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ABSTRACT. The quantification of risk in Norwegian stocks via the normal inverse
Gaussian distribution is studied. On seven stocks quoted on the Norwegian Stock
Exchange and one quoted in New York we estimate Value-at-Risk on different time
horizons for the fitted Gaussian distribution, the normal inverse Gaussian distribu-
tion and a non-parametric model. Results are compared and discussed.

1. INTRODUCTION

The family of normal inverse Gaussian distributions, constructed more than two
decades ago by Barndorfl-Nielsen [2], has the remarkable property of being closed
under convolutions, yet at the same time able to portray stochastic phenomena that
have heavy tails or are strongly skewed. Unlike the gamma familiy it is not confined
to the positive half axis. The model is an obvious candidate for financial data, where
experience dictates that the Gaussian familiy often underestimates random variation,
even after passing to logarithms of, say prices of stocks and other securities. With
the normal inverse Gaussian distributions the financial analyst has at its disposal a
model that can flexibly be adapted to many different shapes while the distribution of
sums of independent random variables are still trivial to compute.

Applications in finance have been reported in several papers, for example Barndorff-
Nielsen [3], Rydberg [14] and Prause [11]. The purpose of this article is to investigate
this model as a tool to evaluate the uncertainty in future prices of stock listed on the
Norwegian Stock Exchange in Oslo. For comparison we shall also consider a Norwe-
gian security quoted in New York. Chiefly among the questions to be addressed is
how well the normal inverse Gaussian family fits share prices at one of the smaller
financial communities of the world where trading is relatively low and where the flow
of information may differ in nature from what it is at larger financial centra? How
much bias is introduced by postulating that the day to day fluctuations follow a nor-
mal inverse Gaussian distribution, which can not possibly be correct? How much data
are needed to estimate the parameters of normal inverse Gaussian models sufficiently
accurate for Value-at-risk evaluations?
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Our framework are perfect markets where the changes from one day to the next
are independent of what has happended before. This means that we are imposing
Lévy processes or, in discrete time, random walk models. A brief discussion of these
models is given in Section 2.1 below. Note the usefulness of the convolution prop-
erty in this context. If Value-at-Risk are sought over longer time horizons, we can
simply plug in the appopriate member of the normal inverse Gaussian familiy, with
parameters depending on the time interval in question. Other ways of evaluating
Value-at-Risk will have to perform some sort of numerical integration to achieve the
same thing. It is outside our brief to compare the normal inverse Gaussian approach
to other proposals in the literature, for example the ideas in Embrechts, Kluppelberg
and Mikosch [9], who employ Extreme Value Theory and generalised Pareto distri-
butions. In the next section the normal inverse Gaussian family of models and its
statistical inference will be introduced in a tutorial manner. Value-at-Risk evaluation
will be considered in Section 3, and eight different Norwegian securities studied in
Section 4.

2. MATHEMATICAL AND STATISTICAL MODELLING

2.1. Lévy processes. A Lévy process L; is a time-continuous stochastic process with
independent and stationary increments; for every t > s > 0, L; — L is independent
of L, and its distribution depends only on the time increment ¢ — s and not on ¢
or s. Classical examples are Brownian motion and the Poisson process. Except for
Brownian motion, the paths of a Lévy process have jumps at random time points, and
that is precisely what goes on in a market of securities if we take the view that the
value is the price agreed last. But the Lévy model also imposes serious restrictions.
The sizes of the jumps, whether positive or negative for example, have no relation to
the price level reached, and the continuous time viewpoint forces the distribution of
the increments L; — L, to belong to the infinitely divisible ones; e.g the distribution
must for every n be the n-fold convolution of some other distribution. There are not
too many models with this property around, but the normal inverse Gaussian family
is one of them.

Arguably there is no lower limit as to how close in time two different tradings can be
completed, but in practice it is common to pass to a discrete viewpoint and track the
stock price at some sequence of equidistant points in time. If a very fine resolution is
used (say seconds!) the distribution of the increment L; — L, will have a huge atom
at the origin ('no trading’), but when we deal in terms of days and liquid shares,
a purely continuous distribution, without atoms, may be in order. Experience also
dictates that it is reasonable to relate the stock price S; to the Lévy process L; trough

(2.1) S = Soexp(Lt),
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known as a Geometric Lévy process. The ratio of prices at ¢ and ¢ — A now becomes
(22) lﬂ(St/S(t_A) = Lt - Lt_A,

and we pass in a discrete time to an ordinary random walk based on independent
increments X; = L; — L;_a, the distribution of which being our modelling tool. In
this paper the distribution of X; will be assumed to belong to a specific parametric
form.

2.2. The normal inverse Gaussian distribution. A random variable X follows a
normal, inverse Gaussian distribution with parameter vector (p,d, o, 3), in symbolic
notation X ~ NIG(u,d,a, 3), if its probability density function is

(23) nig(;l:;,u,é-,oz,ﬁ) = 5_1nig(%;0,1,a,5)

where

_— o« 5 5 Ki(a/1+ 22)
(2.4) nig(z;0,1, o, 3) - exp(x/a 5%+ /82) Ao
Here K is a modified Bessel function of the third kind with index 1; see Section 2.3
below. Note that g and § are ordinary parameters of location and scale whereas o and
(3 determines the shape of the density; i.e. if X ~ NIG(u,d,a, 3), then Z = (X —pu)/é
is the standardized version NIG(0,1, o, 3). We have chosen to parametrize the family
as suggested in Barndorfl-Nielsen [3], but different from many other papers, notably
Rydberg [14], where a and 3 have a slightly different meaning. It is in our view more
transparent to let the shape of the density be determined by exactly two of the four
parameters. The conditions for a viable density is § > 0, a > 0 and |3|/a < 1.

The mean, variance, skewness and kurtosis of X are

B/
(1= (3/a)7
1
(1= (B/a)?)3/2

ew = 3a /4 ﬁ/a
Shew ] =30
— 34172 1+4(3/a)?
)
[

E[X]=p+4

Var[X] = §%a7t

Kurt [X]

(1= (B8/a)?)'/?

?e§§kf§ [tX] = B[(X=FE[X])*]/(Var[X])** and Kurt[X] = E[(X —E[X])*] / (Var[X])*~
oo Skew[X]* _ 3(3/a)?
Kurt[X]  14+4(8/a)?’

so that 3
Kurt[X] > 0 and |Skew[X]| < gKurt[X],



4 BOLVIKEN AND BENTH

(since |B|/a < 1). There is thus a bound on the skewness relative the kurtosis, and
the tails of the distribution is always heavier than those of the normal (which has
zero kurtosis). In fact, (see e.g. [3]),

nig(z; @, B, 1, 6) ~ k||~ exp(—(a/6)|x| + (8/6)x) , when |z| — oo,

where k is a positive constant. Heavy tails is hardly any practical restriction in em-
pirical finance. The distribution converges to the normal as o — oo (if § o al/?)
whereas the Cauchy distribution appears as the opposite limit as @ — 0. The param-
eter 3 determines the degree of skewness. For symmetrical densities g = 0.

An important property of the the family of normal inverse Gaussian distributions
is its behaviour under convolutions. Suppose X; and X3 are independent and dis-
tributed as NIG(u1, d1, a1, #1) and NIG(pu2, d2, ag, B2) respectively. Then, X; + X3 ~
NIG(p1 + p2,01 4 82,010 + a2, 31 + B2), provided «1/8; = ay/dy. In particular, any
sum of independent and identically NIG-distributed random variables is also NIG-
distributed. By appealing to the central limit theorem the result underpins the earlier
claim that the normal distribution will eventually appear, as a grows. If logreturns
follow a random walk, as suggested in Section 2.1, see (2.1) in particular, one would
expect logreturn data to behave more like normal ones over longer time spans. For
example, Eberlein and Keller [6] conclude that the normal distribution is appropriate
for monthly logreturn data, but reject this distribution for daily or weekly logreturn
datal.

The normal inverse Gaussian distribution can be generalised with a fifth parame-
ter to the so-called generalized inverse Gaussian distributions; see e.g. Rydberg [14].
Eberlein and Keller [6] used a subfamily called the hyperbolic distributions to study
logreturn data from the German stock market (see also [7] and [12]).

2.3. Fitting normal inverse Gaussian models. It is easy to see from the preceed-
ing discussion that the expressions for E[X], Var[X], Skew[X] and Kurt[X] can be

inverted to yield a unique set of parameters (p,d, o, 3). For example, the ratio 5/«

is determined from (SkeW[X])Q/Kurt[X], and the others then follow readily. This
means that the so-called method of moments is available to estimate the parameters
from a given sample xy,... ,z, of normal inverse Gaussian distributed random vari-
ables. The mean, variance, skewness and kurtosis are then replaced by their sample
versions and the four equations are solved for o, 3, 4 and §. Such equations are un-
wieldy in many other situations in statistics, but here they are straightforward, and
the whole operation is numerically so simple that the Bessel function does not have
to be evaluated at all.

!Their study was performed on German stocks. See the references in [6] for empirical investiga-
tions of US stocks
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There is, however, reason to be suspicious of the quality of such estimates based
on higher order sample moments, and there is, of course, no guarantee that these
sample moments satisfy the restrictions laid down by the normal inverse Gaussian
family at all, so that the moment equations have actually a solution. Likelihood
estimation seems a better, albeit more complicated alternative. This method was
suggested in Blesild and Sgrensen [5] and Rydberg [14]. The former used the method
of steepest descent to maximize the likelihood surface whereas the latter found a zero
of the differentiated likelihood functions. The numerical literature (for example Gill,
Murray and Wright [10]) usually recommends other approaches. Prominent are are
the two classes of optimization methods known as the variable metrics and the con-
jugated gradients. We have tested both on the data in the next section. Both worked
well when properly implemented, but the variable metric method (BFGS version)
converged faster and is our recommendation.

Either of these approaches require the evaluation of the log-likelihood function

(2.5) o, B,11,8) = Y log(mig(ws; 1, 8, 1, 3))

=1
and its partial derivatives with respect to the parameters. The evaluation of the Bessel
function K (z) and is derivative is then required. There exist countless representations
of these functions; see Section 9.6 of Abramowitz and Stegun [1], for example,

(2.6) Ki(z) = Z/ eIt — 1 dt
1

from which it can be proved that
(2.7) Ki(2) = —27"K(2) — 272 Ko(2)

where Ko(z) = floo e " (t? — 1)_1/2 dt. Subroutines for the evaluation of Ky and K
are available in the Numerical Recipe library, see Press, Teukolsky, Vetterling and
Flannery [13].

3. VALUE-AT-RISK

We define the concept of Value-at-Risk according to JP Morgans RiskMetrics: The
logreturn from the stock S; at time ¢ is Ly = In(Sy/Sp). If p is a specified level risk
tolerance, the Value-at-Risk for S; at time ¢ is

(3.1) VaR,(8;) = E[L] — q,(1)

where g,(t) is the p-quantile of L;. In the standard stock price model, L; = vt + o B;
for a Brownian motion B; with drift 4 and volatility . In this case we recover the
well-known formula for Value-at-Risk

(3.2) VaR,(5;) = epaﬂ
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where ¢, is the p-quantile of a standard normal distribution. It is of interest to com-
pare the Value-at-Risk estimate in the standard model with that of a normal inverse
Gaussian model. We expect the two estimates to converge for large time horizons. To
explain this, let ; be normal inverse Gaussian distributeed with parameters o, 3,
and 6. Then by the convolution property the logreturn at time ¢ is distributed as
L; ~ nig(x; at, 5t ut, 6t), and thus

E[L] = (M‘F\/%) 1

o
When ¢ increases, we know that L; tends to a normal distribution. In fact for large
t, we approximately have

LtNN<<,LL‘|‘

Var [Lt] =

o 6%a? )

/a2 _52) b ( /a2 — 3?)3 K

Hence, if we are able to fit perfectly both a normal inverse Gaussian and a Gaussian
model to the same set of data, the corresponding Value-at-Risk estimates will be
nearly identical for large time horizon. However, on shorter time scales there will be
a significant difference between the two Value-at-Risk estimates.

4. EMPIRICAL STUDY

4.1. Summary description and fit. We have used eight Norwegian stocks as ba-
sis for an empirical evaluation of the normal inverse Gaussian model. Seven of them
(Agresso, Bergesen, Den norske Bank, Kreditkassen, Merkantildata, Norsk Hydro and
Petroleum Geo-Services) are quoted on the Oslo Stock Exchange while the eight (also
Norsk Hydro, but now denoted Norsk Hydro (NYSE) ) was taken from the notations
in New York. The returns from the former group of seven papers were end-of the-day
prices from October 16, 1997 until November 17, 1999, that is 506 different values.
The data from New York was longer, lasting from January 2, 1990 until December 31,
1998, a total of 2274 notations, all at closing time. When dealing with increments,
all series become one unit shorter. All analyses below are in terms of log-returns and
assume the stock prices to follow a random walk.

The first part of the analysis is a summary description of the data and an evalu-
ation of the fit. The estimates of the parameters are shown in Table 1 with estimates
of their standard error obtained by the bootstrap technique explained in 4.2 below.
We have in Figure 1 converted the estimates of the shape parameters a and 3 to an
alternative, more pictorial form sometimes used. Introduce

(4.1 f=(1+va—g) ", x=L¢

o
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Here (x,€) 0 < |x| < £ <1 (since |B] < @), and the line x = 0 divides the triangle in
two parts according to the orientations of skewness, distributions skewed to the right
(left) being on the right (left) hand side. The vertical middle linex = 0 (where 3 = 0)
represents symmetric distributions, the normal being approacherd as £ — 0 and the
Cauchy as £ — 1. The general picture is that of a phenomenon with considerably
higher variability than the normal (¢ being a good deal greater than 0) whereas a
possible skewness in the original increments evidently has been removed by passing
to logarithms. The variability in £ among the various papers reflect an underlying
volatility that seems to differ between some of the shares.

This comes out in Figure 2, as well, where the estimated normal inverse Gauss-
ian densities have been plotted against non-parametric estimates (obtained from the
kernel method with a Gaussian kernel; see Silverman [15]). Note that the scale of the
vertical axis has been made logarithmic, so that the normal density would come out
as a parabola. The fit of the fitted normal inverse Gaussian distributions is excellent
everywhere. The discrepancies at the extreme tails can be explained by larger random
error of the non-parametric estimate in these regions.

4.2. Value-at-Risk. Using normal inverse Gaussian models to evaluate Value-at-
Risk raises the objection that the estimated model is a compromise fit over the whole
range of variation whereas value at risk deals with the left tail. However, with time
horizons longer than one time unit, for example 5 or 10 days, as below, one does need
the whole distribution to compute the five-fold or ten-fold convolution. The question
is how much bias the normal inverse Gaussian assumption will bring and how large
this effect is compared to the random variation. This, in turn, depends on how long
the historical records are; i.e. how far back experience is deemed to be of relevance
for the uncertainty of the future. The answer is, of course, also influenced by the
percentile in question.

Consider Value-at-Risk at 1% and compare evaluations based on the normal familly,
the normal inverse Gaussian family and a purely non-parametric approach. The
latter uses, for each stock, the empirical distribution function I of the observered
increments of logreturns as the estimate of the underlying distribution function F.
The precise definition of [ is as the distribution function assigning probability mass
n~! to each observered difference z;. To compute Value-at-risk ¢ days ahead under this
distribution, ¢ increments were drawn with equal probabilities and with replacement
from the set {x1,...,2,}. Their sum is then a realisation of the random walk over
t days under F. When this operation is repeated a large number N times, the 1%
smallest is an approximation to the lower 1% percentile. The results reported are
based on N = 100000 times repetitions, which is large enough for the impact of
the Monte Carlo error to be negligible. The method was used even for { = 1 as
a convenient device to circumvent that the exact 1% percetile of F' is not precisely

defined.
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The uncertainty of all the Value-at-Risk estimates was assessed by non-parametric
bootstrapping; see Effron and Tibshriani [8]. Artifical data are then sampled from
the estimate F of the true distribution function F and the computations leading
from the real data zi,...,z, to the estimate of the Value-at-Risk is copied ezactly on
the Monte Carlo data. When the latter operation is repeated, we can estimate the
standard error of the Monte Carlo estimates and obtain a picture of the uncertianty
of the original estimate. The method has the advantage that no assumption on the
underlying distribution is imposed. With the Model Carlo estimate the approach
implies a nested sampling scheme, but sampling from F'is so fast that the computer
time is still minor. The number of Monte Carlo samples was 50.

The Value-at-Risk estimates are shown in Table 2. Note that the normal ones are
consistently lower than the two others, consistent with the tails in Figure 1 being
heavier than the normal. There is no consistent pattern of difference between the
two other estimates, and this supports the normal inverse Gaussian model as suitable
for Value-at-Risk evaluations. Note, however, the much higher variablity of the non-
parametric estimates. We have not investigated the reason for the uncertainty of the
latter varying so little with the time horizon ¢, but it seems that the underlying exact
function must grow very slowly.

A final aspect is how long historical records must be for the estimation of the param-
eters of a normal inverse Gaussian model to be sufficiently accurate for the Value-at-
Risk estimate to be a reliable guide of future uncertainty. To obtain a partial answer
we divided the available data into periods about a half year each (corresponding to
around 125 logreturns increments). That gave four different set of notations for each
of the seven stocks from the Oslo Stock Exchange and twenty for the one from New
York. The corresponding Value-at-Risk estimates are plotted jointly in Figure 3 for
a period of up to a month. The dotted curves are based on all available data; e.g two
years for the Norwegian notations.

The results were not quite as expected. In all of the seven Norwegian cases the Value-
at-Risk assessments based on half year data are consistently lower than the curves
based on all data. There is no bug! The likelihood estimates of the parameters of
the normal inverse Gaussian distributions were carefully checked to represent (local)
maxima on the log likelihood surface with zero derivatives(in some cases the iteration
converged to an infinte o corresponding to a Gaussian model). We also tried to find
other local maxima by starting the iteration elsewhere, but without success. In other
words, this rather peculiar phenomenon is real and is caused by huge upward bias in
the estimates of a for half-year data, which undervalues the uncertainty of the stock.
Note the completely different behaviour of the notations in New York. It is tempting
to speculate that the could be some systematic differences between the two sites, but
the results need to be backed up by Monte Carlo studies based on artificial data.
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Stock i ) a Bla

Agresso 20,0028 (0.003) | 0.033 (0.010) | 0.64 (0.6) | 0.047 (0.09)
Bergesen 200067 (0.003) | 0.025 (0.004) | 1.25 (0.6) | 0.210 (0.09)
Den norske Bank 0.0005 (0.001) | 0.019 (0.002) | 0.55 (0.2) | -0.028 (0.09)
Kreditkassen 0.0001 (0.001) | 0.020 (0.002) | 0.49 (0.2) | 0.028 (0.09)
Merkantildata 200031 (0.003) | 0.034 (0.005) | 0.85 (0.3) | 0.018 (0.09)
Norsk Hydro -0.0039 (0.009) | 0.034 (0.025) | 2.81 (9.0) | 0.096 (0.12)
Norsk Hydro (NYSE) | -0.0006 (0.003) | 0.015 (0.001) | 0.86 (0.1) | 0.047 (0.05)
Petroleum Geo services | -0.0048 (0.004) | 0.041 (0.007) | 1.07 (0.5) | 0.083 (0.08)

TABLE 1. Estimated parameters in the normal inverse Gaussian distri-
bution for eight Norwegian stock; estimated standard error in paren-
thesis

1.0
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[28
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0.0

-1.0 -0.5 0.0 0.5 1.0
chi

FIGURE 1. The estimated normal inverse Gaussian distributions plot-
ted in the shape triangle. The numbers corresponds to the ordering of
the stock in Table 1.

5. CONCLUSION

The normal inverse Gaussian distribution is a very flexible family of distributions
enjoying the convolution property. With only four parameters it captures stylized
facts like heavy tails and skewness observed in the marginals of financial time series
data. By using sophisticated numerical optimization techniques, likelihood estimation
of parameters in the normal inverse Gaussian distribution can be calculated efficiently
and reliable, making it admissible for financial applications. We have demonstrated
for seven stocks quoted on the Norwegian Stock Exchange and one quoted in New
York that the normal inverse Gaussian distribution fits logreturn data nearly perfectly
both in the tails and in the center, clearly outperforming the normal distribution.

Value-at-Risk with 1% risk tolerance was estimated for all eight stocks using the
normal inverse Gaussian, normal and a non-parametric model. The comparison of the
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Agresso Bergesen
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FIGURE 2. The fitted normal inverse Gaussian densities (solid lines)
against non-parametric estimates (dots). Logarithmic scale on vertical
axix.

three models was performed on a time horizon ranging from 1 day to nearly a month.
The normal distribution gave consistently too optimistic Value-at-Risk estimates for
all stocks in question compared to the non-parametric estimate. This is expected in
view of the poor fitting of the tails. The normal inverse Gaussian distribution, on the
other hand, seems to be closer to the non-parametric Value-at-Risk estimate. We also
calculated the standard error based on bootstrapping techniques. The estimates from
the non-parametric model showed high errors, both relative to its estimated Value-at-
Risk and to the two other statistical models. This clearly indicates the uncertainty
(and danger!) connected to Value-at-Risk estimation for percentiles far out in the
tails.

By going through the same analysis on data divided into periods about half a year
each, we found a huge upward bias in the estimate of a for the seven Norwegian stocks.
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1 day 5 days 10 days
Stock VaR 1% VaR VaR VaR
nig 0.113 (0.013) 0.226 (0.021) 0.311 (0.024)
Agresso normal  0.095 (0.005) 0.208 (0.014) 0.290 (0.025)
non-par. 0.104 (0.040) 0.211 (0.041) 0.291 (0.041)
nig 0.056 (0.004) 0.119 (0.007) 0.168 (0.009)
Bergesen |normal  0.054 (0.003) 0.116 (0.009) 0.160 (0.014)
non-par. 0.060 (0.023) 0.124 (0.023) 0.173 (0.123)
Den nig 0.074 (0.005) 0.147 (0.009) 0.200 (0.011)
Norske normal  0.060 (0.003) 0.133 (0.008) 0.188 (0.014)
Bank non-par. 0.073 (0.022) 0.139 (0.023) 0.192 (0.023)
Kreditt- | nig 0.081 (0.008) 0.160 (0.014) 0.219 (0.017)
kassen normal  0.067 (0.004) 0.152 (0.012) 0.216 (0.020)
non-par. 0.089 (0.029) 0.161 (0.030) 0.219 (0.032)
Merkantil- | nig 0.093 (0.009) 0.192 (0.013) 0.268 (0.017)
data normal  0.087 (0.005) 0.197 (0.014) 0.283 (0.023)
non-par. 0.081 (0.037) 0.204 (0.037) 0.277 (0.037)
Norsk nig 0.049 (0.004) 0.106 (0.005) 0.149 (0.007)
Hydro normal  0.047 (0.002) 0.103 (0.007) 0.144 (0.012)
non-par. 0.045 (0.023) 0.106 (0.022) 0.140 (0.022)
Norsk nig 0.044 (0.002) 0.089 (0.003) 0.124 (0.004)
Hydro normal  0.039 (0.001) 0.087 (0.003) 0.123 (0.005)
NYSE non-par. 0.043 (0.014) 0.093 (0.015) 0.127 (0.016)
Petrolem | nig 0.101 (0.007) 0.209 (0.012) 0.291 (0.015)
Geo normal  0.091 (0.005) 0.199 (0.014) 0.277 (0.024)
services non-par. 0.105 (0.041) 0.210 (0.039) 0.294 (0.039)

TABLE 2. Estimates of 1% Value-at-Risk from fitted inverse normal
Gaussian and ordinary Gaussian models and from a non-parametric
procedure; estimated standard error in parenthesis.

This led to significantly lower Value-at-Risk estimates than the corresponding Value-
at-Risk based on the complete dataset. Interestingly, the same phenomenon was not
observed for the New York stock. Here, as one would a priori expect, Value-at-Risk
based on subsets of data enveloped the estimate from the full data series.
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