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1 Executive summary

The main result in this project is that we have established Markov mesh models as a viable tool
for pixel based reservoir modelling. We have developed methodology for parameter estimation,
seismic conditioning, well conditioning, and local updating in Markov mesh models. The body
of this work is documented in Stien, Kjonsberg, Kolbjernsen, Abrahamsen (2008), and is
planned for publication. The work is implemented in a computer program which is available
for project sponsors.

e The method used for seismic conditioning in Markov mesh models is an adaption of the
method used in SNESIM.

e  The method used for well conditioning in Markov mesh models is novel and is
presented in Kjensberg and Kolbjernsen (2008).

e The well conditioning approach developed in this project is also suitable for solving the
well conditioning problem that arises in SNESIM when using multigrids and subgrids.

e The approach of local updating, which also is presented in Kjensberg and Kolbjernsen
(2008), can be used to alter the model in some regions while keeping it fixed in other
regions.

Through the project we have gained insight to the algorithm SNESIM. By analyzing the
simulation algorithm of SNESIM through the eyes of a statistician we have been able to identify
weaknesses and make proposals on how this algorithm can be improved to provide better
simulation results. This work has been published in Stien, Kolbjernsen, Hauge, Abrahamsen
(2007).

We have tested the pseudolikelihood estimator for Markov random fields (MRFs). We have
concluded that this estimator is inefficient for estimation in MRF models. Other existing
methods for parameter estimation in MRF models are currently too time consuming to be
considered for reservoir models. Research to formulate efficient models and estimation
procedures for Markov random fields is currently carried out by a project-sponsored PhD
student at the Norwegian University of Science and Technology

Traditionally, the evaluation of multipoint methods is done by visually comparing facies
simulations to the training image. We have developed a novel approach for comparing the
facies simulations to the training image. This work has been published in Soleng, Syversveen,
Kolbjernsen (2006), and a program is available for project sponsors.

Multipoint methods have since their origin focused on discrete variables, i.e. the variable is
considered to be in a given class, e.g. sand or shale. We have developed novel methodology
which extends the multipoint approach to continuous variables, e.g. porosity, permeability.
This work has been published in Kolbjernsen and Stien (2008).
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2 Multipoint methods, background

Multipoint methods are a set of pixel based simulation techniques. The term multipoint is used
to stress that higher order statistics is used to capture the patterns seen in nature. This is in
contrast to the variogram based techniques such as truncated Gaussian random fields and
indicator kriging. In this sense, all methods we are investigating in this project are multipoint
methods - including the Markov random field and Markov mesh models.

Simulating a discrete pixel based random field can be looked upon as a two step approach:

1. Estimation: In the estimation step statistics from a training image (TT) is extracted. E.g.
SNESIM stores the frequency of occurrence of all patterns in the TI within a predefined
template. For Markov random field and Markov mesh models a probability distribution
is adapted to the TI using maximum likelihood estimation (MLE) or approximations to
MLE.

2. Simulation, unconditioned or conditioned: Based on the estimates, a simulation
algorithm will generate samples that aim at having the statistical properties of the TL
Furthermore, we want the simulated samples to honour well data and seismic data.

3 Markov mesh models

Markov mesh models are a subclass of Markov random fields, distinguished by the property
that they can be formulated in terms of a finite, sequential neighbourhood. This makes both
parameter estimation and simulation a lot easier and faster. For parameter estimation the
maximum likelihood can be applied directly, without the need for approximations. In addition,
simulation can be done sequentially and there is no need for iterations. In some sense the
Markov mesh models provide a combination of traditional MRFs and the SNESIM approach: A
probabilistic model is fitted to the training image, and simulation is performed sequentially,
without iterations.

A main challenge for Markov mesh models is to choose a parameterized probability
distribution. We have tested a wide range of choices within the Multipoint project. The present
choice of parametric model works well for several different training images in both 2D and 3D.
The parameterization is designed with a view to connectivity in the three spatial directions. In
addition we let the training image have direct impact on the choice of model by using principles
of data reduction in the parameter estimation.

Another challenge is data conditioning. When using sequential simulation, the update of a cell
value is conditioned on past visited cells, not on what might happen in the future, for instance
in terms of data points along the future path. This problem can be dealt with using approximate
methods or by using iterations. The Multipoint project has successfully studied both
approaches. The approximate method uses indicator kriging to take into account future data
points. The iterative method uses the approximate method to suggest new states in a Markov
chain Monte Carlo simulation, then specifies the Metrolpolis-Hastings accept probability such
that the samples are drawn from the correctly conditioned model.

In the Multipoint project we have implemented a computer program (Stien, Kjonsberg,
Kolbjernsen, Abrahamsen (2008), Kjensberg and Kolbjernsen (2008)) that can:
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e Perform parameter estimation by use of the maximum likelihood method to fit the
model to the training image.

e  Generate unconditional samples from the model.

e Generate samples conditioned on hard data (wells) and soft data (seismic), by
0 using an approximate method and sequential simulation,
0 using an exact method based on iterations.

e Perform local update of an existing realization to fit new data.

In the following we refer to this computer program as MMM (Markov Mesh Model). A few
examples of the MMM program’s abilities are presented in the following.

Figure 1 shows two examples of 2D binary training images (left) and samples generated by the
MMM program. The main features are captured well by MMM.

Training image MMM realization

—

Figure 1. Training images (left) and realizations generated by MMM (right).

Figure 2 shows an example with three facies types. The figures show the training image (left), a
sample obtained using MMM (middle), and a sample made by SNESIM (right). The simulated
samples have a lot in common with the training image, although they are generally more
rugged.
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Figure 2. Training image (left), realization generated by MMM (middle), and realization generated by SNESIM (right).

Hard data conditioning using the approximate method has been tested in 2D. Figure 3 shows
the cell-wise sand probability for a correctly conditioned model (left), obtained by rejection
sampling, and the sand probability found using the approximate method (right). In both cases
conditioning is done with respect to an isolated sand well in the middle of the figure, and the
Markov mesh model for which conditioning is done corresponds to the sample in the lower
right pane of Figure 1. The degree of similarity between the two figures in Figure 3 illustrates
that the method gives a good match.

Exact Approximate
—= 1.0
- —
— i L o5
— _F -
0.0

Figure 3. Well conditioning using MMM. An isolated sand well is located in the middle of the grid. Figures show the probability
for sand. Left: Exact conditioning obtained by rejection sampling. Right: Conditioning using the approximate method in MMM.

Local update is illustrated in Figure 4. A horizontal well was introduced along a straight line in
the middle of the figure. The facies of the well changes as we follow the well left to right. The
figure shows the sand probability obtained by re-simulating via iterations an area extending in
both directions away from the well. Conditioning is done with respect to the well and to the
part of the realization that is outside the rectangle of local update. The figure illustrates that
local update in this case conditions correctly both on the well and on the fixed part of the
realization.
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Figure 4. Local update using MMM’s iterative method. Conditioning is done relative to a horizontal well line in the center of the
figure. The figure shows the probability for sand.

The MMM program has also been tested in 3D. Based on a training image received from one of
the partners of the Multipoint project, we have estimated the parameters of a Markov mesh
model for this case. Simulation from the model gives results that are comparable in quality to
the best results of other pixel based methods.

Seismic conditioning has also been performed for this case. Figure 5 shows a comparison
between the seismic probability cube (left), showing the sand probability, and the cell-wise sand
probability obtained from 1000 samples generated by using conditioned MMM (right). The
close similarity of the two figures is evident.

Figure 5. Seismic conditioning using MMM. Left: seismic probability cube for sand. Right: cell-wise sand probabilities obtained
using the MMM program.

The Markov mesh study carried out in the Multipoint project has been successful, and has
established Markov mesh models as a viable tool for pixel based reservoir modelling. The
methods implemented in the MMM program can be improved and expanded, and more tests
and case studies should be carried out to investigate the robustness of the approach. The
Multipoint project has provided a proof of concept for this methodology.

4 Modified SNESIM

Single Normal Equation Simulation (SNESIM), developed at Stanford University, is the most
well known and widely used multipoint simulation technique. SNESIM is based on a simple
idea: Count all pattern frequencies found in the training image. Then draw a random path
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through all grid cells in the simulation grid. Follow the random path sequentially, and at each
cell draw the current cell value according to the pattern frequencies found in the training image.
The considered training image patterns are those that match the pattern of the previously
simulated cells.

The biggest challenge in the SNESIM approach is the following: As the sequential simulation
proceeds along the random path, cell values are drawn based on pattern frequencies in the
training image. However, SNESIM only considers patterns that match cell values that have been
drawn in the past of the simulation, and not patterns that take into account what might be
drawn in the future. As a consequence the simulation gets stuck into partial patterns that do not
exist in the training image. When this happens, the simulation has to start over again. If the
training image is small, this may happen frequently. As a first attempt to resolve this, SNESIM
includes a method that ignores some of the previously simulated cell values when comparing
patterns to the training image. This ensures that matches with the training image can actually be
found. The effect is that the simulation itself does not so easily get stuck, but the final samples
contain artefacts such as isolated cell values or object shapes not found in the training image.

The introduction of artefacts could be avoided by marginalizing the probabilities, i.e. take into
account all possible future draws in the simulation and compare them to the training image as
well. However, this is computationally too expensive and is probably not even a good solution
for finite size training images. We have in the Multipoint project tested an approach where we
allow previously simulated cell values to be deleted so that they have to be re-drawn (Stien,
Kolbjernsen, Hauge, Abrahamsen (2007)). Several criteria for selecting cells for re-simulation
have been tested and evaluated. Figure 6 displays a training image (left), a sample using
SNESIM (middle), and a sample using our modified SNESIM (right) where we re-draw some of
the cell values. It is quite clear that the modified algorithm avoids creating dead ends like those
seen in the middle picture, and that the sample to the right is visually closer to the training
image. This is confirmed by a statistical analysis of the image properties of the modified
algorithm, the original algorithm, and the training image.

Well data conditioning is also tested for the modified algorithm, and for the training image in
Figure 1 we can draw the same conclusions as without well conditioning. Also these results are
confirmed by statistical analysis. We thus find good evidence that the modified simulation
algorithm represents an improvement of the original SNESIM.

Training image SNESIM Modified SNESIM
m g
=~ ===

Figure 6. Modified SNESIM compared to original SNESIM. Left: Training image; middle: ordinary SNESIM; right: modified
SNESIM.
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5 Markov random field models

Markov random fields (MRFs) are a class of probability distributions on a grid. A key property
is that the probability for an arbitrary but specific cell value only depends on the cell values in a
neighbourhood, not on all other cells in the grid. The neighbourhood is symmetric around the
cell, and its size determines the possible complexity of the model. It is in general not useful to
use the full complexity allowed by a large neighbourhood, but rather select a subset of the
possible neighbourhood cell configurations to define the model.

In order to use the MRFs for modelling geological facies it is necessary to:
1. Choose a parameterized probability distribution.

2. Adapt this probability distribution to the training image using standard estimation
techniques.

3. Simulate from the adapted probability distribution.

A main challenge here is the parameter estimation. The maximum likelihood estimation is in
general very time consuming for realistic MRF models. It is therefore of importance to establish
the applicability of approximations to this method, as well as means to speed it up. During the
first phase of the Multipoint project we made an effort to investigate the usefulness of the
pseudolikelihood estimation. For a wide range of parameterized probability distributions the
pseudolikelihood estimation was performed, and simulations of the resulting model carried
out. Satisfactory replication of patterns in the training image proved to be difficult, even if some
features were captured. It is in general difficult to know whether absence of pattern
reproduction is to be blamed on the choice of parameterized probability distribution, the
estimation method, or the simulation algorithm. But based on convergence tests for the
simulations and experience with successfully choosing parameterized probability distributions
for Markov mesh models, we strongly believe that the pseudolikelihood method is the main
problem.

The maximum likelihood estimation for MRFs is presently being pursued by the Multipoint
project participants located at the Norwegian University of Science and Technology in
Trondheim. The aim is to find efficient ways of doing the maximum likelihood. This work is
part of a PhD project, and will extend until 2010.

6 Pattern comparison tool

In order to obtain objective measures for how good a particular method is in reproducing the
properties of a given training image, we have implemented a body detector and analyzer
program (Soleng, Syversveen, Kolbjernsen (2006)). This program quantifies image properties
such as global facies fractions; the number of objects; object volumes, surface areas and
extensions in the various directions. These data are extracted from both the realizations and the
training image and represented by box plots as in Figure 7. The straight vertical line represents
the training image, and the box plots contain data from 1000 realizations generated using the
modified SNESIM algorithm (left) and the MMM program (right). In each case the model was
fitted to the channel training image in Figure 1. Figure 7 illustrates that the pattern comparison
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tool can be used to compare various multipoint methods. This comparison complements the use
of visual inspection of the realizations.

SNESIM MMM
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Figure 7. Pattern comparison. Box-plots of measures obtained from the body detector and analyzer program. Left: SNESIM,
right: MMM.

7 D-vine creation of non-Gaussian random fields

The D-vine creation of non-Gaussian random fields is a novel approach to introduce nonlinear
relations for petrophysical properties such as porosity and permeability.

In current practice spatial nonlinear behaviour in petrophysical properties is introduced
through facies models such as the multipoint methods investigated in the current project.
Within each facies class the standard methodology for simulating petrophysical properties is
based on linear geostatistical methods. Traditional nonlinear geostatistical methods, such as
disjunctive kriging and indicator kriging, can be used also for nonlinear models such as the
mosaic model, but simulation based techniques do not cover these model types. In the
Multipoint project we formulate a framework that includes the linear models, but also allows
for nonlinear relations between variables (Kolbjernsen and Stien (2008)). In addition we have
developed a methodology for non-parametric estimation of the model parameters. By
introducing nonlinear behaviour we are able to capture a much larger class of models. Figure 8
shows, in the top row, a training image generated by the mosaic model (left) and a realization
from the estimated model (right). The bottom row shows the joint distribution of the cell values
for two horizontally neighbouring cells. The line in the left scatter plot is a singularity. This
singularity was not taken into account in the estimation procedure and has therefore been
smoothed out in the estimated model. The resulting distribution displays distinct nonlinear
features.
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Training image Simulation

Realization

Joint distribution,
neighbouring cells

Figure 8. D-vine random fields. Top row shows training image to the left and a simulation from the estimated model to the right.
Bottom row shows scatter plot of cell values for two horizontally neighbouring cells, C and D referring to a template numbering
of the neighbouring cells. The left panel is from the training image, and the right panel is from the simulation.
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