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1 Introduction

In the original version of the fluvial object model implemented as Facies:Channels in Irap
RMS, the position and shape of the channels are modelled as several correlated 1D Gaus-
sian fields. This means that in a vertical cross section perpendicular on a channels main
axis, the vertical position and thickness of the channel is constant. When the distance be-
tween the wells is small compared to the width of the channel, two or several wells might
penetrate a channel on almost the same position along the main axis, but with different
positions for top and bottom intersection. In such a case conditioning in the model de-
scribed above might be difficult, or impossible, and a more flexible approach is needed. A
solution is to let the top and thickness, and thereby also the bottom, of the channel across
the main axis be modelled as random functions. A model for this introdusing 2D Gaus-
sian fields is presented along with a description on how to simulate from this model. The
conditioning on well observations is described in detail. Examples from a realistic case is
presented.

2 Model description

Numerous references give a description on how the channels and crevasses within the
concept of channel belts are modelled as 1D Gaussian fields within a reservoir simula-
tion box, for instance Holden et. al. (1998). Each channel has a main direction axis. The
channel, with crevasses, is modelled within a local 3D coordinate system with this main
axis as the x-axis. The other coordinate axis are orthogonal on this in the horizontal and
vertical plane respectivally. For each x-value the channel position and size is described
by four random functions: Horizontal deviation of the center point from the main axis,
ZH , vertical deviation of center point from the main axis, ZV , horizontal width, ZW and
vertical thickness, ZT . This means that in a vertical cross section perpendicular on the
main axis, the channel has a rectangular shape. This is shown by the thin solid lines in
Figure 1.

In order to increase the flexibility in vertical position and thickness of the channel,
the rectangular shape of the channel cross section is modified through the introduction
of 2D Gaussian fields for the top and thickness of the channel. The deviation from the
original top position of the channel is given by a stationary residual field, εV (x, y), with
zero expectation everywhere. This means that the top position of the channel for a fixed
x-value, x0, is (ZV (x0) + 0.5ZT (x0) + εV (x0, y). The thickness of the channel is given by
a trend function µT (x, y) plus a stationary residual field εT (x, y) with zero expectation.
Section 2.1 describes different trend functions. The standard deviations and correlation
functions for the residual fields are specified by the user as described in Appendix A.

Figure 1 shows a schematic vertical cross section of a channel for a fixed x-value (x0).
The result of the 1D simulation is given by the rectangle. Along the y-axis the channel
is discretized by 9 gridnodes. The variation of the top position of the channel along the
y-axis is shown by thick solid lines. The bottom position appears as the thickness field
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added to the top position. In this example the thickness trend µT (x0, y) equals ZT .
Note that the side edges and the width of the channel are not inluenced by the 2D-

fields.

Figure 1. Schematic vertical cross section of channel. The original rectangular channel position is
shown with random fields for top and bottom.

2.1 Thickness trend functions
The default thickness trend for the channel is constant for a given x-value, i.e. µT (y) = ZT

This represents a rectangle in the vertical cross section as in Figure 1. However, two ad-
ditional trend functions are available when 2D simulations are invoked. These are given
by the parameter [profile] in the model file.

Let ymin = ZH − 1
2ZW and ymax = ZH + 1

2ZW define the edges of the channel in the
vertical cross section. A parable shape is chosen when the keyword ’quadratic’ is used.
In this case the thickness trend, µT (x0, y) for some x0, is given by

µT (y) = −6ZV

Z2
W

(y − ymax)(y − ymin), (1)

for y ∈ (ymin, ymax) and zero elsewhere.
A more rectangular shape that is rounded towards the edges is chosen when the key-

word ’rounded’ is chosen. In this case the thickness trend is constant for y-values that
are more than 1

10ZW away from ymin or ymax towards the center. Closer to the edges the
shape follows a third degree curve. Formally the thickness trend is given by

µT (y) =


20ZT

19 ZW

(
1− (ZW−10y

ZW
)3

)
for y ∈ (ymin, ymin + 1

10ZW )
20ZT

19 for y ∈ (ymin + 1
10ZW , ymax − 1

10ZW )
20ZT

19 ZW

(
1− (9ZW−10y

ZW
)3

)
for y ∈ (ymax − 1

10ZW , ymax)

(2)

and zero elsewhere. The constants in the expressions 1 and 2 are chosen so that the area
of the cross section in these cases is equal to the area in the rectangular case. Note that
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for both the alternative trend functions, the thickness of the channel converges to zero
towards the side edges of the channel.

Note that in the implemented algorithm the location of the side edges is not condi-
tioned on the thickness of the observation. A more correct approach would be to have a
tendency to let thin observations penetrate the channel close to one of the sides and thick
observations nearer the center.

2.2 Crevasses
One or more crevasses can be attached to the channel. The modelling of 2D-fields for
channel top and thickness do only affect the crevasse modelling through the choice of
thickness trend function described above. The crevasses are modelled as attached to the
channels on one of the sides. If the chosen trend function of the channel gives that the
thickness at the edge is zero this might give that the crevasse ends up being disconnected
from the channel as shown in Figure 2. In order to avoid this, the crevasse is prolonged
until it is attached to the actual side edge of the channel. In the case that the top of the
crevasse is above the top of the channel or the bottom of the crevasse is below the bot-
tom of the channel, the crevasse is prolonged to the center of the channel. Since channel
always erodes crevasse, the visible, and contributing, part of the crevasse will only be the
part outside the channel.

An unfortunate effect of this is that bias is introduced with respect to the crevasse-
sand fraction in the reservoir. This fraction will systematically be increased since the
crevasse objects are made larger. Further experience is needed in order to decide if this
bias is crucial.

Figure 2. Schematic vertical cross section of channel with rounded thickness trend and crevasse.

3 Simulation algorithm

The simulation of the objects from the model described in the previous section is per-
formed in two stages. In the first stage, the 1D-fields giving the rectangular shaped chan-
nels with constant vertical position and thickness are simulated by the Metropolis-Hastings
algorithm combined with simulated annealing. The crevasses are also simulated in this
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stage. This algorithm is explained in details in Holden et.al. (1998). The behaviour of the
simulations is constrained to different convergence criterias, including how well the real-
ization conditions the well data. The conditioning is performed as described in Skorstad
et. al. (1999), except that some tolerance is given on the conditioning on well observations
when 2D simulations are invoked. This is due to the fact that the residual fields are sup-
posed to perform the exact conditiong. Section 4 describes the conditioning algorithm.
Since the convergence of the Metropolis-Hastings algorithm is ensured in this first stage,
the target volume fraction will be reached at this stage. This might cause that the final
volume fraction might differ from the target since it is not accounted for in the next stage.

The second stage, giving the variability in vertical position and thickness across the
channel, is a post-process performed on one channel at the time. Due to the memory
demands in storing 2D-grids for each channel, the realization is written to file, and the
memory deallocated before the next channel is simulated. For each channel the following
procedure is performed:

1. Simulate unconditioned 2D Gaussian random functions for the residual fields

2. Add the thickness trend to the residual thickness field

3. Compute the differences between the observed values and the residual values in the
observation points

4. Perform simple kriging on the differences

5. Add the kriged values to the residual values to get conditioned 2D Gaussian fields

The next section describes how the conditioning points are found.

4 Conditioning on well observations

Figure 1 shows a well containing a channel observation. As the figure shows, the 1D fields
do not condition this observation exactly at the top and bottom. This is due to th fact that
since the vertical position and thickness of the channel is simulated in the post-process
some tolerance is given in the 1D simulations. The tolerance for the top observations is
twice the standard deviation for the top residual field. Since the bottom position is the
sum of the top and the thickness, the variance for the bottom position is the sum of the
variances for top and thickness. The tolerance for the bottom observations is twice the
square root of this variance.

The well conditioning is fulfilled by identifying and drawing conditioning points for
the channel. First, the exact top and bottom observations are identified. They give hard
conditioning points. For each hard top conditioning point (P T = (xi, yi, zi)) it must be
checked if there is a hard conditioning point that is higly correlated with a potential bot-
tom conditioning point for position (xi, yi). If not, a bottom conditioning point is drawn
at (xi, yi) from a conditional multinormal distribution given all the other bottom con-
ditioning point and P T and truncated according to the channels minimum and maxi-
mal thickness. Then the same procedure is performed for the hard bottom conditioning
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points. These steps gives an initial list of top and bottom conditioning points on which
the simulation in the previous section is performed. Highly correlated does in this setting
mean that two points have a correlation coefficient larger than 0.99.

In order to make sure that the channel does not only condition correctly the observa-
tions of the channel, but also avoids the part of the wellpaths that it should avoid, the
following procedure is performed:

1. Step through the wells and identify all points containing background observations
or observations of other objects that intersects the channel.

2. For all such points identify if they should be above or below the channel.

3. If above, the point defines an upper bound for the channel at that (x, y)-location, if
below it defines a lower bound.

4. Clean up the collection of points so that no two points are highly correlated with
other points in the list or with conditioning points identified in the initial list above.

5. For each of the points above the channel, draw a top conditioning point from a multi-
normal distribution conditioned on all the other top conditioning points and trun-
cated on the upper bound found in 3, and the minimum and maximum thickness
of the channel. If a potential bottom conditioning point at the same (x, y)-location
is not highly correlated with other conditioning points, such one is drawn from a
multinormal distribution conditioned on all the other bottom conditiong points and
the opposite top conditioning point and truncated on the minimum and maximum
thickness of the channel.

6. Perform the same as in the previous step for all the points below the channel.

If the procedure above gives new conditioning points, the steps 3-5 in the simulation
algorithm described in the previous section is repeated on the new extended set of con-
ditioning points. This iterative process is performed until the simulated channel does not
generate any conflict in wells.

This method does not generate more conditioning points than necessary in order to
fulfill the well observations. This is on average time-saving compared to first identifying
all possible conditioning points and truncation limits.

5 Examples

The following figures are taken from simulations performed with 2D-fields on a test case
from the Escanilla formation. This is a synthetic case based on a real fluvial analog out-
crop from the Ainsa Basin, Spanish Pyreenees. The parameters given for 2D simulations
to the model file are given in section 5.1.

An unconditioned realization based on realistic geological input is generated. The 15
regularly distributed wells are drilled through the simulation box. The well logs from
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this sample is the used as conditioning data for further studies. Figure 3 shows the wells
in the simulation box for the case with only channel facies (yellow) and background.

Figure 3. 15 regularly distributed wells with channel observations.

Figures 4 - 7 show the result from one random simulation based on the same prior
input as the unconditional simulation and conditioned on the synthetic drilled wells.
Figure 4 shows an example of a log from one of the wells. The solid (light-blue) line indi-
cates the body log used for conditioning, while the different colours show the simulated
channel bodies and the background facies (purple). This shows that the conditioning is
fulfilled. The result of the conditioning is also shown in Figure 5 where a vertical cross
section is taken along a plane going through 5 wells. Here it is also possible to see the
parabolic thickness trend. The picture in different cross sections is shown in Figure 6.

Figure 4. Well log showing observed bodies together with realisation from conditioned simulation.
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Figure 5. Cross section showing parabolic shaped channel and well logs.

Figure 6. Vertical and horizontal cross sections from realisation with parabolic thickness trend.

Figure 7 is taken from a simulation with rectangular thickness trend function. Only a
selection of the channels is shown to indicate the vertical variability. Note that the vari-
ability of the top surface is much smaller than the variability of the bottom surface. This
is fully in accordance with the input parameters. The apparently isolated parts of bodies
are caused by erosion by objects filtered away in the figure.

Figure 8 shows a realisation from a conditioned simulation with channels (green) and
crevasses (blue). The thickness trend in the channels is parabolic and it is clearly shown
how the crevasses are attached to the channel edges.

5.1 Model parameters
SIM2D <corrtype-thick(string)> spherical

<range1-thick(real)> 500

<range2-thick(real)> 250

<relative-sd-thick(real)> 0.4

<corrtype-depth(string)> spherical
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Figure 7. A selection of channels with rectangular trend shape.

Figure 8. Parabolic shaped channels (green) with crevasses (blue).

<range1-depth(real)> 500

<range2-depth(real)> 250

<relative-sd-depth(real)> 0.2

[profile(string)] quadratic

[simulate(string)] simulate

[rel-gridblock-size(real)] 0.5

[corr-angle-thick(real)] 0

[corr-angle-depth(real)] 0

;

6 Conclusions

The model and algorithm for increasing flexibility in vertical position and shape of chan-
nels in a fluvial reservoir model by introducing 2D Gaussian fields are presented. Pre-
liminary tests on realistic, but synthetic case studies show that well conditioning is taken
care of in a consistent manner. Crevasses are also kept attached to the channel edges to

14 Simulating 2D Gaussian fields for top and thickness of channels



ensure realism in the final realisation. The problem concerning final volume fractions de-
viating from the target is not solved. To give a full evaluation of the method, including
difficult conditioning schemes, a real field study with deviating and horizontal wells is
recommended.
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A Model parameters

The model parameters for the simulation of 2D fields are given through the model file.
The command SIM2D is given, followed by 8 compulsory (in <angle brackets>) and 5
optional (in [square brackets]) parameters. The format of the model file follows below.
The compulsory parameters defines the standard deviations and correlation function for
the two residual fields for top and thickness respectively. Note that the standard deviation
of the thickness residual field is the given parameter times the mean thickness of the
channel. The standard deviation for the top residual field is the given parameter times
the standard deviation of ZV .

SIM2D

<corrtype-thick(string)>

Description: Type of correlation function for simulation of the two

dimensional residual field for thickness that is added

to the thickness of channels.

Legal values: The text strings: ’gaussian’, ’exponential’ or ’spherical’

<range1-thick(real)>

Description: Correlation length along the channels for the residual

field added to the thickness of channels.

Legal values: Positive numbers.

<range2-thick(real)>

Description: Correlation length across the channels for the residual

field added to thickness of channels.

Legal values: Positive numbers.

<relative-sd-thick(real)>

Description: Relative standard deviation of the residual field added

to the thickness of the channels. The standard deviation

for the residual field is calculated as the productof the

number specified here and the mean thickness of the

channel.

Legal values: Positive numbers, but should usually be less than 1.0.

<corrtype-depth(string)>

Description: Type of correlation function for the residual field added

to the vertical position of the top of the channels.

Legal values: The text strings: ’gaussian’, ’exponential’ or ’spherical’.

<range1-depth(real)>
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Description: Correlation length along the channels for the residual

field added to the depth to the top of the channels.

Legal values: Positive number.

<range2-depth(real)>

Description: Correlation length across the channels for the residual

field added to the depth of the top of the channels.

Legal values: Positive numbers.

<relative-sd-depth(real)>

Description: Relative standard deviation of the residual field added

to the depth to the top of the channels. The standard

deviation for the residual field is calculated as the

product of the number specified here and the standard

deviation for the one dimensional field for vertical

displacement of the channel.

Legal values: Positive numbers, but should usually be less than 1.0.

[profile(string)]

Description: The shape type of the channel as seen in a vertical

cross section orthogonal to the channel axis. The three

choices are rectangular, parable and semi-parable

shape. They are specified by ’quadratic’ for parable

shape, ’rounded’ for semi-parable shape and ’constant’

for rectangular shape. The trend value for the thickness

of the channels is defined to be equal to the one

dimensional thickness field if ’constant’ is specified.

If ’quadratic’ or ’rounded’ is specified, the thickness

from the one dimensional field of the channel is

multiplied by a parable or semi-parable with 0 value at

the edges of the channel.

Legal values: Text string ’quadratic’, ’rounded’ or ’constant’.

Default value: The text string ’constant’.

[simulate(string)]

Description: Here the user can specify whether the two dimensional

residual grids for top and thickness of the channels

should be simulated according to the specified variogram

and conditioned or only conditioned by kriging.

Legal values: Text string ’simulate’ or ’kriging’

Default value: The text string ’simulate’

[rel-gridblock-size(real)]
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Description: The size of the grid blocks of the two dimensional grids

representing the top and thickness of channels can be

modified by this command. The grid block size along

the channels is not possible to modify here, but the

grid block size across the channel can be modified. The

specified number is a relative number and the grid block

size across the channel is this relative number times the

internally defined grid block size along the channels.

Usually this number should be equal to 1.0 or slightly

less than 1.0. If the grid resolution across the channels

should be 10 times as fine as along the channels, this

number must be specified to be 0.1. The grid block size

along the channels is determined internally by the

program and depends on the correlation length of the one

dimensional fields specified for the channels in command

CHANNEL.

Legal values: Values in the interval between 0.01 and 10.0.

Default value: 1.0

[corr-angle-thick(real)]

Description: The variogram for the thickness field can have anisotropy

not along the channels and orthogonal to the channel axis,

but in an angle relative to this. An ellipse will in

general define all the points with the same correlation

relative to the centre of the ellipse. If the correlation

along and across the channels are equal, this ellipse is a

circle, but for the case that there are larger correlation

length along than across the channels, we get an ellipse.

If the user would like that the ’correlation ellipse’

should be rotated relative to the channel direction,

an angle must be specified here.

Legal values: Angle between -pi and pi .

Default value: 0.0.

[corr-angle-depth(real)]

Description: The same description as for the parameter above, but

valid for the correlation for the two dimensional field

for depth of the channels.

Legal values: Angle between -pi and pi.

Default value: 0.0.
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