

www.nr.no remotesensing.nr.no

DETECTION OF BURIAL MOUNDS IN HIGH-RESOLUTION SATELLITE IMAGES OF AGRICULTURAL LAND

Øivind Due Trier (NR), Anke Loska (NDCH), Siri Øyen Larsen (NR), and Rune Solberg (NR)

Collaborators:

The Norwegian Directorate for Cultural Heritage, NDCH (also funding) The Norwegian Space Centre (also funding) Vestfold County Administration Museum of Cultural History - University of Oslo

Outline

- Background
- Methods
 - contrast enhancement
 - template matching
 - classification experiments
- Results
- Conclusion

CultSearcher

- Software for computer assisted detection of potential cultural heritage sites
- Agricultural fields
- Soil marks
- Crop marks
- Circular patterns could be remains of burial mounds

Quickbird images

Cross section of ditch that has surrounded bronze age burial mound

Detail of Lågendalen image

RGB

Near infrared

Panchromatic

2.4 m

0.6 m

Where to look

► We only consider agricultural fields

Test data

- ► Altogether 35 rings in the two images:
 - 15 strong rings (clear visibility)
 - 10 fairly strong rings (moderate visibility)
 - 10 weak rings (poor visibility)
- ► The appearance of different rings varies greatly:
 - radius,
 - thickness,
 - gray tone intensity,
 - degree of completeness,
 - contrast to the local background

Example ring marks

Strong rings:

Weak

rings:

The contrast has been adjusted to highlight the rings

Local contrast enhancement

• The pixel value $p_{CE}(x, y)$ in the contrast enhanced image is computed as

$$p_{CE}(x, y) = \frac{p(x, y) - \mu(x, y, N)}{\sigma(x, y, N)}$$

in an $N \times N$ neighbourhood centered on (x, y).

Achieves more or less constant local contrast over the entire image.

Local contrast enhancement

Template matching

- ► A ring filter is convolved with the image
- Correlation image; pixel value indicate how well the ring filter agrees with the image when centered on the respective location

Square boundary

Circular boundary

Locating potential ring sites

Locations with high correlation

- Threshold τ :
 - correlation image > $\tau \Rightarrow$ bright ring
 - correlation image < -τ ⇒ dark ring
- The threshold τ may be adjusted by the user
 - influence true ring recognition rate vs. number of false detections

Classification experiments

- Are there features that can discriminate false positives from true rings?
- Features extracted from 4r×4r sub images (panchromatic + binary) containing ring candidates

False ring

Classification experiments

- ► Features include:
 - ring cover; overlap between binarized sub image and binary version of the ring filter
 - mean x- and y-coordinates of binarized image
 - Hu moment invariants
 - Real weighted Fourier moments
- Desicion tree classifier
- Results discourage the use of classification

Scatter plots

Flowchart of algorithm

Results

band	corr.	strong	fair	weak	true	false
pass	thresh.	rings	rings	rings	rings	rings
no	0.30	11	5	0	16	450
no	0.33	11	5	0	16	109
no	0.35	10	2	0	12	39
no	0.40	8	0	0	8	3
yes	0.35	12	3	0	15	174
yes	0.38	11	2	0	13	48
yes	0.39	10	2	0	12	31
yes	0.40	9	1	0	10	12
ground truth		15	10	10	35	

Verification

Detected rings

Verified rings

BrightDarkringsrings

Conclusion

- ► Detection of rings is a challenging task.
- Local contrast enhancement
- Template matching
- Archaeologists state that the software tool is helpful.
 - Avoid manual inspection of entire images.
 - Easy to remove false detections.

Thank you for your attention

