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1 Introduction

The Lear Area Index (LAI) is a dimensionless variable that measures the amount of leaf area per
area unit ground surface, and may be used to describe the health of the forest after e.g. a insect
attack (e.g. Solberg, 2009). The LAI of a forest area may be accurately described by airborne
LIDAR (Solberg, 2009), but surveying large areas with LIDAR is very expensive and time
consuming.

To obtain less costly estimates of the LAI we may use data from satellite based sensors.
Traditionally, optical methods have been applied to estimate LAI since LAI is the dominant
factor behind the spectral reflectance of vegetative canopies in visible and near-infrared
radiation. However, optical data has some limitations since it is insensitive to the woody stand
structure, which may carry information on LAL and most important cloud-free daylight
conditions are required. For the boreal forest zone, with relatively short summers, acquiring
cloud-free optical images may be challenging.

The use of SAR has shown a great potential for obtaining precise estimates of the LAI of boreal
forests (Manninen et al., 2005), rice fields (Durden et al. 1995) and corn, sorgum and wheat
(Ulaby et al. 1984). Manninen et al. (2005) obtained excellent results using the VV/HH ratio from
ENVISAT ASAR data, with a coefficient of determination as high as R?=0.78 for homogeneous
forest stands where LAI estimates were obtained using the LAI 2000 instrument. However, even
if SAR does not require cloud-free weather conditions, the soil moisture and water content in
the vegetation strongly influence the radar backscatter. Zheng et al. (2009) gives an overview of
theories, methods and sensors for retrieving LAI using remote sensing

We will in this work analyse the method suggested by Manninen et al. to estimate LAI from
both ENVISAT ASAR and Radarsat-2 SAR data on large scale areas, where the ground truth has
been obtained by airborne LIDAR. Furthermore, the full polarimetric R2 data will be explored
for estimating the LAI, and in particular we investigate the Pauli and Freeman-Durden
(Freeman and Durden, 1998) polarimetric decompositions as a means for estimating the LAIL
We will not do any model inversion of complex physical models describing the interactions
between the radar signal and the forest, but instead focus on empirical models between the
radar backscatter and the LAL

The work also includes a brief analysis of the correspondence between the backscatter and the
0.9 percentile of the height distribution of the LIDAR echoes.

1.1 Acronyms and notation

e HH - horizontal transmit, horizontal receive polarizations.

VV — vertical transmit, vertical receive polarizations.

HYV - horizontal transmit, vertical receive polarizations.

VH - vertical transmit, horizontal receive polarizations.

o, - backscatter intensity with transmit polarization p and receive polarization g.
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2 Materials

The area of investigation is situated at Palokangas east in Finland, about 62°52"23”N,
30°54'10”E. A Landsat TM image (Aug. 9, 2007) of the scene (Fig. 1) shows that the area is
mostly covered by green vegetation.

Figure 1: Landsat TM image (9.aug 2007) of Palokangas, Finland, the area of investigation.

2.1 LIDAR measurements

LIDAR based LAI measurements (Fig. 2) with 10x10m resolution were obtained from aerial
surveys. The LAI image was geocoded to ETRS-TM35FIN map coordinate system, but re-
defined to UTM35N-WGS84 (in practice the coordinates are the same). The LAI data is not
calibrated with respect to field measurements, but gives a good description of how the LAI
varies over the area. Also, the factor 1.5 in the equation below has been found to be very
constant from scan to scan, because the penetration rate of LIDAR is very stable across LIDAR
acquisition settings. The LAI estimates are related to the LIDAR penetration rate (almost equal
to the gap fraction) as

LAl =1.5In(l/ P)

where P is the LIDAR penetration rate. Solberg et al. (2009) provides a detailed description on
how to estimate LAI from airborne laser measurements.

The 0.9 percentile of the height distribution of the laser echoes were also extracted from the
LIDAR data (Fig. 3) and processed to 10x10m resolution. This quantity correlates strongly with
the biomass and height of the vegetation, and will be referred to as PC90. The LAI and PC90
images are completely different since they are constructed with totally different methods.
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Figure 2: LAl estimated from aerial LIDAR survey. Light areas correspond to high LAI values, and dark areas correspond to low
LAI values.

Figure 3; PC90 estimated from aerial LIDAR survey. Light areas correspond to high PC90 values, and dark areas correspond to
low PC90 values.

2.2 Homogeneous forest segments

Using the LAI and PC90 measurements the area under investigation was segmented into
homogeneous forest segments (Fig. 4) using the software program Defeniens Developer. The
borders between the segments were chosen such that the pixels within each segment had low
variation of LAI and PC90 values.
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Figure 4: Homogeneous forest segments extracted from the PC90 and LAl data. The background image is the PC90 image.

2.3 ENVISAT ASAR

Three ENVISAT ASAR Alternating Polarization scenes with swat IS7 were acquired from the
area under investigation on July 24 (Fig. 5), August 28, and October 2, 2008. The SAR scenes
were geocoded to UTM-35 using a digital elevation model (DEM). The scenes were calibrated to
oo backscatter values, and the pixel resolution of the geocoded product is 20x20m.

The ENVISAT ASAR Alternating Polarization transmits around 200 pulses (one “burst” period)
in one polarization, before it switches the TX and/or RX channels. Every HH and VV image is
processed using two burst periods (2-looks).

3

ution. Left: HH-polarized. Right: VVV-polarized.

Figure 5: ENVISAT ASAR intensity images of the scene with 20x20m pixel resol

2.4 Radarsat-ll
Three Radarsat-2 Fine-Quad polarization scenes were acquired on July 31, Sept. 3 (Fig. 6), and

Sept. 17, 2008. The SAR scenes were also geocoded to UTM-35 using a DEM. The pixel
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resolution of the Radarsat-2 scenes were also set to 20x20m in the geocoded product, and
radiometrically calibrated to oo values.

Figure 6: RADARSAT-II intensity images of the scene ith 20x20m pIX| reslutlo. Upper/le: HH-polarized. Upper/right: HV-
polarized. Lower/left: VV-polarized. Lower-right: Linear decomposition RGB = (HV,HH,VV).

3 Methods

3.1 Geometrical co-registration

Before the SAR images were analyzed with respect to LAI measurements, all images were co-
registered to a TerraSAR-X High Resolution Spotlight intensity image (geocoded to UTM-35
using a DEM) with 20x20m pixel resolution.

Leaf Area Index Estimation Using ENVISAT ASAR and Radarsat-2 m% 13



3.2 Scattering mechanisms

Figure 7: Different types of scatter mechanisms: (1) direct backscattering from the ground, (2) crown scattering including
multiple scattering within the crown (crown volume scattering), (3) crown-ground backscatter, (4) direct backscattering from the
trunk (usually small), and (5) trunk-ground backscatter (double bounce). The figure taken from Karam et al. (1992).

The total backscatter from forested terrain can include components from several backscatter
mechanisms (Fig. 7). These include (1) direct backscattering from the ground, (2) crown
scattering including multiple scattering within the crown (crown volume scattering), (3) crown-
ground backscatter, (4) direct backscattering from the trunk (usually small), and (5) trunk-
ground backscatter (double bounce). The crown-ground and trunk-ground bounces can be in
both directions from tree to ground or ground to tree. Volume scattering is relevant to
backscatter from a vegetation canopy. The main elements within a forest canopy are leaves,
twigs, branches and trunks. There are many such elements acting as scatters and resulting in
multiple scattering between elements, but also acting as attenuators. Of course, backscatter from
beneath the canopy will often be attenuated by the canopy as it travels back towards the
satellite. In cases where there is interaction with the ground, factors such as surface roughness,
soil moisture, and slope has important influence. In addition, there is often an understory or
layer of ground vegetation that may strongly influence the backscatter interactions (Leckie and
Ranson, 1998).

The magnitude of each one of these backscatter components depends on radar wavelength,
polarization, angle of incidence and a myriad of terrain and canopy parameters. A convenient
simplification of the interaction between tree elements and different radar wavelengths is that
K-band primarily interact with leaves, X-band with leaves, twigs and small branches, C-band
with the leaves, and small and secondary branches, L-band with the primary and secondary
branches and trunks, including some interaction with the ground, and P-band interacts mostly
with the main branches, trunks and ground. Trunk-ground and crown-ground interactions can
be important for L- and P-band (Leckie and Ranson, 1998).

3.2.1 Polarimetry

Radar polarimetry is a technique that provides many options for analysis and understanding of
radar backscatter from forest terrain. The Stokes vector collects four parameters that allow a
complete description of a polarized wave may be expressed as
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where the <...> brackets denote averaging over time. The first element is a measure of the total
amount of power in the wave, and the three last terms describe the state of the polarization. A
polarized wave represented by Stokes vector gi that interacts with a target, and results in a wave
represented by the vector gs. The scattering process transform one vector, g, into another vector
g5, a process that can be described using a 4x4 real matrix M, as

gs = Mgl

The matrix M is called Stokes scattering matrix or Mueller matrix. Each term of the Stokes matrix
has a physical significance related to total power, fraction of like-polarized power, difference
between HH and VV power, or the nature of depolarization. This matrix operator therefore
contains the information we are looking for with regard to the target’s effect on a polarized
wave, since it completely describes the polarimetric response of the target (Woodhouse, 2006;
Leckie and Ranson, 1998).

For radar polarimetry, the Stokes vector is not the most effective way to characterize the data
since there are effectively two measurements of polarization to quantify —one for each of the
orthogonal transmitted pulses. The radar system transmits a horizontal signal, measures the
echo polarization, transmits a vertical polarized wave and measures the polarization of that
echo. At least two Stokes vectors would then be required (Woodhouse, 2006). Since the
polarimetric measurements of the echoes are made as orthogonal measurements it is convenient
to define an alternative scattering matrix

Sw  Sw
Swv  Shn

S:

which describes the relationship between incident and scattered wave fields, rather than Stokes
vectors. Once reciprocity, Sve=Suv, has been assumed the elements of S may be stacked into a 3
element vector k=[ Svv, Suv, Suu]”. The linear basis is not always the most efficient way of
dealing with the analysis of polarimetric data, and the Pauli basis of the target vector

Kp = [SHH —Sw 125y » Sy "‘va’]T

is for many applications more useful as it helps to emphasise the phase difference between the
HH and VV terms. Double-interactions are dominated by the first term, multiple (volume)
scattering dominates the second term, and direct scattering is dominated by the second term

(Fig. 8).
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Figure 8: Different types of scattering mechanisms involved.

3.3 Analysis of the SAR scenes
We now briefly summarize how the physical radar backscatter may be modelled, and suggest
empirical models to estimate the LAI and PC90 from measured backscatter intensity values.

3.3.1 Physical backscatter modelling

Radar backscatter models are important for understanding the various influences on
backscatter, to interpret the imagery, and to estimate biophysical parameters from the imagery
using model inversion techniques. Crown scatters is considered as volume scattering, and is
usually modelled as scattering from randomly distributed, unconnected, simple
characterization of the canopy elements (discrete approach), or as a collection of point scatters
acting similar to water droplets (the water cloud model) (e.g., Ulaby et al. 1984). Distributions of
dielectric disks or cylinders representing leafs, branches or needles have been used (Durden et
al., 1989). The MIMICS model by Ulaby et al.(1990) represented needles and braches as
dielectric cylinders and leaves as dielectric rectangles. Within the canopy most models only
incorporate single scattering events. Ground reflections are often modelled as rough-surface
scatter, and trunks are generally modelled as lossy dielectric (i.e. conduction current is not
negligible) cylinders with smooth surfaces (being a smooth surface there is no direct
backscatter, and the only important influence is the ground-trunk double-bounce). Crown-
ground double bounce is also incorporated into many models, but is considered as a smaller
than direct canopy and trunk-ground backscatter.

Many physical models solve the “forward problem” in predicting the backscatter form a
number of ground-based measurements of the imaged objects. It is difficult, if not impossible, to
invert these models to provide unique solutions for LAI or PC90, since the number of
parameters describing the “ground truth” is often much larger than then number of radar
measurements in the forward problem (Freeman and Durden, 1998). Even the simple models
for backscatter as a function of LAI given by Durden et al. (1995) and Ulaby et al. (1984), is not
easy to invert.

A useful decomposition of polarimetric radar data is the Freeman-Durden decomposition
(Freeman and Durden, 1998), which is a method for fitting three simple scattering mechanisms
to polarimetric SAR observations. The mechanisms are canopy scatter from a cloud of randomly
oriented dipoles, even- or double-bounce scatter from a pair of orthogonal surfaces with
different dielectric constants and Bragg scatter from a moderately rough surface. The method
allows for decomposing the power forms of the scattering matrix so that the amount of odd-
bounce (surface), even-bounce (double bounce) and volume scattering from each averaged
group of samples can be estimated.
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3.3.2 Empirical models

Manninen et al. (2005) showed that LAI of Norway spruce and Scots pine were well explained
by the backscattering ratio VV/HH of ENVISAT ASAR Alternating-polarization (IS1-IS6) when
the LAl and ASAR are integrated to a pixel resolution of about 270x270m and using a weighted
and truncated mean (the highest 25% and lowest 25% intensity values were excluded). In their
study they obtain a coefficient of determination from the linear model

LAI = a,+a,(ow o)

as high as R?=0.78 from a single image and with a percentage of deciduous species less than
10%. However, it should be noted that the dynamical VV/HH ratio in their study had a limited
range from 0.9 to 1.2! Manninen et al. (2005) also considered estimating the LAI from multiple
images. This may be achieved using the linear model

LAl =a+b (o, / oy1) +--+ B (O 1 Ok )

where the subscript refers to image number.

We will in our study of the SAR images also apply the methods suggested by Manninen et al.
(2005). In addition, we investigate the relationship between LAI and the polarization channels
(HH, XX and VV), or a transformation of them, separately.

We consider three different methods of comparing the SAR backscatter values with the LAI
measurements:

1. In Method 1 we simply block average the LAl image and the radar backscatter
intensity image, ignoring that the LAI values may vary within a block. The
estimate of the average backscatter values was obtained using a truncated mean,
I.e. the lowest and highest o.% values were ignored.

2. In Method 2 we rank (sort) the pixel values of the LAI image, and store the
corresponding set of indices. We then divide the sorted LAI values into
segments of M values, and compute the average of each segment and of the
radar backscatter values corresponding to the indices of each segment of sorted
LAI values. Thus, we estimate the average of radar backscatter values for
indices where the LAI estimates are close in value. Please note that this method
is only suitable for analysis of the relationship between LAl and radar
backscatter, and not suitable for predicting the LAI from a given SAR image.

3. In Method 3 we average the LAI image and the radar backscatter intensity
images according to the defined segments shown in Fig. 4. The estimate of the
average backscatter values was obtained using a truncated mean, i.e. the lowest
and highest a% values were ignored.

By block averaging we refer to dividing the image into blocks of MxM pixels, and compute the
(truncated) mean within each block. Note that by setting M=1for Method 1 we compute the
pixel correspondence between the LAl image and the corresponding radar backscatter.

Analyses based on Method 3 are also performed on the PC90 image.
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A “forward” model represent the backscatter for a given polarization pq as a non-linear function
of LAI (Durden et al., 1995, Ulaby et al., 1984)

o, = F(LAI)

Now, if we have N corresponding LAI and radar backscatter measurements, it is important to
note that

%iagq E%if(mlk) + f(LAI)
k=1 k=1
where

- 1Y
LAl ==>"LAI,
N =

Hence, the relationship between the radar backscatter and LAI does not hold when we consider
average values. The inverse function LAl = f - (O' o ) is not easy to obtain, and we therefore

propose to model the LAI from backscatter values using a simple quadratic model
A 2 2 2
LAl =a, +a,0,, +8,0,, + 330,y +8,04 +8:0,, +a,0

where onn, ovw and oxx denote the backscatter with horizontal, vertical and cross polarization,
respectively. When estimating LAI from ENVISAT ASAR the cross polarization terms are of
course not included.

Least squares are applied to estimate the unknown parameters, and the fit is evaluated using
the coefficient of determination defined as

n Y. (LAIL - LAIL)?

R?=1- : —
n—p > (LA, -LAI)

where 7 is the number of observations and p is the number of model parameters.

For Radarsat-2 scenes we also apply the analysis suggest above on Pauli and Freeman-Durden
decompositions to investigate the radar signal backscatter mechanism, i.e. we model the LAI as

LAl =a, +a,P, +a,P’ +a,P, +a,P} +a,P, +a,P;

where (P1,P2, P3) =(HH-VV, HV+VH, HH+VV) in the case of Pauli components. A similar
model is also applied to the Freeman-Durden components as well.

Note that the radar data may be analysed similarly with respect to the PC90 data.
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4 Results

For all scenes the block size for Method 1 was 12x12 pixels and the segment size was 144
samples for Method 2 (if other values are not specified), and the a-value used in the truncated
mean computations was 0.1. Estimated LAI values smaller than 0 was set equal to zero.

4.1 ENVISAT ASAR

Clearly, at 20x20m resolution, both HH- and VV-polarized images contain a large amount of
speckle noise (Fig. 5). Hence, we need to increase the number of looks using Method 1, 2 or 3
before we analyse the images with respect to the LAl image.

For the ENVISAT ASAR data we present various scatter plots between for the Aug. 28 scene,
and summarized the results for all other ENVISAT ASAR scenes (Tab. 1). Method 3 was also
applied to estimate the PC90 for the radar backscatter (Tab. 2).

4.1.1 LAl modelling and prediction

Using Method 2 we compared the LAl image with the SAR image, and observed that for both
HH and VV channels the backscatter intensity was increasing for increasing values of the LAI
(Fig. 9). Note that for the HH channel the backscatter saturated for LAI values higher than 1,
whereas there was only a weak trend against LAI for VV backscatter intensity values larger
than 1.
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Figure 9: LAl versus backscatter using Method 2 for ENVISAT ASAR (Aug. 28, 2008). Left panel: HH-polarization. Right panel:
VV-polarization.

Using Method 1 we compared LAI and backscatter HH and VV and obtained noisy scatter plots

for backscatter versus LAI (Fig. 10). The coefficient of determination for HH and VV backscatter
using linear regression were as low as R?=0.26 (MSE=0.31) and R?=0.22 (MSE=0.33), respectively.
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Figure 10: LAI versus backscatter HH (right) and VV (left) using Method 1 for ENVISAT ASAR (Aug. 28, 2008). The coefficient
of determination is as R?=0.26 and R?=0.22 for HH and VV backscatter, respectively.

When we used Method 3 to estimate the LAI from backscatter HH and VV the scatter plots
were slightly less noisier (Fig. 11), and we obtained coefficients of determination for HH and
VV equal to R?=0.29 (MSE=0.33) and R>=0.39 (MSE=0.28), respectively.
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Figure 11: LAI versus backscatter HH (right) and VV (left) using Method 3 for ENVISAT ASAR (Aug. 28, 2008). The coefficient
of determination is as R?=0.29 and R?=0.39 for HH and VV backscatter, respectively

The Manninen et al. (2005) approach was also evaluated, and fig. 12 shows the scatter plots
between LAI and the VV/HH backscatter ratio using Method 1 (left) and Method 3 (right).
There seemed to be no correlation between the quantities, and the resulting coefficient of
determination for Method 1 (left) and Method 3 (right) when modelling using linear regression
is only R?=0.09 (MSE=0.22) using Method 1. For Method 3 we obtained R>=0 (MSE=0.46). The
noisiness of the scatter plots resulted in a negative linear trend between the backscatter and LAI
for Method 1 and only a weak positive trend for Method 3.
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Figure 12: Dependence of measured LAI on the VV/HH backscattering ratio using Method 1 (left) and Method 3 (right) of the

ASAR image of Aug. 28, 2008.

The best prediction of LAI from the ENVISAT ASAR images was on the average of the images
of Aug. 28 and Oct. 2, 2008 (Fig. 13) and the suggested quadratic model. The coefficient of
determination for Method 1(left) and Method 3 (right) were 0.38 (MSE=0.26) and 0.49

(MSE=0.23), respectively.
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Figure 13: LAl versus predicted LAl Method 1 (left) and Method 3 (right) on the average of ASAR images of Aug 28 and Oct.
2008. The coefficient of determination were R?=0.38 and R?=0.45.
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The results for the July 24 and Oct. 2 scenes were worse than for the Aug. 28 scene (Tab. 1).
Increasing the number of samples in each LAI cell (288 samples) did not improve the estimation
results (Tab. 1). For HH the R? increased to 0.39, but for the VV channel the R? decreased to 0.16.
The PC90 data correlated a little higher for the HH-channel (R?=0.39), and little less for the VV-

channel (R?=0.23) (Tab. 2).

4.1.2 Summary LAl estimation using ENVISAT ASAR

Table 1: Summary of LAl estimation results using ENVISAT ASAR.

Scene Model Method 1 Method 3
R-sq | MSE R-sq MSE
ASAR - Aug, 28 a0 + al*HH 0.26 | 0.31 0.29 0.33
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a0 +al*vv 0.22 | 0.33 0.39 0.28
a0 +al*(VV/HH) 0.09 | 0.22 0 0.36
ASAR - Oct., 2 a0 +al*HH 0.18 | 0.35 0.14 0.39
a0 +al*Vv 0.19 | 0.34 0.30 0.32
ASAR - July, 24 a0 +al*HH 021 | 0.33 0.22 0.36
a0 +al*vv 0.22 | 0.33 0.32 0.32
ASAR - Aug., 28+ | a0 +al*HH + a2*HH? + a3*VV +a4*V'V?2 0.38 | 0.26 0.49 0.23
Oct,, 2
ASAR - Aug, 28 a0 +al*HH 0.28 | 0.24 0.37 0.19
288 samples
a0 +al*VV 025 | 0.26 0.15 0.26
4.1.3 Summary PC90 estimation using ENVISAT ASAR
Table 2: Summary of PC90 estimation results using ENVISAT ASAR.
Scene Model Method 3
R-sq MSE
ASAR - Aug, 28 a0 +al*HH 0.35 12.2
a0 +al*VV 0.23 14.5
ASAR - Aug., 28+ | a0 +al*HH + a2*HH? + a3*VV +a4*VV2 0.43 10.3
Oct., 2

4.2 RADARSAT-II

The Radarsat-2 images seem to contain more information about the ground cover type, than the

ENVISAT ASAR images. In particular, the cross-polarized bands HV (and VH) show spatial
clustering of the intensity values (Fig. 6(a-c)). A colour image constructed using the linear

decomposition RGB = (o1, oxx, ovv) further enhances the observed spatial clustering of the
data (Fig. 6(d)). Comparing this image with the Landsat image (Fig. 1) we see that the different
colours tend to correspond to different vegetation types.

2 =
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For the Radarsat-2 data we present various scatter plots between for the Sept. 3 scene, and
summarized the results for all other ENVISAT ASAR scenes (Tab. 3). Method 3 was also
applied to estimate the PC90 for the radar backscatter (Tab. 4).

4.2.1 LAl modelling and estimation

Using Method 2 we compared the LAI image with the Radarsat-2 backscatter, and we observed
that for the HH- and VV-channels the backscatter intensity were increasing for increasing
values of LAl less than 1.5 (Fig. 14). The backscatter saturated for LAI values higher than 1.5.
For the VV-channel the backscatter intensity was increasing for increasing values of LAI but the
slope was higher for LAI values less than 1.5.

The backscatter intensity components (HH, XX, and VV) for the Sep. 3 scene were also
evaluated against LAI using Method 1 and Method 3 (Fig. 15). The coefficients of determination
using Method 1 (Fig. 15, left panels) where R?=0.50 (MSE=0.21), 0.44 (MSE=0.23) and 0.50
(MSE=0.21) for HH, XX and VV, respectively, and for Method 3 (Fig. 15, right panels) R?=0.60
(MSE=0.18), 0.50 (MSE=0.22) and 0.67 (MSE=0.15). Hence, by using Method 3 we obtained a
stronger correspondence between LAI and radar backscatter with the VV-channel as the most
predictive.
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Figure 14: LAl versus HH (upper), XX (middle), VV (lower) using Method 2 for Radarsat-2 (Sept. 3, 2008).
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Figure 15: Dependence of measured LAl on the HH (upper panels), XX (mid panels) and VV (lower panels) backscatter using
Method 1 (left) and Method 3 (right) on the R2 Sept., 3, 2008 scene.

The best predictions of the LAI from the Radarsat-2 images were obtained on the Sept. 3, 2008
scene and using the quadratic model (Fig. 16). The coefficient of determination using Method 1
(left) and Method 3 (right) were 0.60 (MSE=0.17) and 0.72 (MSE=0.12), respectively. The increase
in R? from the VV-channel only was only modest.
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Figure 16: LAl versus predicted LAl using Method 1 (left) and Method 3 (right) on the R2 image of Sept. 3, 2008. The
coefficients of determination are R?=0.60 and R?=0.72, respectively.

4.2.1.1 Pauli decomposition
The vegetation pattern shown in the Landsat image (Fig. 1) was even more revealed by the
Pauli decomposition image (Fig. 6). Please note that this image has a 20x20m resolution!

Figure 17: Color image created from the Pauli decompositions of the R-2 Sept. 3, 2008 scene. The colours are encoded as
(RED, GREEN, BLUE) = (DOUBLE, VOLUME, SINGLE).

The relationship between the Pauli components of the Radarsat-2 image of Sept. 3, 2008 versus
LAI using Method 2 showed similar patterns as for the individual backscatter intensity (HH, XX
and VV) components (Fig. 18). The first (double bounce) and second (volume) components
showed a clear non-linear trend against the LAI, whereas the third (single-bounce) component
showed more or less no trend against the LAIL As for the individual HH and XX backscatter
components the two first Pauli components saturated for LAI values greater than 1.
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Figure 18: LAl versus Pauli components (Sept. 3, 2008) using Method 2..
The Pauli components were also evaluated against LAI using Method 1 and Method 3 and

showed a clear correspondence against LAI (Fig. 19). The coefficients of determination were
using Method 1 (Fig. 19, left panels) R=0.39 (MSE=0.25), 0.41 (MSE=0.25) and 0.33 (MSE=0.28)
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for Pauli component 1, 2, and 3, respectively, and for Method 3 (Fig. 19, right panels) R?=0.44

(MSE=0.25), 0.48 (MSE=0.23) and 0.59 (MSE=0.19).
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Figure 19: Dependence of measured LAl on the Pauli components using Method 1 (left) and Method 3 (right) on the R2 Sept., 3,
2008 scene.

The best predictions of the LAI from the Pauli components were obtained on the Sept. 3, 2008
scene and using the quadratic model (Fig. 20). The coefficient of determination using Method 1
(left) and Method 3 (right) were 0.56 (MSE=0.18) and 0.70 (MSE=0.13), respectively. Hence, the
correspondence against LAI was almost equal as for the individual backscatter channels (Fig.
16).
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Figure 20: LAl versus predicted LAl using Method 1 (left) and Method 3 (right) on the R2 image of Sept. 3, 2008. The
coefficients of determination are R?=0.56 and R?=0.70, respectively.
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4.2.1.2 Freeman-Durden decomposition

Lee filtered Freeman-Durden components of the Radarsat-2 image of Sept. 3, 2008 versus LAI
were evaluated using Method 2, and the first (double bounce) and second (volume) components
show a clear non-linear trend against the LAI (Fig. 21, upper and mid panel) and saturated for
LAl values greater than 1.5. The third (single-bounce) component showed an almost linear
trend against the LAI (Fig. 21, lower panel). We also observed that due to the Lee speckle filter
the scatter plots are less nosy than Figs. 14 and 18.

The results using Method 1 and Method 3 and the quadratic model on Freeman-Durden
decompositions showed, as expected, a clear relationship between LAI and the predicted LAI
(Fig. 22). The obtained coefficient of determination were R*=0.58 (MSE=0,17) and 0.70
(MSE=0.13), respectively, which was similar to the results obtained with the individual
backscatter channels and the Pauli components.
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Figure 21: LAl versus Freeman-Durden components (Sept. 3, 2008) using Method 2. Upper panel: Double bounce component.
Mid panel: Volume scattering component. Lower panel: Single bounce component..
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Figure 22: LAl versus predicted LAl using Method 1 (left) and Method 3 (right) on the Freeman-Durden components of the R2
image of Sept. 3, 2008 and the quadratic model. The coefficient of determination were R?=0.58 (MSE=0,17) and 0.70
(MSE=0.13), respectively.

The results for the July 24 and Sept. 27 scenes were worse than for the Sept. 3 scene (Tab. 3). The
pixel-wise correspondence (1 sample) resulted is a poor fit (Tab.3), and increasing the number
of samples in each LAI cell (288 samples) did not improve the estimation results (Tab. 3). As for
ENVISAT ASAR, the backscatter ratio VV/HH was not suitable for estimating the LAI and the
coefficient of determination were for all scenes less than 0.07 (Tab. 3)!

The PC90 data correlated a little higher for the XX-channel (R?=0.67), and little less for the HH-
and VV-channels (R?=0.55, R?=0.57) (Tab. 4).

The individual Freeman-Durden components were evaluated for estimating LAI and PC90. For
both LAI and PC90, the volume scatter component was the best one (Tabs. 3 and 4). Whereas
the surface scatter component provided the worse fit. In fact, for PC90 the R? —value was only
0.08.
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4.2.2 Summary LAI estimation using Radarsat-2

Table 3: Summary of LAl estimation results using Radarsat-2

Scene Model Method 1 Method 3
R-sq | MSE R-sq MSE

R2 - Sep. ,3 a0 +al*HH 0.50 | 0.21 0.60 0.18
a0 + al*XX 0.44 | 0.23 0.50 0.22
a0 +al*Vv 0.50 | 0.21 0.67 0.15
a0 + al*HH + a2*HH? + a3*VV +a4*VV2 0.60 | 0.17 0.72 0.12
a0 + al*(VV/HH) 0.014 0.46
a0 +al*P1 0.39 | 0.25 0.44 0.25
a0 +al*P1 041 | 0.25 0.48 0.23
a0 +al*P3 0.33 | 0.28 0.59 0.19
a0 +al*P1 + a2*P12 + a3*P2 +a4*P22 + a5*P3 0.56 | 0.18 0.70 0.13
+a6*P32
a0+al*FD2 (double bounce) 035 | 0.27 0.40 0.27
a0+al*FD2 (volume scatter) 043 | 0.24 0.48 0.33
a0+al1*FD2 (single bounce/surface) 0.22 | 0.33 0.31 0.32
a0 + al*FD1 + a2*FD12 + a3*FD2 +a4*FD22 + 0.59 | 0.17 0.71 0.13
a5*FD3 +a6*FD3?

R2 --July, 17 | a0 +al*HH 0.27 | 0.31 0.35 0.30
a0 +al*XX 0.40 | 0.25 0.48 0.23
a0 +al*VVv 0.31 | 0.29 0.45 0.25
a0 + al*(VV/HH) 0.068 0.43

R2-Sep. 27 | a0+al*HH 0.08 | 0.39 0.02 0.45
a0 + al*XX 0.30 | 0.30 0.32 0.30
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a0 +al*Vv 0.13 | 0.37 0.19 0.38
a0 +al*(VV/HH) 0.011 0.41
R2 -Sep. ,3 a0 +al*HH 0.52 | 0.16 0.62 0.11
288 samples
a0 +al*XX 0.44 | 0.19 0.67 0.095
a0 +al*VVv 0.54 | 0.16 0.65 0.11
R2 -Sep. ,3 a0 +al*HH 0.062 | 0.72 - -
1 sample
a0 +al*XX 0.10 | 0.69 - -
a0 +al*VV 0.075 | 0.71 - -
4.2.3 Summary PC90 estimation using Radarsat-2
Table 4: Summary of PC90 estimation results using Radarsat-2.
Scene Model Method 3
R-sq MSE
R2 -Sep. ,3 a0 +al*HH 0.55 8.1
a0 +al*XX 0.67 5.8
a0 +al*VV 0.57 8.0
a0 +al*HH + a2*HH? + a3*VV +a4*VV? 0.72 5.1
a0 +al*P1 0.63 6.5
a0 +al*P1 0.63 6.5
a0 +al*P3 0.43 10.6
a0 +al*P1 + a2*P12 + a3*P2 +a4*P22 + 0.71 54
a5*P3 +a6*P3?
a0 +al*FD1 (double bounce) 0.60 7.31
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a0 + al*FD2 (volume) 0.67 5.84

a0 + al*FD3 (single bounce/surface) 0.082 17.3

a0 + al*FD1 + a2*FD12 + a3*FD2 0.72 5.0
+a4*FD2? + a5*FD3 +a6*FD3?

5 Discussions and conclusion

In this work we have estimated the LAI from C-band ENVISAT ASAR Alternating polarization
and Radarsat-2 Fine-Quad polarization SAR data and compared the results to LAl retrieved
from airborne LIDAR, which were regarded as “ground truth”.

Analyses of the backscatter (Method 2) revealed that the radar backscatter correlated strongly
with LAI for small values of LAI, but saturated for LAI values above 1 - 2. However, the 3rd
component (single bounce) of the Freeman-Durden decomposition showed a linear trend for
LAI values above 0.3, and the VV-channel was increasing for increasing LAI values. None of
these covariates saturated for LAI values below 4. Similar behavior of the radar backscatter
from corn, sorghum and wheat was established by Ulaby et al. (1984) where also the backscatter
saturated for LAI values above a certain value. Saturation of the radar backscatter was also
observed when compared to biomass (Dobson et al., 1992). It is expected that the LAI saturation
level is dependent of the radar frequency, as it was established for biomass (Dobson et al, 1992).
The analyses of the Method-2 scatter plots (Figs. 9, 14, 18 and 21), indicated an upper bound of
how good the LAl may be estimated from the radar data. Thus, it is not expected that Method 1
(block averaging) or 3 (averaging of homogeneous segments) would perform better than
Method 2.

Method 3 was in general better than Method 1 for both ENVISAT ASAR (Tab. 1) and Radarsat-2
(Tab. 3), indicating that the LAI values within a segment were more homogeneous than within a
square block. However, some uncertainties remain since the segments are constructed from the
LIDAR data. It is unclear how the performance would be if the segments were constructed from
a forest abundance map. Radarsat-2 data provided much better correspondence against LAI
than ENVISAT ASAR data, with a coefficient of determination as high as 0.72 for the quadratic
model (Fig. 16 and Tab. 3). However, the VV-channels performed nearly as well (R=0.67 ),
which may be explained that it does not saturate (Fig. 14, lower panel and Fig. 15, lower-right).
We were not able to reproduce the extremely good LAI predictions obtained by Manninen et al.
(2005), and the backscatter VV/HH ratio was the covariate that we obtained the worst fit against
LAI with for both ENVISAT ASAR and Radarsat-2. The reason for this in unclear, but may be
related to the careful selection of forest areas done in the work by Manninen et al. (2005).

The ability to predict the LAI varied substantially between the images. For instance, for
Radarsat-2 Sept. 3, we obtained an R?=0.60 for the HH-channel but this was R?=0.35 for July 17,
and equal to O for the Sept. 27 scene. We expect that this variation is related to factors such as
soil and vegetation moisture content. However, no in situ measurements are available to verify
this.
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There exist a few models of the backscatter as a function of LAI for forest vegetation. These
models are in general very complex, and an inverse function (i.e. a function describing LAl as a
function of radar backscatter) is more or less impossible to obtain (Freeman and Durden, 1994).
We have in this work focused on using a simple quadratic model to predict the LAI from the
backscatter measurements. We have also investigated Generalized Linear Models, but they did
not, in general, provide better fits.

The backscatter need to be averaged in order to provide usable estimation of the LAL
Comparing the pixel-wise correspondence between LAI and the backscatter resulted in low R?
values (Tab.3, 20x20m, 1 sample). Regarding the resolution of the LAI cells, 240x240m (144
samples) (similar as Manninen et al. (2005)) seemed to be a good choice for these data. We
explored lower resolution (480x480m, 288 samples) but we did not observe any better LAI
prediction (Tab. 1 and 3).

The ability to predict PC90 measurements (Tab. 2 and 4) from radar was found to be similar to
predicting LAI Also here Radarsat-2 gave better results than ENVISAT ASAR. Interestingly, we
obtained the best fit to the PC90 using the XX-component of the Radarsat-2 data.

For the limited study of the LAI estimation using ENVISAT ASAR and Radarsat-2 data we
conclude that Radarsat-2 data were much better for LAI estimation than ENVISAT ASAR data.
The VV-channel is the most suitable covariate to use, and for Radarsat-2 the VV-component
performed nearly equally well as the quadratic model with 6 covariates. We also recommend
that several SAR images are required from the sensor since the estimation results varied
considerably between the images, and that the LAI values are low or moderate.
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