
speed. Thus, we may estimate the number of vehicles that 
should appear on the given road stretch in the snapshot in time 
when the satellite image was taken. Furthermore, we perform 
the opposite comparison; estimate the expected number of cars 
to pass a single location in space during a period of one hour 
given the number of vehicles that was counted in the satellite 
image. 
 
Even with a resolution of 0.6 m, counting vehicles in a satellite 
image by manual inspection is a task that may yield ambiguous 
results. Thus, the validation should be performed by more than 
one individual. In our study, two different persons have 
provided manual counts. These counts may be compared 
directly to the counts that were generated by the automatic 
routine. Furthermore, the degree of consensus must be checked.  
 
Six different counting stations were used for validation. Table 2 
summarizes the results. Some comments should be made 
regarding the numbers in the table. First of all, note that since 
we have a class called “bright vehicle fragments”, the method 
will sometimes locate two fragments of the same vehicle. 
However, the two fragments should be counted as one vehicle. 
Similarly, the class “bright truck” has been trained to identify 
one trailer wagon. In cases where the truck is pulling two 
wagons, only one vehicle should be counted. In Table 2 the 
column “Objects classified as vehicles” presents the number of 

vehicles found by the algorithm counting fragments that belong 
together only once. The numbers in parenthesis correspond to 
the number of segments that were classified into one of the 
vehicles classes, i.e., bright car, dark car, bright truck, or bright 
vehicle fragment.   
 
In the Eiker image a large stretch of road lies in the shadow of a 
large cloud. The automatic method did not find any vehicles on 
this stretch. Both person 1 and person 2 located ten vehicles on 
this stretch. 
 
The most important sources of non-vehicles classified as 
vehicles are road markings and tree shadows (Figure 4). In the 
Østerdalen image, there are 29 tree shadows and eight road 
markings that are wrongly classified as vehicles. In the 
Sollihøgda # 1 image, the corresponding numbers of tree 
shadows and road markings are three and twelve. As described 
above, a road edge shadow mask was applied in order to 
remove as many tree shadows as possible before classification.  
 
 

6. DISCUSSION AND CONCLUSIONS 

We have presented an approach for segmentation and 
classification of vehicles from high-resolution satellite images. 
The method has been developed using a selected set of images 
of Norwegian roads, but we have attempted to make it as 
general as possible. The method is object based, and applies 
well-known pattern classification techniques to segments that 
are found in the Otsu-inspired segmentation step. 
 
Many dark segments on the road are shadows of bright vehicles. 
We propose a method for how to construct a vehicle shadow 
mask, i.e. a mask containing those dark segments that are likely 
to represent a shadow. The mask is helpful during the 
classification step, as the shadows provide valuable information 
about the segments. For instance, the classifier often confuses 
the classes “bright vehicle fragment” and “road marking”. Since 
we know that road markings do not cast shadows, while bright 
vehicle fragments often do, the “distance to nearest shadow” 
feature may be used to redirect the classification result. Of 
course, this approach depends on the confidence of the vehicle 
shadow mask. If too many dark vehicles are included in the 
shadow mask, the approach will fail. In our test data, 62 out of 
72 vehicle shadows, and 59 out of 66 dark vehicles, were 
correctly classified – a result that we consider as satisfactory.  
 
 

Figure 4. Tree shadows stretching far into the road. 



 

 

Person 1 Person 2 Consensus Person 1 Person 2
Kristiansund # 1 10:56 22 22 21 17 (17) 14 14 25
Kristiansund # 2 10:56 32 33 32 22 (25) 21 21 27
Østerdalen 10:39 44 41 41 80 (88) 32 32 51
Eiker 10:42 57 55 54 39 (44) 35 32 57
Sollihøgda # 1 10:32 63 63 62 64 (65) 48 47 58
Sollihøgda # 2 10:32 30 30 30 26 (27) 24 24 38

Location

Estimated vehicle 
count from in-
road station        
10-11 UTC

Correctly classified as 
vehicles

Time of 
image 
acquisition 
UTC

Manual vehicle count Objects 
classified as 
vehicles

 
 

Table 2. Manual vs. automatic vs. in-road counts. 
 

As noted in section 5, objects at the roadside, especially trees, 
introduce a great challenge to the automatic vehicle counting 
method. A special example is the Østerdalen image, where 29 
tree shadows are counted as vehicles. Subtracting 29 from the 
automatic count, the result is very close to the manual counts as 
well as the number of vehicles estimated by in-road equipment 
counts. The mentioned image is an example of where the tree 
crowns enter quite far into the road. The shadows of the trees 
are therefore not located at the edge of the road, but rather on 
the edge of the vegetation mask. It may be discussed whether 
the road edge mask should be constructed from the total mask, 
i.e., the road mask combined with the vegetation mask, instead 
of the road mask only.  
 
Although various features have been tested, the number could 
be extended. It is desirable to be able to discriminate a larger 
part of the reject objects from the rest. Perhaps we need to use 
specific features that are able to separate outlier segments from 
the classes, e.g., context-based features. 
 
The performance of our algorithm may be summed up as 
follows: The majority of vehicles that are found in the 
segmentation step are correctly classified as vehicles. Tree 
shadows that enter far into the road, as well as high contrast 
road marks tend to be confused as vehicles. The segmentation 
routine should be improved so that it finds even vehicles with 
low contrast. Alternative features and context-based 
information may help to reduce the number of false vehicle 
counts. 
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