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1 Introduction 

The main objective of the avalRS project is to provide the Norwegian Public Roads Authority 

with avalanche inventories based on remote sensing data captured briefly after major avalanche 

events. The service is to be demonstrated in specific service case areas defined on-the-fly (i.e. 

depending on where major avalanche events will occur during the project phase) within the 

mountains of South-, West- and Central Norway. 

 

AvalRS aims at demonstrating that such a service is possible and that it will provide decision 

support during avalanche-imposed road closures, and to help validate the issued avalanche 

forecasts. Overview over the affected problem area, specifically the length of the avalanche-

affected road section and the volume of snow on the road, are essential for the authorities 

during road closures. 

 

The avalRS project is a joint project between the Norwegian Geotechnical Institute (prime 

contractor), the Norwegian Computing Center (sub-contractor) and the Norwegian Public 

Roads Authority (end-user). The project is funded by the ESA DUE (Data User Element) 

Innovator II programme (Contract No. 22139/08/I-EC). 

 

To detect and map the avalanches, we have demonstrated two different texture segmentation 

methods; one based on gray-level co-occurrence matrices (GLCM) (Haralick et al., 1973) and 

one based on directional filters (Varma and Zisserman, 2004). In our previous project report 

(Larsen et  al., 2010) we presented the results of applying these two strategies on two QuickBird 

images (from Hellesylt and Dalsfjorden, both locations in Norway). We concluded that both the 

GLCM and directional filter approaches were able to extract potential avalanche areas. The 

segmentation results indicated that the GLCM approach extracted the boundaries better than 

the directional filter approach, but struggled to separate sparse trees from avalanches. One of 

the strengths of the directional filter approach seemed to be that it was able to separate sparse 

trees from avalanches well.  

In this report we will present results from running the directional filter algorithm on three 

additional data sets: QuickBird images form Eikesdalsvatnet (Norway) and Val Gronda 

(Switzerland), as well as aerial images from Davos (Switzerland). We will first briefly 

recapitulate the methods (Section 2), which are explained in detail in the previous report 

(Larsen et al., 2010). We then present the evaluation data set (Section 3) and experimental 

results (Section 4), before we evaluate the performance and discuss necessary improvements 

together with potential solution strategies (Section 5). In Section 6 we will draw some 

conclusions. 

NGIs role in this part of the project has been to identify datasets suitable for evaluation, make 

manual outlines of avalanches (groundtruth), perform orthorectification, and evaluate the 

results. NRs contribution has been to prepare the data for input to the pattern recognition 

algorithm (which was developed by NR in the first stage of the project), run the processing, and 

evaluate the results. 
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2 The methodological approach 

In other projects with similar type of challenges, i.e., automated object detection from satellite 

images, we have obtained good results using an approach consisting of image segmentation 

into objects, followed by feature extraction and classification (Figure 2-1). Examples include oil 

spill detection in SAR images (Solberg et al., 2007), and detection of cultural heritage sites (Trier 

et al., 2009) or vehicles (Larsen et al., 2009) in high-resolution optical images. We propose using 

a similar approach for automated avalanche detection and mapping. Each processing step must 

be adjusted to meet the requirements for object recognition of the specific type, here the objects 

are avalanches. 

 

satellite 

image

feature

extraction
segmentation

mask

image/vector data

image 

objects
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Figure 2-1. Processing flow of the general approach. 

The segmentation strategy used here is based on extraction of textural features from the image. 

We apply different filters - contained in a filter bank - to the image by convolution. Each filter 

represents a certain type of texture at some characteristic scale and orientation. Then, given a 

single-band image, its filter responses can be combined into a multi-dimensional image, which 

is further analyzed to stratify the image into segments with similar texture patterns. 

Our approach is based on the so-called MR8 filter bank suggested by Varma and Zisserman 

(2004), which consists of 38 filters: an edge and a bar filter, each at six orientations and three 

scales, as well as a Gaussian and a Laplacian of Gaussian filter (Figure 2-2). Considering only 

the maximum response across orientations reduces the number of responses from 38 (six 

orientations at three scales for two oriented filters, plus two isotropic) to eight (three scales for 

two filters, plus two isotropic) - hence the name (MR8) of the filter bank.  

 

The depositional area of an avalanche is often characterized by high roughness due to 

deposition and compression of big chaotically arranged snow chunks, while in its upper part, 

the avalanche typically results in a texture pattern that has linear structures in the same 

direction as the aspect of the hill side. We have therefore modified the MR8 filter bank approach 

by selecting the same orientation of the bar and edge filters as the aspect of the DEM. 

Furthermore, since trees and tree shadows are oriented vertically in the image, we extend the 

MR8 filter bank by including six filters with vertical orientation (bar and edge filters, each at 

three different scales). Hence, our resulting texture segmentation is based on a 14 dimensional 

image. The selected scale parameters are (1.5, 3.0, 6.0) and (0.5, 1.0, 2.0) for the major and minor 

axis of the directional filters. The scale parameter for the isotropic filters is 5.0. 
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Figure 2-2. The MR8 filter bank. The figure is taken from Varma and Zisserman (2004). 

The general approach consists of a learning stage and a classification stage. In the learning 

stage, we select a set of image example areas - regions of interest (ROIs) - to represent each 

texture class. For our application we have defined five classes: avalanche, smooth snow, rugged 

snow, sparse trees, and rock. We then find a set of textons, which can be seen as example filter 

responses, by clustering the filter responses corresponding to the same class using K-means, 

and choosing the resulting cluster means as textons. All the textons from all the classes are then 

collected in a texton dictionary. We use K=10 and five classes, hence the texton dictionary 

consists of 50 textons. Next, each pixel in the training areas are labelled by classifying each pixel 

to one of the textons in the dictionary using a maximum likelihood classifier based on a 

Gaussian distribution. The histogram of texton frequencies is then used to form models. From 

the training ROIs we create a model data base, which can be used for classification of the whole 

image (from which the training ROIs were selected), and of course also for new images. I.e., for 

each pixel of an image to be classified, we select a local neighbourhood, map the pixels onto 

textons (from the dictionary learnt during training), compute the histogram and compare it 

with the models from the data base learnt during training. To compare the models, a nearest 

neighbour classifier is used and the  statistic is employed to measure the distances. The 

histograms are normalized to sum to unity. 

Figure 2-3 illustrates one of the strengths of using directional filters in our application. 

Typically, the avalanche is enhanced by applying the aspect directional filters, whereas sparse 

trees are suppressed. By applying the vertical directional filters, we obtain the opposite effect. 

For each potential avalanche region from the segmentation module, several shape, intensity, 

and context based features may be extracted, and the regions may then be classified using a 

suitable classifier. We will not discuss this topic further here, but refer to our previous report 

(Larsen et al., 2010), where we sketched some ideas regarding what sort of features to extract 

and how to perform object based classification in order to rule out marked objects with low 

confidence. 
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Figure 2-3 Left figures: Filter responses of a typical avalanche (upper left) filtered with a directional filter along the aspect 

direction (mid figure left) and vertical direction (lower left). Right figures: Typical sparse forest area (upper right) filtered with 

directional filter along the aspect direction (mid figure right) and vertical direction (lower right). 
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3 Evaluation data sets 

3.1 Image data 
In this report we evaluate the performance of the avalanche detection approach discussed 

previously on three datasets (see also Frauenfelder, 2011). The three datasets consist of: 

1. A QuickBird panchromatic image (0.6m resolution) from the area around 

Eikesdalsvatnet in Møre og Romsdal county in western, central Norway, acquired 

April 13, 2011 (Figure 3-1). 

This image contains several old, partially melted avalanches, with deposits in the forest, 

while the avalanche paths are concentrated along streams and gullies. There are also 

some fresh avalanches in the higher areas, although the illumination conditions in these 

areas of the image makes manual detection difficult.  

2. A QuickBird panchromatic image (0.6m resolution) from Val Gronda in the canton of 

Grisons, Eastern Switzerland, acquired February 25, 2009 (Figure 3-2).  

This scene contains many smaller avalanches, but not many that are fresh. There are 

also quite a lot of old avalanches possibly covered with newly fallen snow or partially 

eroded that can be seen as disturbances in the snow surface, but that have not been 

mapped manually. 

3. Aerial images from an ADS 50 S42 airborne camera covering the greater Davos area in 

Switzerland. Original ground resolution for the images is 0.2m. The avalanche detection 

algorithm assumes the input image to have 0.6m resolution (i.e., QuickBird resolution) 

and contain a panchromatic band only, but since the Davos images have an original 

ground resolution of 0.2m, they were resampled accordingly, using pixel aggregation. 

We also selected one of the four bands (red, green, blue, and NIR) at the time for 

processing. 

The Davos dataset is courtesy of Leica-Geosystems (Heerbrugg, Switzerland) and Dr. 

Yves Bühler (WSL Institute for Snow and Avalanche Research SLF) and has been 

thoroughly analyzed by Bühler (2009) and Bühler et al. (2009). This dataset is to be used 

within the avalRS project exclusively and must not be used in another study or be given 

to a third party without explicit permission by Leica-Geosystems. 

We have selected five image sections for analysis, which will be referred to as Davos A 

(Figure 3-3), B (Figure 3-4), C (Figure 3-5), D (Figure 3-6), and E (Figure 3-7). 

3.2 Orthorectification 
All images have to be orthorectified before input to the avalanche detection algorithm, since it is 

dependent on the aspect information in each pixel. Datasets 3 had already been orthorectified 

by Leica-Geosystems, using a DEM with 25 m resolution from the Swiss Federal Office of 

Topography. For data set 1 (the Eikesdalsvatnet image) we initially tried to perform 

orthorectification using a built-in module in ENVI together with manually selected ground 

control points and a 15 m DEM. However, the process did not yield satisfactory results, as the 

image contained wavelike distortions in several areas. These effects may be caused by the poor 

resolution of the DEM, and/or conditions in the orthorectification module, which acts as a 
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"black box", i.e., we do not have access to the details on how the image is processed. Instead, 

NGI orthorectified the image using PCI Geomatica. The image still contains some "problem 

areas", i.e., areas with distortions due to incomplete information during orthorectification, and 

this should be taken into account when evaluating the processing results of the avalanche 

detection algorithm on the image. Dataset 2 was also orthorectified by NGI within PCI 

Geomatica. 

3.3 Ancillary data 
As already mentioned above, the avalanche detection algorithm is dependent on the aspect 

information in each pixel, in order to select the corresponding orientation for the oriented filters 

in the texture segmentation step (cf. Section 2). The aspect orientation is calculated from the 

DEM, resampled to match the geographic coordinates of the image pixels. For datasets 2 and 3 

we used DEMs with an original resolution of 25 m, while the DEM used for dataset 1 has 15 m 

resolution. 

3.4 Training data 
The avalanche detection methods were developed on a QuickBird image from Hellesylt in Møre 

og Romsdal county in Norway (i.e., from the same part of the country as the Eikesdalsvatnet 

image) acquired on April 16, 2005. The texton dictionary and model data base were extracted 

from this image (Larsen et. al, 2010) and used as training data for the evaluation images. 
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Figure 3-1 On the left, the Eikesdalsvatnet image, with forest mask (green) and manually mapped avalanches (red outlines) 

overlaid. Purple box/upper right: the blue circles show release areas that could not be mapped with high enough certainty 

visually. Green box/middle right: circled area may contain avalanches, but is not possible to map by visual inspection due to too 

high illumination intensities. Orange box/lower right: circled area contains many old avalanche paths that have not been mapped 

since their depositional areas are all masked out by the forest mask. Source: NGI. 
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Figure 3-2 The Val Gronda image, with manually mapped avalanches outlined in blue, and forest mask (green overlay). Source: 

NGI. 
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Figure 3-3 Davos image A (red band resampled to QuickBird resolution) with manually mapped avalanches outlined in red. 

Sources: Image: © Leica-Geosystems (Heerbrugg, Switzerland) and Dr. Yves Bühler (Davos, Switzerland); Avalanche outlines: 

NGI. 

 

Figure 3-4 Davos image B (red band resampled to QuickBird resolution) with manually mapped avalanches outlined in red. 

Sources: Image: © Leica-Geosystems (Heerbrugg, Switzerland) and Dr. Yves Bühler (Davos, Switzerland); Avalanche outlines: 

NGI. 

A 

B 
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Figure 3-5 Davos image C (red band resampled to QuickBird resolution) with manually mapped avalanches outlined in red. 

Sources: Image: © Leica-Geosystems (Heerbrugg, Switzerland) and Dr. Yves Bühler (Davos, Switzerland); Avalanche outlines: 

NGI. 

 

Figure 3-6 Davos image D (red band resampled to QuickBird resolution) with manually mapped avalanches outlined in red. 

Sources: Image: © Leica-Geosystems (Heerbrugg, Switzerland) and Dr. Yves Bühler (Davos, Switzerland); Avalanche outlines: 

NGI. 

 

C 

D 
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Figure 3-7 Davos image E (red band resampled to QuickBird resolution) with manually mapped avalanches outlined in red. 

Sources: Image: © Leica-Geosystems (Heerbrugg, Switzerland) and Dr. Yves Bühler (Davos, Switzerland); Avalanche outlines: 

NGI. 
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4 Evaluation results 

In the current section we will present the results of avalanche detection on the data sets 

introduced above. In addition to a figure displaying the segmentation result for the entire 

image, we illustrate the behaviour of the algorithm with a few close-up examples by zooming 

into interesting parts of the image. For the datasets from Eikesdalsvatnet and Val Gronda, we 

show the manually detected avalanche outlines in blue overlaid on the panchromatic image of 

these close-ups, and in black overlaid on the corresponding segmentation image. The 

segmentation result is presented as an image where the coloring represents the class label given 

to the corresponding pixels, using the following color chart: 

  aavvaallaanncchhee  

  ssmmooootthh  ssnnooww  

  rruuggggeedd  ssnnooww  

  ssppaarrssee  ffoorreesstt  

  rroocckk  

  

Figure 4-1 through Figure 4-5 show results for the Eikesdalsvatnet image. Since the image 

contains several avalanches with deposits ending up in the forest, we show only results from 

processing without forest mask. Note also, as mentioned above, that some portions of the image 

were corrupted by the orthorectification process. Results for the Val Gronda image are shown in 

Figure 4-6 through Figure 4-8. 

The results for the Davos dataset are shown in Figure 4-9 through Figure 4-22. For simplicity, 

we only show results using the red band as input to the algorithm. The manually detected 

avalanche outlines are shown in white on top of both the intensity and segmentation images. 

(Note that for the Davos dataset, the segmentation result is shown as a colored layer on top of 

the intensity image, thus the colors look faded compared to the colors in the color chart). Trials 

using the different bands in turn (red, green, blue, and NIR) indicated that the red band is the 

one yielding the best performance for our application (the differences between the red and 

green bands are minor, though). 
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4.1 Eikesdalsvatnet results 
 

 

Figure 4-1 Segmentation result using the directional filter method on the Eikesdalsvatnet image (Figure 3-1). Water has been 

masked out in white. 

  aavvaallaanncchhee  

  ssmmooootthh  ssnnooww  

  rruuggggeedd  ssnnooww  

  ssppaarrssee  ffoorreesstt  

  rroocckk  
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Figure 4-2 Eikesdalsvatnet / Example 1: Panchromatic image on the left, with avalanches outlined in blue, and corresponding 

segmentation result on the right, with avalanches outlined in black. 

    

Figure 4-3 Eikesdalsvatnet / Example 2: The avalanches in this example lie partially in shadow, and large parts of the shadowed 

(dark) area are classified as rock. The classified avalanche towards the upper left actually does contain an old avalanche run. It 

had not been manually mapped because it did not contain any fresh avalanches at the time of image capture. 
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Figure 4-4 Eikesdalsvatnet / Example 3: Note the image distortions (from orthorectification) on the left in the panchromatic 

image, where manual mapping did not make sense.  

    

Figure 4-5 Eikesdalsvatnet / Example 4: The figure shows an avalanche in a very bright area of the image, where the texture 

characteristics are a bit different from the above examples. This leads to misclassification in the steep rock face and along light-

shadow edges. 
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4.2 Val Gronda results 
 

 

Figure 4-6 Segmentation result on the Val Gronda image (Figure 3-2), with the forest masked out. 

  aavvaallaanncchhee  

  ssmmooootthh  ssnnooww  

  rruuggggeedd  ssnnooww  

  ssppaarrssee  ffoorreesstt  

  rroocckk  
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Figure 4-7 Val Gronda / Example 1: The relatively poor results in this image may be caused by the fact that the avalanches are 

old and the texture not as visible in the image as in the training data. Most of the larger areas classified as avalanche snow are 

old, partly re-worked (wind erosion, new snow layers?) avalanche deposits. 

 

    

Figure 4-8 Val Gronda / Example 2: False positive avalanche. Note the rugged snow patterns (ski tracks from the lower left 

towards the middle right, and a creek bed from south-west to north-north-east) running more or less in the aspect direction.  

 

 

 

 

 



 

22 Automatic detection of avalanches in high resolution satellite data 

4.3 Davos results 
 

 

Figure 4-9 Result on Davos image A (cf. Figure 3-3). 

   

Figure 4-10 Davos image A / Example 1: The algorithm was able to successfully map the avalanches in this image. 
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Figure 4-11 Davos image A / Example 2: The avalanche in this image is darker (because it contains rock and soil particles 

entrained within this large ground avalanche) than the training data, and has been partially classified as sparse trees. 

 

 

Figure 4-12 Result on Davos image B (cf. Figure 3-4). 
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Figure 4-13 Davos image B / Example 1: The figure shows a close-up look at some of the avalanches in Davos image B and the 

corresponding segmentation result.. 

   

Figure 4-14 Davos image B / Example 2:Some of the smaller avalanches in an area with other disturbances are harder to 

detect. 
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Figure 4-15 Result on Davos image C (cf. Figure 3-5). 

   

Figure 4-16 Davos image C / Example 1: The avalanche has been detected. Note the power lines in the vertical direction in the 

image, which have been classified as sparse forest. 
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Figure 4-17 Davos image C / Example 2: In this image we see avalanches with varying intensity contrast. The darker avalanche 

(on the right in the image) has been classified as sparse forest. 

 

Figure 4-18 Result on Davos image D (cf. Figure 3-6). 

   

Figure 4-19 Davos image D / Example 1: The algorithm is able to map most of the fresh avalanches, while the old (topmost) 

avalanche in the image is only partially captured. (Note: trained only on fresh). 
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Figure 4-20 Davos image D example 2: The mapping of avalanches is rather good in image D. 

 

Figure 4-21 Result on Davos image E (cf. Figure 3-7). 
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Figure 4-22 Davos image E / Example 1: The algorithm fails to detect the part of the avalanche lying in shadow. 
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5 Discussion and potential improvements 

The presented approach, involving texture segmentation using directional filters for automatic 

detection of avalanches, performed in general well on the validation datasets. Although we 

have used a relatively small amount of training data, extracted from one Norwegian location 

(Hellesylt) only (Larsen et al., 2010), the analysis on the evaluation data showed that we are able 

to detect several avalanche regions in images with rather different conditions. However, there 

are still some challenges related to the segmentation, which will be discussed in the current 

section, in light of the close-up examples presented in the figures of section 4. 

Eikesdalsvatnet / Example 1 (Figure 4-2) shows that the algorithm is able to detect the avalanche 

areas, although it at the same time illustrates that the extraction of the shape of the avalanche is 

a challenging task. A few solutions, including region growing, was discussed in our initial 

project report (Larsen et al., 2010), and further research needs to be conducted. 

Eikesdalsvatnet / Example 2 (Figure 4-3) and Davos image E / Example 1 (Figure 4-22) 

illustrates how avalanche deposits lying in shadow may be missed by the detection, caused by 

the fact that shadow (dark) areas are often confused with the class "rock". This may indicate that 

the algorithm is too sensitive to the image intensity, and that intensity invariant texture 

properties should be considered. The method should be developed further so that detection is 

possible even in shadow or other dark areas.  

We must perform some sort of intensity normalization of the image and the filters, but it is not 

straightforward how this should be done. The oriented MR14 filters are normalized to have 

zero mean, while the isotropic filters are not. The reasoning behind letting the isotropic filters 

have non-zero mean was to separate the "rock" and "smooth snow" classes in the Hellesylt 

image (used for algorithm development) better, since initial experiments indicated that these 

two "smooth" textures were often confused otherwise. However, since the final goal is to map 

avalanche regions and discrimination between the other classes are of minor importance, the 

filter normalization should be reconsidered. Furthermore, the global conditions of the image, 

both when it comes to illumination and landscape,  also affect the classification and make the 

algorithm sensitive to the natural intensity variation between different images. One solution 

may be to perform local intensity normalization before filtering. Another answer to the problem 

may be to use topographically normalized reflectance instead of digital numbers (DN).  

When the image is corrupted due to orthorectification, the texture may become distorted, as can 

be seen in Eikesdalsvatnet / Example 3 (Figure 4-4). These effects may be caused by insufficient 

resolution of the DEM, or by factors in the orthorectification tool which lie beyond our control, 

and therefore, further discussion of this problem is beyond the scope of this report. 

Comparing Figure 4-5 (Eikesdalsvatnet / Example 4) to the above mentioned figures, we see 

that we are able to detect avalanches with different types of characteristics; the avalanche in this 

figure is in a very bright area surrounded by smooth snow, as opposed to the avalanches close 

to or inside the forest in the prior three figures. The avalanches used for training (extracted from 

the Hellesylt image) had a visual resemblance closer to the darker/forest type. In the Davos 

image A / Example 2 (Figure 4-11) and Davos image C / Example 2 (Figure 4-17) we see a third 

type of avalanche with darker areas of rock and soil material blended into the snow. In both 

examples, most of these ground avalanches have been classified as "sparse forest". Although 

there are no trees, it may be a positive indicator that the algorithm is able to separate avalanches 
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with different types of textures. A potential improvement may be to include samples from 

several avalanche classes in the training stage. 

In the Val Gronda image we see several examples of small (in terms of extent) and relatively old 

avalanches, such as the ones in Val Gronda / Example 1 (Figure 4-7), which hinders successful 

detection, both because of the poor visibility, but also because this kind of avalanches were not 

represented in the training data. Davos image D / Example 1 (Figure 4-19) illustrates clearly 

how fresh avalanches are detected, while the older avalanche in the same image is not.   

Val Gronda / Example 2 (Figure 4-8) shows a case of a false positive detection. Note the rugged 

snow patterns caused by ski tracks and a creek bed, running more or less in the aspect direction, 

having similar texture to an avalanche, which may help explain why the algorithm erroneously 

classifies this area. 

In Davos image A / Example 1 (Figure 4-10) the algorithm is able to map the avalanches fairly 

well, but we also see that areas of rock have been classified as "sparse forest". The Davos 

landscape is in many ways different than the Hellesylt landscape (e.g., there are no forest in the 

Davos images), thus the method should be trained for different landscape types - including 

different sets of class division - in order to optimize the performance. 

In general, the validation on the Davos dataset yielded better results (see especially Figure 4-10, 

Figure 4-16, Figure 4-17, Figure 4-19, and Figure 4-20) than what could have been expected 

based on the fact that both the landscape and sensor type is different from the training dataset. 

At the same time, it is reasonable that aerial images enhance the visibility of objects and textures 

(compared to satellite images), and thereby improves the result, even if the images were down-

sampled to QuickBird resolution. 
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6 Conclusions 

It was not necessarily expected that the directional filter approach would yield meaningful 

results if the validation image is covering a scene at another geographical location than the 

training image, since the vegetation and terrain may be completely different (Larsen et al., 

2010), which is the case especially for both the Swiss datasets. However, the analysis on the 

evaluation data showed that we are able to detect several avalanche regions in images with 

rather different conditions, although there are still some challenges related to the segmentation. 

The overall performance may be assessed as fairly good for the Eikesdalsvatnet and Davos 

datasets, while it is less satisfactory for the Val Gronda image. The reason may be that the Val 

Gronda image contains many small and old avalanches. 

In the current report we have discussed several ideas for improving the avalanche detection 

method. Most importantly, we have considered to develop a more sophisticated normalization 

scheme that takes local conditions and shadows into account, and to include data from various 

locations into the training stage, and perhaps to define separate class division sets and/or 

training data bases to represent different types of image data. 

So far we have only segmented the image by pixel based classification. Many of the observed 

avalanches contain connected regions of pixels classified as avalanche, but it still remains to 

solve the problem of how to combine the various connected components, i.e., to extract the 

shape of the avalanche. A related task concerns feature extraction of the mapped avalanche 

segments, and finally object classification. By combining shape related features with context 

related features, such as number of neighbouring objects, terrain aspect, etc., we believe that 

detection and mapping of avalanches could be adequately performed.  
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