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1 Introduction

Reservoir models are commonly described by a two step approach by first defining the
geometry of the facies and then populate this model with petrophysical properties, see
Damsleth et al. (1992). Simulation studies show that the facies model often is one of
the main sources of variability in flow, see for instance Skorstad et al. (2005). The spa-
tial distribution of facies is therefore a crucial part of any reservoir model. The use of
multi-point statistics for geological facies modeling was proposed nearly two decades
ago (Guardiano and Srivastava, 1993). Since then several methods have been develo-
ped and tested. At large there has been two paths of development. The statistical model
driven approach and the algorithmic approach. Markov random fields (Tjelmeland and
Besag, 1998), has been the preferred statistical model. The problem with these models is
that they are highly time consuming, both in terms of model estimation and simulation.
The algorithmically driven development has the goal to formulate a simulation proce-
dure that reproduces pattern at a limited template. This approach had a break through
by the introduction of search trees (Strebelle, 2000). These methods have been criticized
for their lack of consistency since the statistical model depends on the simulation path. A
more serious concern with the algorithmic approach is however the strong dependence
to pattern frequencies in the training image; there is not a problem with patterns that are
seen in the training image, but how the method treats patterns that are not present in the
training image. Current practice is to reduce the size of the pattern, but there is obviously
room for more advanced approaches. In this respect, methods using statistical models,
have an advantage over the algorithmic methods. The model interpolate between obser-
ved patterns to compute the probability of patterns that are not present in the training
image.

We propose to model the facies dependencies through a Markov mesh model (Abend
et al., 1965). This is a sub class of Markov random fields which is defined through a
unilateral path (Daly, 2005). The probability model is defined using the framework of ge-
neralized linear models, see McCullagh and Nelder (1989). This type of model is also dis-
cussed in Cressie and Davidson (1998), but we are explicit in the formulation of the model
and extend it to three dimensions. The formulation enables fast estimation of model pa-
rameters through iterated weighted least squares, and fast simulation by the sequential
definition. The parametrization is suited to model phenomena with a high degree of spa-
tial continuity, such as for facies structures. It captures the consistency of the modeling
approach, the speed of the algorithmic approach during simulation, and is memory effi-
cient.

This work focus on how the statistical model can be formulated and how to simulate un-
conditional realizations, the challenge of conditional realizations is discussed in Kjøns-
berg and Kolbjørnsen (2008).
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Figure 1. The illustration displays a snapshot of an unfinished simulation, where the grey cells
have not yet been simulated. The sequential neighborhood is represented by the cells within the
red border.

2 Markov mesh models

Markov mesh models are defined by a unilateral path and a conditional probability for
the value in a cell given the cell values in a sequential neighborhood. The sequential
neighborhood is a subset of previously simulated cells, illustrated in Figure 1 on a two
dimensional grid.

Consider a finite, regular grid in two or higher dimensions, and let the one-dimensional
index i label the cells of the grid. The set of all cells is {1, 2, ..., N}, where cell value xi can
take K different facies values, xi ∈ (1,K). We write the conditional probability for facies
at the cell i as

π(xi|xj<i) = π(xi|xΓi), (1)

where xΓi is the set of values in the sequential neighborhood of cell i. Markov mesh
models are fully specified through the conditional probabilities in (1), such that the joint
probability is

π(x1, x2, ..., xN ) =
N∏
i=1

π(xi|xΓi). (2)

Simulation from the model is done by following the unilateral path, i = 1, 2, ..., N , throu-
ghout the grid. For each cell the facies value is drawn according to the conditional proba-
bility π(xi|xΓi). Each cell is visited once, and the resulting grid configuration follows the
joint probability distribution in (2).

3 Model specification

The statistical model is defined by parameterizing the conditional probabilities in ex-
pression (1). Our model is based on generalized linear models (GLM), see McCullagh
and Nelder (1989). The formulation is chosen such that the parameters are efficient to es-
timate and simple to interpret. We do not claim that our model is unique in this respect,
there exist many alternative model formulations with similar characteristics.

The idea in GLM is that the distribution of a response variable depends on a linear com-
bination of explanatory variables, through a non-linear link function. In our application
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we let the facies xi be the response variable, and the explanatory variables be functions
of the sequential neighborhood. The facies xi is one of K categories, and is encoded with
binary variables xki , such that xki = 1 if xi = k and 0 otherwise. Further we let ~z be
a (P + 1) × 1 vector of explanatory variables, with elements that are functions of cells
from the sequential neighborhood. We propose particular functions below, but for now
we write zij = fj(xΓi) for some j ∈ (1, P ). The conditional probability in expression (1)
is then:

π(xi|~zi, ~θ1, ..., ~θ1) =

∏
k exp

{
~zTi
~θkxki

}
∑K

j=1 exp{~zT ~θj}
.

The joint probability in (2) is further:

π(x1, ..., xN ) =
N∏
i=1

∏
k exp{~zTi ~θkxki }∑K
j=1 exp{~zTi ~θj}

. (3)

Interpreted as a likelihood for the model parameters this expression is a GLM. The maxi-
mum likelihood estimation of the parameters in the Markov mesh formulation can the-
refore be solved with the iterative weighted least squares scheme. Details of our imple-
mentation is found in appendix A.

Although (3) is identical to the likelihood of a GLM, the assumptions that lead to them
are very different. In GLM the assumption is independence whereas in Markov mesh
we use a sequential formulation. Thus even though the maximum likelihood estimate
is identical, other properties of the estimators in GLM does not hold in general. In our
application to facies modeling this has an unfortunate effect on the volume fraction. We
account for this by a post-processing the parameter estimates explained in section 4.

3.1 Specification of the neighborhood functions
We specify the neighborhood functions, fj(xΓi) for j = 1, ..., P for a 2D model initially,
and extend this model to 3D subsequently. The continuity of facies and transitions to
other facies are the most important features of geological structures, our model descrip-
tion therefore focus on these features.

A multi-point interaction of order l is the interaction between the reference cell and a
function of the values of l−1 cells in its sequential neighborhood. A two-point interaction
thereby refers to the interaction between the reference cell and the value of one cell in its
sequential neighborhood.

3.1.1 2D specification
The two-point interactions are the simplest, and we include all two-point interactions in
a subset of the sequential neighborhood in our model. Figure 2 shows how this can be
described by the two lengths lx and ly to give interactions with 2 · lx · ly + lx + ly cells.
For each cell j among these we include an indicator function fk(xj) for every facies k,
the function is 1 if cell j has facies k and 0 otherwise. This yields one parameter for each
facies value of each cell in the sequential neighborhood, resulting in K(2 · lx · ly + lx + ly)

parameters.
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Figure 2. Illustration of the two-point interaction neighborhood. lx and ly yield the span of the
neighbourhood.

Figure 3. All possible combinations of these 5 cells are included in the model.

The challenge with higher-point statistic is that there are to many possibilities. It is not
possible to extract all properties since this would give the problem with missing patterns,
as is seen in the traditional snesim approach. However, at the same time all relevant sta-
tistics should be considered. The impact of the four nearest cells γ4

i , illustrated in Figure
3, are the most important, therefore all combinations of these are considered resulting in
K5 parameters.

For multi-point interactions at longer range, we focus on continuity and transitions of
facies. Therefore we include multi-point patterns where all cells have identical facies.
The set of cells in these patterns are chosen carefully to capture the shape and extension
of the facies object. We limit our selections to a set of directions, see Figure 4. In each
of these directions we first include the interaction with the two nearest cells, which are
three-point interaction terms. Then we increase with one cell at the time until we reach
a limit L. Illustration of these interaction terms are given in Figure 5. Let xl−1

γi be a set of
l−1 neighbors in an l-point interaction term, then the indicator function are expressed as

fk(xl−1
γi ) =

{
1 if all xj ∈ xl−1

γi = k,
0 otherwise.

For each facies and direction one such indicator function is included in our model up to
the highest interaction term of length L, this result in 8 · (L− 2)K terms.

Our explicit parametrization is easy to interpret; two-point statistics measure direct de-
pendency between cells; the nearest cells indicate preferences for particular structures at
the minimum scale; and the indicators of facies continuity promote continuity if the pa-
rameter corresponding to the same facies is large or it promote transition if the parameter
corresponding to an other facies is large.
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Figure 4. Illustration of the strips of cells where higher-point interactions are considered. Arrows
indicates the directions and in which order the number of interaction terms increases.

Figure 5. Example of higher-point interactions that are included in one of a set of directions.

Some of the functions described are redundant, for instance it is not necessary to include
two point interactions with the nearest four cells since these are covered when all configu-
rations are considered. An other situation which might occur is that a multi-point pattern
described in one of the explanatory variables, is not present in the training image; for ins-
tance all combinations of the four closest cells need not be present, or all facies need not
be continuous for all lengths included. Problems related to these aspects are solved by
introducing parameter reduction in the estimation, see appendix A.

3.1.2 3D specification
In three dimensions the number of cells in the dependency structure increases signifi-
cantly. It is far more challenging to capture the main features of the facies structures
whilst keeping a low number of interaction terms.

The advantage with sequential simulation is that all cells within the sequential neighbo-
rhood are simulated. This is in contrast to snesim which has unestablished patterns in
its template. In the snesim approach the template therefore need to be full in order to
account for all possible combinations. In our approach we take advantage of the large re-
dundancy of information in the sequential neighborhood. This means that we can ignore
some cells and still have good information about the neighborhood. By systematically
selecting the cells, we are able to keep the number of parameters from exploding.

In our selection we consider those cells located in the 2D orthogonal slices intersecting in
the reference cell i. These are cells from layers above the current layer, and cells from ear-
lier in the path in the current layer. For each of the three 2D slices we adopt the 2D model

Markov mesh model specification for facies modeling 11



Figure 6. An illustration of which cell that are included in the 3D model specification. These are
cells from three 2D slices and from four diagonal lines of cells.

above, that is, we include a similar set of interaction terms for each slice. In addition we
extend the neighborhood beyond these 2D slices by considering cells going diagonally
out in all three directions. We include four such diagonal lines of cells from which we
add the same set of interaction terms as illustrated in Figure 5. A 3D illustration of the
neighborhood is displayed in Figure 6.

In geological structures there is much similarity between consecutive layers in all direc-
tions. Therefore, we believe our choice of neighborhood to be sufficient enough to capture
the most important correlations.

An advantage with the 2D cross-section of neighboring cells is that it yields simpler in-
terpretation of the parameters since we can relate to 2D patterns.

4 Volume fraction

Reproduction of the correction facies fraction from the training image is of great impor-
tance for our application. This is not a problem in standard GLM, as long as the expla-
natory variables are generated from the same distribution as was used in the estimation.
However, since our model is defined sequentially, the response variable will be an expla-
natory variable when we move along the unilateral path. The explanatory variables in
our model are therefore not from the distribution used for estimation, unless we are able
to fully reproduce all statistics of the training image.

To reproduce the volume fraction, we adjust the estimated parameters to meet our re-
quirement. Advantageously, the model formulation enables us to select parameters that
corresponds to continuity of facies as discussed above.

We propose an iterative method where the volume fraction of a realization is measured,
and if the value is deviating from the training image the selected parameters are adjusted
by a small value. A new realization is generated based on the adjusted parameter values,
the volume fraction is computed and the parameters are again adjusted if necessary. This
process is continued until the volume fraction of the realization is sufficiently close to the
training image.

12 Markov mesh model specification for facies modeling



Training image Markov mesh realization

Training image Markov mesh realization

Figure 7. 2D training images and realizations from our 2D model.

5 Examples

First we consider two 2D binary training images, where one of them is used for a more
thorough comparison to the snesim approach. This is done in terms of visual inspection,
statistical analysis of properties within the realizations, and effect of volume fraction stee-
ring. Next we consider a 2D trinary and a 3D binary training image, and these are visually
compared to snesim.

5.1 2D binary models
Figure 7 displays two training images and the corresponding realization from the 2D
Markov mesh model. We have used a two-point interaction neighborhood of extension
lx = ly = 5 and higher point interactions of maximum size L = 8 in all directions.

By visual inspection of the results it is clear that the model reproduces similar features as
in the training images, although they are generally more rugged. The simulation direction
is revealed by the slight skewness of the pattern in the realizations.

5.2 Comparison with snesim
In the snesim algorithm we define the template size to be 60, and set the servo system
factor to fully reproduce the volume fraction, see Liu (2006). The Markov mesh model is
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Training image Markov mesh realization

Snesim no multi-grid Snesim multi-grid

Figure 8. 2D binary training image with realizations from the Markov mesh model and the snesim
algorithm.

defined on the original grid. It is therefore natural to compare it to the snesim defined
on the same grid. It is however common to use a multi-grid approach with the snesim
algorithm, NBNBref multigrid, so we include results using three multi-grids.

Figure 8 shows the results (a) the training image, (b) a realization from our model, (c) a
snesim realization on one grid and (d) a snesim realization using three multi-grids. We
clearly see the need for multi-grid in the snesim approach. The figure also suggest that
the use of multi-grids in the Markov mesh formulation might improve the results even
further.

To check how the models reproduce the correct statistics we focus on features in the
realizations. Important features of geological structures that should be reproduced are
the range of the dependency, the size and shape of objects, the number of objects and
the volume fraction. In Soleng et al. (2006) a program is described which computes these
statistics from realizations. The program detects the various facies objects and computes
their volumes, surface areas and their extensions in each direction.

We apply the facies properties program in order to compare our model with the multi-
grid snesim approach. It does not make sense to compare to snesim on one grid. We run
the program on the training image, and on 100 realizations from both methods. Statistics
are displayed in form of box-plots in Figure 9. The straight vertical line represents the
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Markov mesh realizations

Snesim realizations

Figure 9. Statistical analysis of Markov mesh and snesim realizations

training image, and the boxes span out data from the realizations. The leftmost box-plots
represent the background facies and the rightmost represents the channel facies.

The number of channel objects is higher for snesim realizations because of all the loose
ends. Consequently, the number of background objects increases and the extensions, ave-
rage area and average volume of the objects decreases. The latter measure in the box plot
is the average of the volume divided by area for each object. This gives an indication of
the smoothness of the edges of the objects. Channel objects from the Markov mesh mo-
del are slightly smoother than from snesim. The difference between the models for the
background facies is much smaller, though the plot gives a different impression because
of the difference in scale.

The general impression left by the comparison is that the distributions for the Markov
mesh model more often encapsulate the true value than the snesim realizations.
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Markov mesh without fraction steering Markov mesh with fraction steering

Snesim without fraction steering Snesim with fraction steering

Figure 10. Markov mesh and Snesim realizations with and without volume fraction steering.

5.2.1 Effect of volume fraction steering
We run both our model and the snesim algorithm with and without volume fraction
steering to see its effect. We use the training image with channels from Figure 7, which
has a 0.28 fraction of channels. Results are displayed in Figure 10

The volume fraction before steering is 0.37 for the Markov mesh model and 0.33 for sne-
sim. After steering it is 0.29 for both methods. Note that for this particular training image
snesim fits the volume fraction quite well without steering.

When the Markov mesh model does reproduce the facies fraction, we adjust the para-
meters based on their interpretation, and fit a model that yields more background facies
without loosing the continuity of the channels. For snesim, the volume fraction steering
is not concerned with the geological properties of the training image, only the global and
local facies fractions during the simulation. This results in the many loose end channels
that appear in the realizations.

5.3 2D trinary models
Here we give an example of a training image with 3 facies, background, channels and
crevasses. Again we display results of snesim with and without multi-grid, see Figure 11.
We use a template of size 60 and 3 multi-grids for snesim. For the Markov mesh model we
use a two-point interaction neighborhood lx = 7 and ly = 4. The higher point interaction
neighborhood is set to length L = 7 for all directions.
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Training image Markov mesh realization

Snesim no multigrid Snesim multigrid

Figure 11. 2D trinary training image with realization from the Markov mesh model and the Snesim
algorithm.
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The Markov mesh model produces realizations with properties that appears to be more
smooth than the snesim algorithm with multi-grid. Note that we display only parts of the
whole training image and the realizations to highlight the structure. The original training
image is four times the size of the figure displayed.

5.4 3D model
In three dimensions we use a training image with channels, displayed by three cross-
sections in Figure 12. This training image is generated by an object model. Parameter
choice for the model is set to lx = ly = 4 for the two-point interaction neighborhood and
a length L = 6 for all directions of the higher-point interaction neighborhood. For snesim
we use a template of size 80 with equal radius in all directions, and 3 multi-grids.

Simulation results are promising, see Figure 12, but a more thorough analysis indicate
that the model has problem preserving the continuity of the channels. However, compa-
red to snesim the shape and continuity of the channel objects seems slightly improved.

6 Conclusions

We have developed a Markov mesh model by using the framework of GLM. This ap-
proach yields a consistent model that enables efficient parameter estimation and fast si-
mulation. The parametrization of the model is chosen to capture the continuity of geolo-
gical structures. We have further adapted the approach such that it preserves the volume
fractions of facies by increasing the probability of facies continuity.

Test examples show good pattern reproduction. In 2D the model capture the curvilinea-
rity and continuity of the channel objects and at the same time reproduce the correct
volume fraction. In one test case we observe skewness in the simulation pattern which
might be caused by the sequential simulation path. In 3D, the model also preform reaso-
nable, but it tends to make too small objects.

When compared to the snesim approach, our model yields substantially better results
when defined in the same grid. The results obtained are comparable with those obtained
by snesim using multi-grids. In a test case our approach gives a better reproduction of
the statistics of the training image than what is observed in snesim using multi-grids.
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Training image Markov mesh realization

Snesim no multi-grid Snesim multi-grid

Figure 12. 3D binary training image with realization from the Markov mesh model and the snesim
algorithm.
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A Generalized linear models

In standard generalized linear models we assume that we have N independent observa-
tions of the model and get the likelihood function

L(~θ1, ..., ~θK ; ~Z, ~X) =

N∏
i=1

∏
k exp{~zi

T ~θkxki }∑K
j=1 exp{~zTi ~θj}

(A.1)

where ~X is a N ×K matrix of observations where the ith row contains 0-1 coding for the
ith observation, and ~Z is the design matrix of dimensions N × (P + 1) where ith row is
the set of explanatory variables corresponding to the ith observation.

Standard derivations yield the following system of equations to be solved

~ZT~xk = ~ZT ~µk(~θ1, ..., ~θK), for k = 1, ...,K,

where the vector ~µk(~θ1, ..., ~θK) is theN×1 vector of µki (~θ
1, ..., ~θK), while ~xk = [xk1, x

k
2, ..., x

k
N ]

T .
The above expressions are solved using a gradient search, which yields the iterated weigh-
ted least squares where each iteration is given by

~θkm+1 = ~θkm + (~ZT ~W k
m
~Z)−1 ~ZT (~xk − ~µk(~θ1, ..., ~θK))

for k = 1, ...,K. Here ~W k
m is an N ×N matrix of weights given by:

~W k
m = diag{(1− µk1(~θm))µk1(~θm), ..., (1− µkN (~θm))µkN (~θm)}.

This is the exact same equations which are used in our approach.

B Parameter reduction

We reduce the number of parameters by extracting the principal components of the ex-
planatory variables. This also solves the problems that occur when the design matrix is
singular.

In principal component analysis we find the eigenvalues and eigenvectors of the empiri-
cal covariance matrix through the equality

~V ~D~V T = ~ZT ~Z,

where ~V is a P×P matrix of eigenvectors and ~D is a P×P diagonal matrix of eigenvalues.

We select the P̃ < P eigenvectors ~̃V corresponding to the P̃ largest eigenvalues, and use

these to generate the reduced N × P̃ matrix ~̃Z of principal components

~̃Z = ~Z~V .
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From this set of reduced variables we estimate the corresponding parameters {~̃θ1, ..., ~̃θK}.
If we want a set of parameters which apply to the original variables, we find this by
defining

~θk = ~V ~̃θk.

It is equivalent to compute ~̃Z~̃θk or ~Z~θk since we have the relation:

~̃Z~̃θk = ~Z~V ~̃θk = ~Z~θk.
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