

SnowLab

A System for Automated
Snow Product Generation

Software documentation

Note no SAMBA/20/06

Authors Jostein Amlien
Hans Koren
Line Eikvil
Rune Solberg

Date 12 December 2006

Norsk Regnesentral

Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-profit
foundation established in 1952. NR carries out contract research and development projects in
the areas of information and communication technology and applied statistical modeling. The
clients are a broad range of industrial, commercial and public service organizations in the
national as well as the international market. Our scientific and technical capabilities are further
developed in co-operation with The Research Council of Norway and key customers. The
results of our projects may take the form of reports, software, prototypes, and short courses.
A proof of the confidence and appreciation our clients have for us is given by the fact that most
of our new contracts are signed with previous customers.

 3

Title SnowLab - Software documentation
Authors Jostein Amlien

Hans Koren
Line Eikvil
Rune Solberg

Date 12 Dec 2006

Year 2006

Publication number SAMBA/20/06

Abstract

This note is a documentation of the SnowLab software system for the automatic generation of
snow related geophysical products from MODIS satellite data. The system is designed for the
daily generation of Snow Covered Area (SCA), Snow Temperature Surface (STS), Snow Grain
Size (SGS), and Snow Surface Wetness (SSW). In addition, the cloud cover is generated for
masking purposes.

The generated products can be categorized as basic products or as derived products. The basic
products are generated from one satellite pass only. The derived products are generated from
more than one pass, usually based on the basic products. The derived products part also
includes multi-sensor functionality. The basic products are SCA, STS and SGS. The derived
products are SSW and an improved SCA.

The software system is designed as a production chain, implemented in IDL/ENVI, and runs on
a Linux platform. It takes care of the whole process from downloading of MODIS data to the
final products are generated.

Keywords Snow products, geophysical parameters, SCA,
STS, SGS, SSW

Target group Snow hydrologists, hydropower companies

Availability Open

Project number 236 065

Research field Remote sensing

Number of pages 41

© Copyright Norsk Regnesentral

 SnowLab software documantation 5

Contents

1 System overview.. 7
1.1 Purpose ... 7
1.2 System architecture... 7

1.2.1 Modules.. 7
1.2.2 Main process.. 8
1.2.3 The framework ... 9

1.3 Overview of the system modules and their main functions... 9
1.3.1 Import module .. 10
1.3.2 Basic products module... 10
1.3.3 Geometric correction module... 10
1.3.4 Derived products module ... 10
1.3.5 Export module .. 10

1.4 Outline of the production chain.. 10
1.5 Snow parameter retrieval algorithms .. 12
1.6 Derived product algorithms ... 13

2 System Operator’s Manual ... 14
2.1 System Installation Guide.. 15

2.1.1 Directory structure.. 15
2.1.2 Setup of the production chain .. 16
2.1.3 Configuration file format... 16
2.1.4 Main configuration file .. 16
2.1.5 Setup of the production steps .. 17

2.2 System Operator’s Guide .. 18
2.2.1 Starting the software .. 18
2.2.2 Remote modus... 19
2.2.3 Local modus... 19
2.2.4 Process control .. 20

3 System Developer’s Manual ... 21
3.1 Introduction.. 22
3.2 Interaction between the framework and the application software 22

3.2.1 Main principles ... 22
3.2.2 Modifications and specifications .. 23

6 SnowLab software documentation

3.3 Module descriptions .. 24
3.3.1 Module data import .. 24
3.3.2 Module geometric correction.. 26
3.3.3 Module basic products ... 28
3.3.4 Module derived products.. 32
3.3.5 Module data export .. 34

4 Appendix .. 36
4.1 Example of a main configuration file ... 36

 SnowLab software documantation 7

1 System overview

1.1 Purpose
This report describes and documents a software system for the automated retrieval of various
snow products from remote sensing data. The basic idea behind the software system is to
consider the production process as a production chain, consisting of certain steps, as in this
generic production chain:

• Data download
• Data import
• Pre-processing
• Product generation
• Product export

The production chain is controlled by a production chain framework, which retrieves data and
leads them through the various steps in the production chain.

The actual steps in the chain are defined by the application software. Although the current
application is the generation of snow products, the application software could in principle
address virtually any production purpose.

The software for the generation of snow products is organized as modules that are closely
related to the steps in the production chain.

This document describes the production chain and its individual steps. It documents the various
software modules, and how they interact with other modules and with the framework.

1.2 System architecture
This section introduces the main modules in the system, the main process of the production
chain, and the main principles for the framework that controls the dataflow through the system.

1.2.1 Modules
As shown in Fig. 1 the application software is grouped into five main modules. Each module
provides at least one function that interacts with the framework through a standardized interface.

Framework

Data
import

Basic
products

Derived
products

Product
export

Tools

Geo-
correction

Figure 1 : The main modules

8 SnowLab software documentation

• Data import module: Provides functions for converting downloaded satellite image data to
ENVI format (the internal format in the software system)

• Basic products module: Provides snow parameter retrieval functions that require one input
scene only. The module also ensures that the basic products are generated in the correct
sequence

• Geo-correction module: Provides functions for establishing the geometrical reference of a
satellite scene, as well as the resampling of the basic products to that reference

• Derived products module: Provides functions that combine a multi-temporal set of basic
products into a derived snow product

• Product export module: Converts the products into user specified format
• Toolbox: Provides basic tool functions to the other modules

1.2.2 Main process
The main process for the retrieval of cryospheric products are shown in Fig 2. The arrows show
the sequence of the various functional steps. The colours in the diagram refer to the main
modules above. When derived products are not requested, the process proceeds directly to the
export step.

Import data

Establish geometric
reference

Make
basic products

Resample
products

Export products

Make derived -
products

Figure 2. The main process

Two functions in the geo-correction module are called in separate steps. The establishment of
the geometrical reference of the scene should be undertaken before the generation of basic
products, since this step may require some map oriented auxiliary data. The resampling of the
basic products into map geometry builds on the geometrical reference and is run once for each
basic product.

 SnowLab software documantation 9

1.2.3 The framework
The framework is intended for automatic processing of remote sensing datasets through a
production chain. A simple controller controls the production chain where one dataset is
processed at the time, running the process through the necessary steps.

The main principle behind the interaction between the application software and the framework
is that the framework does not need to know the application software. The framework can thus
be applied for any application. This principle is obtained by:

• Defining a standardized API (Application Program Interface)
• Saving all processing results in files between each step
• Transferring application specific arguments through text files

No functions performing operations on the data are part of the framework, but should all be
given in the application specific modules. Any application can be plugged into the framework,
if it is possible to call its functions from the framework’s method API, which is described more
detailed in section 3.2.

The framework takes care of retrieving the input data from some source and making them
available to the application software. It controls the sequence in which the application functions
are being called, and the dataflow through the system.

The framework is written in IDL and C++, and is intended to run on a Linux platform. Fig. 3
gives an overview of the framework.

/tmp
/static

/cat1 /cat2

Controller

Method API

GUI

…

/catN

Get next
dataset

Step 1 Step 2 Step N

/tmp
/static
/tmp
/static

/cat1 /cat2

Controller

Method API

GUI

Controller

Method API

GUI

ControllerController

Method APIMethod API

GUIGUI

…

/catN

Get next
dataset

Step 1 Step 2 Step N

Figure 3. The framework

1.3 Overview of the system modules and their main functions
The system consists of the framework, the production modules, and a toolbox of common
functions. This section gives an overview of the main functions in the production modules.
These functions correspond to the main steps described above, and are callable from the

10 SnowLab software documentation

framework, following the requirements outlined in section 1.2.3. Also some functions at a
lower level follow these requirements.

1.3.1 Import module
The import module extracts data from MODIS images and stores it as ENVI files. It comprises
these main functions:

• Import MODIS file
• Retrieve MODIS spatial subset (optional)

1.3.2 Basic products module
This module controls the production of basic products, i.e. products that can be retrieved from
one scene. It comprises these main functions:

• Cloud Mask module
• Snow Covered Area (SCA) module
• Surface Temperature of Snow (STS) module (optional)
• Snow Grain Size (SGS) module (optional)

1.3.3 Geometric correction module
The geometric module consists of two main functions, which may be called from separate parts
of the production chain. These two functions are:

• Establish the geometric correspondence between image and map geometry.
• Resample basic products into map geometry

1.3.4 Derived products module
This module handles products where one needs to consider multiple basic products, e.g. in a
time-series, or derived from multiple sensors. A central part of this module is a time-series /
multi-product controller, which all main function relies on. These functions are:

• Snow surface wetness
• Snow distribution pattern
• SCA multi-scene/time-series combination
• SCA multi-sensor/time-series combination

1.3.5 Export module
The purpose of the export module is to export the product to a format tailored to the end-user of
the product.

1.4 Outline of the production chain
The production chain is controlled by the framework. The main steps mainly correspond to the
main functions in the modules.

• Import data
a. Import MODIS data
b. Retieve spatial subset (optional)

• Establish geometric reference
• Basic products generation

a. Make cloud mask
b. Make SCA – Snow Covered Areas
c. Make STS – Snow Temperature Surface (optional)

 SnowLab software documantation 11

d. Make SGS – Snow Grain Size (optional)
• Resample to geometric reference
• Time-series ‘derived ’ products (optional)

a. Make SSW (Snow Surface Wetness) : based on STS and recent change in SGS
b. Make multi-scene SCA: estimate current SCA using a time-series of basic SCA
c. Make multi-sensor SCA: estimate current SCA using multiple sensors

• Export products

Compile orbit
scenes

Establish geometric
reference

Make cloud mask

Make SCA

Resample products

Export products

Make
STS

Make
SGS

Make multi-
scene

product
Make
SSW

Make
multi-sensor

product

Import MODIS scene

Figure 4. Outline of the production chain

12 SnowLab software documentation

1.5 Snow parameter retrieval algorithms
The basic snow parameters that are produced are Snow Covered Area (SCA), Surface
Temperature Snow (STS), Snow Grain Size(SGS), and Snow Surface Wetness (SSW).

1.5.1 Snow Covered Area (SCA)
The algorithm for the retrieval of SCA is known as the Norwegian Linear Reflectance-to-Snow-
Cover (NLR) algorithm. The algorithm is based on an empirical reflectance-to-snow-cover
model originally proposed for NOAA AVHRR by Andersen (1982) and later refined by Solberg
and Andersen (1994). The algorithm has recently been tailored to MODIS data by NR. It
retrieves the snow-cover fraction for each pixel. The model is calibrated by providing two
points of a linear function relating observed reflectance or radiance to fractional snow-cover
area (see Figure 5). The calibration is usually done automatically by means of calibration areas.
Statistics from the calibration areas is then used to compute calibration points for the linear
relationship.

Figure 5 The Norwegian Linear Reflectance-to-Snow-Cover (NLR) algorithm
illustrated. A pixel value is linearly transformed to a snow cover percentage for that
pixel. The algorithms are based on the assumption that the bare-ground reflectance is
constant. (Andersen 1982)

This algorithm and it s validation has been reported in more detail from the project Envisnow,
see D1-WP3, Part 1 (Solberg et al. 2005).

1.5.2 Cloud Cover Mask
A particular problem for practical use of the snow algorithms has been cloud detection. NR has
experimented with several approaches, and the current best cloud detection algorithm is based
on K Nearest Neighbour (KNN) classification of MODIS data. In a KNN classifier a pixel,
represented by a vector of band values, is assigned the label, which is most prevalent among the
K nearest labelled vectors from a reference set. A KNN classifier is an asymptotically optimum
classifier as the size of the reference set increases. This algorithm has been described in more
detail in the Envisnow report D1-WP3, Part 1 (Solberg et al. 2005).

 SnowLab software documantation 13

1.5.3 Surface Temperature Snow (STS)
The retrieval of STS is based on Key’s algorithm (Key 1997), which has been calibrated for
various AVHRR sensors as well as for Modis, see http://stratus.ssec.wisc.edu/products/surftemp/.
The application of Key’s algorithm for the retrieval of snow surface temperatures in Norwegian
mountains has been examined by Amlien and Solberg (2004). The main idea is to correct for
the atmospheric attenuation by a modified split-window technique, where the atmospheric path-
length is taken into account.

1.5.4 Snow Grain Size (SGS)
The idea behind the SGS parameters is that the spectral signature of snow depends on the grain
size. The spectral signature curves show a clear drop in reflectance when moving towards the
longer wavelengths. The effect is more prominent for larger snow grains. The method has been
described and evaluated by Koren et al (2004). The algorithm compares the reflectance in
MODIS bands 2 and 7 and calculates a grain size index, defined as SGS = (M2-M7)/(M2+M7).

1.6 Derived product algorithms
The derived snow parameters that are produced are SnowCoveredArea multi-product (multi-
SCA), and SnowSurfaceWetness (SSW). Common for the derived products are that they are
derived from a set of basic products.

1.6.1 Snow Surface Wetness (SSW)
The main idea is to compare the temporal development in the SGS with the current value of
STS. If the temperature is close to 0 °C and the grain size is increasing, it can be assumed that
the snow is becoming wet.

The temperature observations give a good indication of where wet snow potentially may be
present, but are in themselves not accurate enough to provide very strong evidence of wet snow.
However, a strong indication of a wet snow surface is a rapid increase of the effective grain size
observed simultaneously with a snow surface temperature of approximately 0°C. The algorithm
can be expressed in a simplified version as

if (SGStoday - SGSrecently > SGSsnowmelt-tresh) (2)
 and (STSlow < STStoday < STShigh) then
 SSW = WET-SNOW
else
if SGStoday < SGSbare-ground-tresh then
 SSW = SNOW-FREE
else
if STStoday > STShigh then
 SSW = SNOW-FREE
else
 SSW = DRY-SNOW

Note that more temperature classes are used in the implemented algorithm. Also a threshold of
the SCA product is applied in order to mask out snow-free areas. The algorithm can also infer
bare ground from temperature observations above 0°C and a rapid developing negative gradient
for SGS (both due to appearance of snow-free ground patches at the sub-pixel level).

http://stratus.ssec.wisc.edu/products/surftemp/

14 SnowLab software documentation

1.6.2 Snow distribution pattern
The snow distribution pattern of a local area, like a drainage area, can be estimated from the
SCA product and a snow distribution model for that local area. The snow distribution model is
an empirical one, based on classifications of the snow cover in a series of high-resolution
images, like Landsat. The series must be representative for the development of the snow cover
during a typical melting season. The model is represented by a likelihood function that gives
the sequence in which the pixels will become snow-free.

The algorithm for the snow distribution pattern goes like this: Retrieve the SCA for the local
area from the SCA product. Then produce a corresponding SCA from the empirical model by
applying a threshold of the likelihood function. This mask produced by this threshold is the
estimated snow distribution pattern.

1.6.3 Multi-SCA
Due to cloud cover problems it is difficult to obtain an updated product every day. In order to
overcome these problems, the SCA value must be predicted by means of recent results from the
same sensor (multi-temporal), or from a different one (mult-sensor).

Each observation is given a confidence value, which are declining with the time. As long as the
confidence value is above a threshold, the observation is considered as useful. When new data
arrives, the SCA value is updated where the confidence for the new observations are better than
the old ones. The confidence depends on the cloud cover and the view angle, in addition to the
time since the acquisition.

The multi-SCA algorithms are described by Solberg et al (2004a, 2004b, 2005b), and Malnes et
al (2005). This algorithm has also been described in a more detail in the Envisnow report D1-
WP3, Part 1 (Solberg et al. 2005).

 SnowLab software documantation 15

2 System Operator’s Manual

2.1 System Installation Guide

2.1.1 Unpacking the software
The software of the framework is contained in the tar-file cryo.tar. To install the framework, do
the following:

• Copy the tar-file to the directory where you want to put the software.

• Unpack the tar-file:
> tar –xvf cryo.tar

• Go to the sub directory cryo/programs:
> cd cryo/programs

• Run the setup script cryo_setup from this catalogue:
> source cryo_setup
The environment variable CRYO_TOP will be set to the top directory where the
software was unpacked, and IDL/ENVI variables and configurations will be set up.

2.1.2 Directory structure

CRYO_TOP

data programs

etc log graphics save_add src

framework methods

CRYO_TOP

data programs

etc log graphics save_add src

framework methods

The contents of these directories will be as follows:

data Intended for various data. It is the default directory for image data, when no
other is specified (see description of the contents of the image directory below).
It is also the default directory for list files containing specifications of local
datasets

programs Main directory for the software. It also contains setup and configuration files.

etc Contains ftp-configuration files for data providers.

log Contains logfiles.

graphics Contains logos etc.

save_add Contains .sav files (compiled IDL code).

src Contains source code.

16 SnowLab software documentation

framework Source code for the framework, if made available

methods Source code for the methods, if made available

The data directory will initially be empty, except that static/ will contain various files needed
for the application.

As the datasets are processed, sub-directories holding the intermediate results from each step of
the processing chain, will be created under the image directory, and given names based on the
data type, the current step in the process and the original name of the dataset:

<datatype>/out*/<dataset>

2.1.3 Setup of the production chain
Although the production chain is started from a GUI available in the ENVI menu, its behaviour
is controlled by the user, but by the predefined configuration files. These files are being defined
when a production chain is being set up, and it is not intended that these files could be changed
by the system operator.
The behaviour of the system will be changed by the manipulation of these configuration files.
This section presents the main principles for the configuration files and gives an overview of
how they are used in the current system.

2.1.3.1 Configuration file format
The general format of the configuration file is simple. The configuration file is a text file that
contains keyword-value pairs, where the keyword is separated from the value with an '=' sign:
<keyword> = <value>. The value may be one single item or a list of items.

2.1.3.2 Main configuration file

The main configuration file is always named current.cfg and always located under the
programs/ directory (see above description of the directory structure). This file will be read
once as the program is started.

The purpose of the main config file is to define:
 - the parameters needed by the automatic downloading routine of the framework,
 - one or more production chains
 - a few optional parameters

Configuration of automatic download
The automatic download part is controlled by parameters defining one or more data providers,
as well as a local mail user receiving messages about data ready to be downloaded.

The specification of a local mail user is required for receiving messages that will trigger the
automatic remote download of data:
mailusr user name
mailpwd password
mailhost mail host, e.g. mail.nr.no
mailport local port e.g. 110

The various data providers are identified by:
nof providers number of data providers
providers list of data providers

<provider> sender: email-address that each of the providers will use to send the message

For each provider there is also a separate configuration file, <provider>.cfg, located in
programs/etc/. The ftp-download from that provider is specified by these parameters:

 SnowLab software documantation 17

host name of ftp host, e.g. ftp.nr.no
user user name, e.g. anonymous
pass password, e.g. anonymous

Configuration of the production chains
There should be specified one chain for each datatype, e.g .one for MODIS and one for AVHRR.

The parameters controlling the production chains are:
nof datatypes: number of datatypes
datatypes: list of datatypes

For each datatype there should be defined a production chain
<datatype> nof steps number of steps for this specific datatype
<datatype> steps list of the steps in the production chain for a specific datatype

Each step is specified by a describing name, the function to call, an input dataset, an output
dataset, and a configuration file

Optional main configuration parameters
The other main parameters are optional:
project default is ‘cryo’
maxLog maximum size of logfile in Bytes, default is 100KB
image catalog full path to an existing directory, default is $CRYO_TOP/data

2.1.3.3 Setup of the production steps
In the current system, there is defined a production chain for MODIS data. This is done through
the definition of the parameter modis steps in the main configuration file. This parameter
comprises several items that represent the steps in the production chain. The steps are
performed in the sequence that they are listed in the modis steps parameter.

Each step is defined by a corresponding item in the parameter modis steps. The item will
typically fill one line in the main configuration file, consisting of several strings that represent:
 - a reference name (one or more strings) to be shown in the GUI
 - name of function to call (one string)
 - input directory (one integer)
 - output directory (one integer)
 - the name of a configuration file (one string)

The following example shows how the production chain could be defined in the main
configuration file. Note that the parameter modis nof steps will determine how many steps in
the chain that actually will be performed.

modis nof steps = 4 # Number of steps in the chain
modis steps = {
import import_modis_data 1 2 importModis.cfg,
make products make_products 2 3 makeProd.cfg,
resample products resample_products 3 4 resampl.cfg,
export products export_product 4 5 export.cfg }

The system programmer may control what will happen in each step by editing the
corresponding configuration files, according to section 2.3. As a general rule the operator
should not change these files.

• The import step will consider a list of MODIS swath files and import specified subsets of
these files

ftp://ftp.nr.no/

18 SnowLab software documentation

• The make basic products step will consider a list of basic products and make these
products. Although the list of products to make is defined in the corresponding
configuration file, makeProd.cfg, the sequence of their processing is controlled by the
make_products step
As an example, assume that the configuration file makeProd.cfg, contains the product
definition list products = {sca, geo, cloud }.
The products will not be generated in that sequence, but rather as {geo, cloud, sca},
since the makeSca function requires a geometric reference grid as well as a cloud mask
in order to work.
The basic products from this step must be considered as intermediate products only.

• The resample step will consider a list of basic products and resample them into a
specified map projection. A geometrical reference grid has already been established in
the previous step, and will be utilized.

• The export step will consider a list of products and export them to final products
intended for some users.

2.2 System Operator’s Guide
The CRYO production chain for snow products are implemented as a plug-in to the ENVI
software. It is started from a simple GUI, but the interactions during the processing steps are
kept to a minimum.

From the GUI, the user may choose to
 - perform ENVI and IDL commands
 - run the production chain in remote modus
 - run the production chain in local modus
 - stop the processing

2.2.1 Starting the software
The production chain should be run on a linux platform. In order to start the production chain,
the user needs to run a setup program, and then start ENVI:
> setenv IDL_PATH ‘<IDL_DEFAULT>’
> source cryo_setup
> envi

Now the user will see the ENVI prompt and may enter ENVI and IDL
commands from that prompt. In addition, a simple menu will be
available:

The lower ‘ENVI’ button gives access to the complete ENVI menu. By
clicking the button labelled ‘SNOW’, the user will start the automatic
production chain. Note that in some implementations, the label ‘SNOW’
have been substituted by ‘CRYO’. After calling the automatic production
chain, the GUI on the next page becomes available, and the prompt are
being locked for input.

The user may choose to start the production chain in local modus (‘process local data’) or in
remote modus (‘process remote data’). In both modi the central field of the GUI will report back
the progress through the various steps. Only the remote modus are utilizing the automatic
downloading facilities in the framework.

The user may stop the processing by clicking the ‘Stop’ button. By clicking the ‘Close’ button,
the control is returned to the ENVI prompt and the initial menu will be made available.

 SnowLab software documantation 19

The operator may monitor the progress by means of the GUI. The lower left pane gives an
overview of the steps in the chain. The lower right pane identified the step that is currently
being processed. The central pane yields a more detailed log of the steps in the chain, including
if some steps return with an error.

2.2.2 Remote modus
When run in remote modus, the system will wait for emails to arrive. Each email will be parsed
and the specified files will be downloaded and put through the production chain according to the
given data type. When a dataset has been processed, the system will wait for the next email to
arrive. The control may be returned to the user by pushing the ‘stop’ button.

2.2.3 Local modus
The local modus of the production chain does not utilize the automatic downloading facilities in
the framework, but requires that the datasets exist somewhere in the local file system.

By selecting the local modus, the user will get access to ENVI’s file selector in order to select a
text file containing a list of local datasets. A dataset is a set of files, representing a single scene,
residing in a separate directory. The dataset list file will contain one line for each dataset. For
each dataset the list will specify the full path to the directory. In addition, the data type is
specified in order to identify the corresponding production chain.

When run in local modus, the system goes through the list in sequence and processes one
dataset at the time undertaking all steps required for the given data type. When all datasets are
processed, the control is returned to the production line menu.

20 SnowLab software documentation

A more detailed set of instructions for running the chain in local modus is given in section 2.3.

2.2.4 Process control
The user may stop the processing by pushing the ‘stop’ button. In some cases it may take some
time for the system to react to the stop request.

Temporary files
Note that the directory tmpdir in the current system will not be strictly temporary. They may
also contain files needed by the software for the management of multi-temporal data series. As a
general rule assume that temporary files will be removed by the software itself.

Logfiles
Log messages from the system will be written to the command window, and to the logfile,
which resides in the programs/log directory. When the logfile cryo.log reaches its maximum
size it will be backed up as cryo.log.prev. If it is required to save more of the logging info, the
user should make copies of the logfile regularly.

Error handling
If the system aborts, the ENVI software should be terminated and then restarted. However, a lot
of error situations are managed by the software without aborting the processing. In these cases,
the processing of the current dataset will be terminated and the processing of the next dataset
will be started.

2.3 Instructions for operating in local modus
The steps to be handed by the operator when operating in local modus are:

• Download data
• Edit .lst file
• Start production chain
• Upload products

2.3.1 Data download
Create a directory for the new dataset
> mkdir <path_to_modis_data>/yyyy.mm.dd_hhmm

Download data from KSAT by means of ftp. The dataset are represented by two products of
level1b (MOD021KM and MOD02QKM). Download both of them.
The data should be found in the MODIS-testdata directory on the ftp-server ftp3.ss.no.
> cd <path_to_modis_data>/yyyy.mm.dd_hhmm
> lftp -u norskr,<passwd> ftp3.tss.no
lfpt cd MODIS-testdata
lftp mget MOD021KM* MOD02QKM*

2.3.2 Edit list file
Edit the file $SNOW_TOP/data/modis_sca.lst (or make a new file modis_yyymmdd.lst)

For each scene to be processed, the file should contain one line like:
 <path_to_modis_data>/yyyy.mm.dd_hhmm modis

ftp://ftp3.tss.no/

 SnowLab software documantation 21

2.3.3 Start the processing chain
>
> setenv SNOW_TOP <path_to_processing_chain>
> cd $SNOW_TOP/programs
> setenv IDL_PATH ‘<IDL_DEFAULT>’
> source cryo_setup
> envi

From the GUI:
• Select ‘SNOW’ and then ‘Snow process’
• Select ‘Process local data’
• Pick the appropriate .lst file (the one you just edited)

$SNOW_TOP/data/modis_sca.lst

2.3.4 Upload the product
The end product from the processing chain is located in the directory:
$SNOW_TOP/data/modis/out4/yyyy.mm.dd_hhmm

The .png file in this directory can easily be inspected visually. It should show the sea, clouds,
and SCA values.

Copy the product directory to the outgoing FTP:
> cp $SNOW_TOP/data/modis/out4/yyyy.mm.dd_hhmm <outgoing_ftp>

22 SnowLab software documentation

3 System Developer’s Manual

3.1 Introduction
The application software is programmed in IDL, with calls to ENVI. Some functions are
implemented in C++, and are available as system calls to executable binaries.

The application software is organized into software modules, providing one or more functions
that can be called by the framework as a step in the production chain.

3.2 Interaction between the framework and the application software
Since the framework does not know the application software, the application functions must
fulfil some requirements in order to interact with the framework (see sect. 1.3). This section
describes these requirements.

The application program interface (API) in the framework will call the application functions
through this specified function call:
status = funcName(dataset_in, dataset_out, $
 staticdir, tmpdir, logfile, configFileName)

The return value is the error status, which may force the production chain to terminate. The
arguments are all input arguments that specify catalogues and files that are made available to the
application function.

The first two arguments are determined by the corresponding step in the main configuration file
and by the dataset_name defined by the input data (the directory name of the input in local
modus or by the triggering e-mail in remote modus)
 dataset_in = CRYO_TOP/data/modis/outx/<dataset_name>
 dataset_out = CRYO_TOP/data/modis/outy/<dataset_name>

The following three arguments are invariant
staticdir = CRYO_TOP/data/static
tmpdir = CRYO_TOP/data/tmp
logfile = CRYO_TOP/programs/log/cryo.log

The last argument is specified in the main configuration file
 configFileName = makeProd.cfg

This can be illustrated by an example: Consider the second step in the production chain for
modis data as specified in section 2.1.3.3. The item
”make products make_products 2 3 makeProd.cfg,”
will define the following function call:
status = make_products(CRYO_TOP/data/modis/out1/<dataset_name>, $
 CRYO_TOP/data/modis/out2/<dataset_name>, $

CRYO_TOP/data/static, $
CRYO_TOP/data/tmp, $
CRYO_TOP/programs/log/cryo.log, $
makeProd.cfg)

Note that out1 and out2 correspond to the numbers 2 and 3 respectively.

3.2.1 Main principles
The dataflow through the chain is controlled by the two first arguments ‘dataset_in’ and
‘dataset_out’, which refer to two different catalogues that are unique to each specific scene.
Thus they are dynamic arguments that will depend on the actual scene being processed

 SnowLab software documantation 23

The argument ‘dataset_in’ in one function will typically be identical to the argument
‘dataset_out’ in a function called in an earlier step in the production chain. This catalogue thus
serves as the connection between the two steps.

The other arguments always refer to the same catalogues or files, independent of what scene that
is being processed. These catalogues and files are thus common data.

Since the framework lack the possibility to provide the functions with application specific
arguments, all such arguments are transferred by means of configuration files. The system
operator controls the production chain by managing the configuration files.

• Input catalogue – dataset_in
The input catalogue is dynamically set by the framework. It will typically be the output
of a former step in the production chain.

• Output catalogue – dataset_out
The output catalogue is dynamically set by the framework. It will typically become the
input of a following step in the production chain.

• Static catalogue – staticdir
The static catalogue is a fixed catalogue where static data should be found. Such data
may be configuration files, water masks, training areas, class definitions, colour tables,
etc. The static data may be organized into sub-directories.

• Temporary catalogue – tmpdir
The temporary catalogue is a fixed catalogue where temporary file could be put by the
application software. The files in this catalogue could be deleted at any time they are
not being actively used.

• Logfile
This argument identifies a fixed text file intended for appending log-messages.

• Configuration file – configFileName.
This argument identifies the filename of a text file that contains the input parameters
required by the application software. The application software described in this
document assumes that this file is found in staticdir. The format of the configuration
files is described in Appendix.

• Return value – status
A successful completion should return a positive integer.

3.2.2 Modifications and specifications
This section describes the practices that have been followed concerning the file and catalogues
referred in the API. Note that the practice concerning temporary files may be considered as a
violation or modification of the main principles for the framework.

Temporary files
In order to manage multi-temporal datasets, some common available data catalogue had to be
made available for temporary versions of a multi-temporal product. The problem is that the
framework does not provide a catalogue for this purpose. The chosen strategy was to store such
temporary multi-temporal products in the scene-specific catalogues and their references in the
tmpdir catalogue. This catalogue should therefore not be deleted.

Since the role of the tmpdir catalogue was extended to manage multi-temporal scenes, all
temporary files relating to specific scenes were put into the scene-specific catalogues dataset_in
and dataset_out. Typically, temporary subdirectories are being used for this purpose in the
current application software.

24 SnowLab software documentation

Input/output catalogues
These catalogues may contain temporary subdirectories, as described above.

The output catalogue may already contain data produced in a preceding step or sub-step,
typically when more than one product are produced. In some cases the application functions
may need to use these files as input files.

The input catalogue should never be used as an output catalogue, but the application software
may delete temporary files that are no longer needed.

Configuration files
The configFileName parameter may contain any string variable. It is assumed that this string
contains the name of a file residing in the staticdir catalogue, and that this file is a configuration
file, i.e. a text file that follows the configuration file format defined in the framework.

The current software does not expect to find all configuration parameters directly in the file
referred to by the configFileName parameter. Instead it is expected that this file refers to other
configuration files, which may contain configuration parameters common to more than one
function. The intension of this strategy is to reduce the risk of inconsistent configuration data.

3.3 Module descriptions
In this chapter each module is described in more detail. For each module its main functions are
described. All the functions are named like functionName, while the modules will be referred to
as ‘module name’ in this chapter.

3.3.1 Module data import

Framework

import
ModisData

Basic
products

Geo-
correction

Derived
products

compile
OrbitScenes

Product
export

The data import module consists of one main function and an optional one:

• importModisData is the main function and reads MODIS images and stores specified
image layers (spectral subsets) of them as ENVI files

• compileOrbitScenes is an optional function called from the importModisData function.
It compiles scenes in the same orbit into one contiguous scene.

3.3.1.1 Function importModisData
The purpose of the function importModisData is to import subsets of MODIS datafiles, including
radiometric data, geolocation data and view angle data.

 SnowLab software documantation 25

Input data
MODIS calibrated data (MOD02) stored as *.hdf files. Depending on the format, there may also
be an additional *.hdf.met-file or an xml-file for each *.hdf-file

The input catalogue may contain MODIS files of these types:
• MOD021KM: Image data, 1 km resolution
• MOD02HKM: Image data, 500 m resolution
• MOD02QKM: Image data, 250 m resolution

The scenes are in the original acquisition geometry (swath geometry).

The hdf-files contain a lot of data, including:
• Calibrated image data, represented as integers, and supplied with calibration

coefficients for converting the integers to real radiance values. When applicable, there
are also calibration coefficients for reflectance values.

• Geo-location info, for points regularly distributed over the image grid
• View angle info, for points regularly distributed over the image grid. Note that this data

field is contained in MOD021KM only.

Output data
The output ENVI files are given filenames according to to this format:
<content>_<resolution>_swath_ modis _yyyyddmm_hhmm

For each specified input image, there may be generated three ENVI-files with different content:

data: the specified spectral bands from the hdf-file, stored as integers

latlon: the latitude and longitude for the geo-location points, stored as a two-layer float
image with one cell for each geo-location point

angle; the view angle from the hdf-file, stored in a one-layer integer image. The angle image
will be expanded to the same dimensions as the data image. Note that angle data will
be produced for MOD021KM only.

In addition to the ENVI-files and the corresponding *.hdr-files, there will be generated a few
other corresponding files:

*.rad: text-file containing calibration coefficients for converting ‘data’ to radiance,
If * refer to an ‘angle’ file, the rad-file should be interpreted as scaling coefficients for
converting the integers to float values representing degrees

*.ref: text-file containing calibration coefficients for converting ‘data’ to reflectance,
set to zero for the non-reflexive spectral bands

*.frm: text-file containing meta data for ‘data’ and ‘angle’

Configuration data
The configuration file may contain these keywords:

imgTypes: list of image types, allowed values are ‘1KM’, ‘500’, ‘250’
250_import: name of cfgFile, triggered if imgTypes contains ‘250’
500_import: name of cfgFile, triggered if imgTypes contains ‘500’
1KM_import: name of cfgFile, triggered if imgTypes contains ‘1KM’

Each of these files provides these configuration arguments for their respective imgType:
imgType: for identification only; must correspond to above
bandnames: list of band names identifying the spectral bands to retrieve
angleFields: list of angle ‘bands’ to read, should specify ‘SensorZenith’
latLon: flag (0 or 1) whether latlon data should be read for this imgType

26 SnowLab software documentation

Interactions
Called from framework

Calling: compileOrbitScenes if requested, but this function is not required for KSAT data.

Optional function compileOrbitScenes
The purpose of the compileOrbitScenes function is to compile scenes from the same orbit into
one contiguous scene that covers a given region of interest (ROI) from north to south.

The function is called from the importModisData function as an option. It will be trigged if
importModisData identifies the configuration parameter compileOrbitCfg. Its value will be the
name of cfgFile to be used by the compileOrbitScenes function.

This function substitutes the current imported scene with a compilation of the newly imported
scenes that fulfil the requirements. Before completing the compiled orbit-scene redundant parts
of it are removed, i.e. scans that are clearly outside the given ROI will be removed.

The configuration parameters for this function are omitted in this version of the document,
because this part of the system is not required when using data from KSAT.

3.3.2 Module geometric correction

Framework

Data
import

Basic
products

resample
Products

Derived
products

establishGeometricReference

Product
export

The geometric correction module provides two functions, both callable from the framework
through the API:

• establishGeometricReference is a function that establishes the geometrical relation
between a specific scene and some given geometrical reference.

• resampleProducts is the function that actually projects the specific image data into the
given geometrical reference system.

The execution of establishGeometricReference is always required before executing
resampleProducts. It may also be required to call it before some of the basic product functions.
The function establishGeometricReference may therefore be called from the framework, from
the relevant basic product functions, and from the resampleProducts function.

3.3.2.1 Function establishGeometricReference
The purpose of the establishGeometricReference function is to establish the geometrical relation
between a specific scene and some given geometrical reference. The geometric correspondence
will be stored as a geo-index map, which points from the map into the original image. Each cell

 SnowLab software documantation 27

in this geo-index map points to a location in the input image. Correspondingly it also points
into any product derived form that image.

Input data
The function requires an image and its corresponding latLon file.

Configuraton data
The configuration file defines the two parameters used for the identification of the image that
the geometric reference should refer to. It also identifies a separate configuration file that
identifies a grid in a specific map projection.

product: identifies product type of reference image, default = ‘data’
cell size: identifies imgType of reference image {250 | 500 | 1KM}
projCfg: name of configFile specifying the geometric reference

This configFile specifies the map projection and area by means of these parameters:
Projection: projection type, default ‘UTM’
UtmZone: triggered if projection is UTM
Datum: datum name, default is ‘WGS-84’
UpperLeft: map projection coordinates of upper left corner
LowerRight: map projection coordinates of lower right corner
projName: to be used for identification / reference

Output data
An index file is representing the specified geometrical reference between the specified map
geometry and the image. Each cell in this geo index represents a cell in the map grid, and
contains a position in the un-rectified image.

The index file is put into a sub-catalogue identified by the projectionName. In that way it is
possible to recognise index files produced in earlier steps in the production chain. It should also
be possible to produce and recognize several geometric reference grids, if ever required.

Interactions
Called from: framework, makeBasicProducts, resampleProducts

One call should be sufficient.

3.3.2.2 Function resampleProducts
The purpose of the resampleProducts is to take an image or a basic product and resample it into
the map geometry according to the geo-index map that represents the established geometric
reference.

Input data
The input data is a list of basic products from the makeBasicProducts module (or alternatively
image data from the dataImport module), and the map reference grid produced by the
establishGeometricReference function.

Configuration data
The resampling of the products is specidfied like this:

products: list of products to resample
*_resamplMet: the method to use for a given product

28 SnowLab software documentation

(SCA), Surface Temperature Snow (STS), and Snow Grain Size (SGS).

3.3.3.1 Function makeBasicProducts
c product generation functions. Essentially it

ry,

roper
e grid

Input data
The input directory contains ENVI files produced by the data import module.

*_conf flag if also the confidence file should be resampled
projCfg: name of cfgFile for the projection definition
cell size cell size of output products

Output data
For each of the specified products, one product file and optionally one confidence file are
resampled to the specified map projection.

Interactions
Called from framework

Calling establishGeometricReference if required

3.3.3 Module basic products
This module undertakes the production of basic products. By basic products are meant products
that can be retrieved from one single scene. This input scene will typically be in image (swath)
geometry. Although the input data in principle may have been re-sampled into some map (grid)
geometry before making the basic products, this is generally not recommended and is therefore
avoided in this system. Therefore the latlon file will always be copied forward in the processing
chain.

The basic products that can be produced by this module are: Cloud Cover, Snow covered Area

Framework

makeBasic
Products

Geo-
correction

make
Cloud
Mask

makeSgs
Product

makeSts
Product

Derived
products

make
Sca

Product

Data
import

Product
export

This function serves as an organizer of the basi
produces all requested products from the data stage to the basic product stage. When necessa
it controls the sequence in which the products are generated. It also ensures that some common
configuration parameters are consistent between the product generation functions.

This function makes sure that cloud cover is generated before the SCA, and that a p
geographic reference grid is made available to the SCA function. The geographic referenc
produced is available for later user in the production chain, like any other basic product.

 SnowLab software documantation 29

f the required types,

a list of products to

s

fg: cfgFile for CloudCover, will trigger the production of cloudCover

r the production of STS

 nce

s the cloud mask and make
ependent of the sorting
ference grids and the

cover
odes.

the CloudCover product

files, if present in input

ns
 fra

of product specific functions when requested in the configuration. All these
ewhere in this document

icReference

.3.3.2 makeCloudCover
The purpose of the makeCloudCover function is to make a cloud mask from the image data.

ification of the MODIS data. It requires 1KM data,

data: files o
latlon: files (will be copied forward, unless data files are already resampled)
angle: data for 1KM data only, to be used in cloudCover and in STS

Configuration data
The configuration data comprise some common parameters, as well as
make.

The list of products is defined by specifying the cfgFiles that should be used in the function
that produces the requested products, e.g.
cloudC
scaCfg: cfgFile for SCA, will trigger the production of SCA
stsCfg: cfgFile for STS, will trigge
sgsCfg: cfgFile for SGS, will trigger the production of SGS
map_*.cfg cfgFile for geometric reference in resolution *,
 will trigger the function establishGeometricRefere

One important issue for the function makeBasicProducts is to proces
the geographical reference grids before the other products. Therefore, ind
of the cfgfile names above, the makeBasicProducts will ensure that the re
cloud cover will be produced before the snow products.

One parameter is not used directly in this function, but is passed forward to the specific
functions that make the products.

The last parameter is a reference to a file that identifies the class codes used in the cloud
product. It is passed forward to those product specific functions that require these class c
maskCodeFile: list class codes for

Output data
product: files and their corresponding confidence files
latlon

Interactio
Called from mework

Calls a number
functions are described els
 stablishGeometr
 makeCloudCover
 makeSCA
 makeSTS
 makeSGS

3 Function

The cloud mask is the result of a kNN class
but may produce a cloud mask in a different cell size.

The cloud cover function also produces a basic confidence product in 1KM cell size based on
the cloud cover and the view angle.

30 SnowLab software documentation

Input data
The input directory contains ENVI files produced by the data import module.

data file should represent a MODIS scene of type 1KM that
includes the MODIS bands 1, 4, 6, 19, 20, 26, and 31

angle file: representing the view angle, see function inportmodisData

Configuration data
maskCodeFile: specifies the classCodes to be used in the output product

cloudCfg: defines a configuration file for the detailed control of the kNN
classification. Its details are not shown.

The maskCodeFile may look like this:
outsideCode = 0
waterCode = 20
cloudCode = 30
noConfidenceCode = 0
dataPresentCode = 100

Output data
cloud product Cloud mask with 1KM resolution; classCodes as specified above

basic-conf basic confidence in 1KM resolution

Interactions
Called from makeBasicProducts function

3.3.3.3 Function makeSCA
This makeSCA function retrieves the snow covered area (SCA) from the image data using the
NLR algorithm.

The SCA product is retrieved from band 1 in a calibrated MODIS image of any resolution.

Input data
The input directory contains ENVI files produced by the data import module.

data file should represent a MODIS scene of any type
should contain MODIS band 1 as its first band

cloud file a result from the function makeCloudCover,
residing in the output directory

calib file: residing in the static directory, defining training areas in a map
geometry

index file: residing in a sub-catalogue in the output directory,
required for linking the image to identification of training areas,
which are defined in the map geometry

basic-conf file, a result from the function makeCloudCover, residing in the output
directory, required for producing the SCA-confidence

 SnowLab software documantation 31

Configuration data
scaResol: defines the resolution for the SCA product
scaCfg: defines a configuration file specific for the makeSCA function.

The scaCfg file contains links to various calibration masks and identifies the methods to be
used, as shown in the following lines.

scaMethod identifies the method to use, default is ‘nlr’, currently no other options

nlr_threshold_file: identifies a configuration file specific for the NLR method.
Details are not shown here.

calibMask_250 calibration mask to be applied by the NLR method if scaResol is 250m,
calibMask_1KM: calibration mask to be applied by the NLR method if scaResol is 1km

Output data
SCA product file: basic product with SCA values

with no masking from confidence, cloud cover or any other mask

SCA-conf file: confidence for basic SCA product

Interactions
Called from makeBasicProducts function

3.3.3.4 Function makeSTS
This function retrieves the surface temperature (STS) of snow from calibrated thermal MODIS
data. The STS product is produced by means of Key’s algorithm.

Input data
The input directory contains ENVI files produced by the data import module.

data file : should represent a MODIS scene of type 1KM.
should contain the MODIS bands 31 and 32 as its first two layers.

angle file: should represent the view angle. It is used in Key’s algorithm

Configuration data
stsMethod: identifying what method to use, default is ‘Key’, no other options yet
keyFileName: identifies a file with the complete set of coefficients for Key’s algorithm

The rest of the parameters aim at identifying what subset of Key’s coefficients to use

Output data
STS product file basic product with STS values

with no masking from confidence, cloud cover or any other mask

STS-conf file confidence for basic SCA product

Interactions
Called from makeBasicProducts.

3.3.3.5 Function makeSGS
This function retrieves a snow grain size index (SGS) from the image data

32 SnowLab software documentation

Input data
The input directory contains ENVI files produced by the data import module.

data file: should represent a MODIS scene of type 1KM.
should contain the MODIS bands 1 and 5 as its first two layers.

latlon file: forwarded from input catalogue if required

Output data
SGS product file basic product withSGS values

with no masking from confidence, cloud cover or any other mask

latlon file: should follow the processing chain if data file is not resampled

Interactions
Called from makeBasicProducts

3.3.4 Module derived products

Framework

Basic
products

Geo-
correction

Product
export

Make
SSW

product

Make multi-
sensor/ multi-

sensor product

Make
SDP

product

Multi-scene control functions

Data
import

This module handles products where one needs to consider a time-series of one or more basic
products. All functions in this module require that all input products are in a common geometric
reference. The functions also require a cloud mask or a confidence map for each input product

All functions need to consider the time sequence of various basic products through the
production chain. The framework itself only controls the various steps for one particular scene
at the time, and does not know anything about the other scenes in a time-series. Therefore the
multi-functions need a common toolbox, here referred to as a multi-scene controller or a time-
series controller. This controller keeps track of the current time-series, and gives access to
scenes that belong to the current time series.

3.3.4.1 Function makeSDP
This function estimates an index for snow surface wetness (SSW) based on the current change
in SGS in addition to the current value of STS

 SnowLab software documantation 33

Input data
The input consists of geo-corrected ENVI product files

• SCA product file for the current day

• Cloud cover product file

Empirical snow distribution model for the local area

Output data
SDP product for the current day

Interactions
Called from framework

3.3.4.2 Function makeSSW
This function estimates an index for snow surface wetness (SSW) based on the current change
in SGS in addition to the current value of STS

Input data
The input consists of geo-corrected ENVI product files

• STS product file

• SGS product files in a short time-series

• SCA product file

• Cloud cover product file

Output data
SSW product for the current day

Interactions
Called from framework

3.3.4.3 Function makeMultiSceneSCA
This module will consider current SCA results within a running time frame and identify the best
observation within that period. The required inputs are SCA products and their corresponding
confidence products.

Input data
The input consists of geo-corrected ENVI product files

• sca product files in a time series

• sca-confidence files that corresponds to each sca file

Output data
SCA product file for the current day

34 SnowLab software documentation

Interactions
Called from framework

3.3.4.4 Function makeMultiSensorSCA

Input data
The input consists of geo-corrected ENVI product files

• sca product files from various sensors in a time series

• sca-conf files that corresponds to each sca file

Output data
sca product file for the current day

Interactions
Called from framework

3.3.5 Module data export

Framework

Basic
products

Geo-
correction

Derived
products

Export
data

Data
import

The module data export contains the function exportData, which combines basic products or
derived products with various masks in order to make a presentable final product. It also
converts ENVI files to other file formats, if requested. It contains one function that can be called
from the framework:

3.3.5.1 Function exportData
The current version of exportData considers one product and exports it according to
specifications in the configuration data.

Input data
The input catalogue must contain a file with the specified basic or derived product.

Configuration data
The configuration files should specify these parameters:
product : what product to export; default is ‘sca’
dataOffset: offset value to add to value of geophysical parameter; default = 0
landMask_250 : landmask to be included if imgType is 250
landMask_1KM : landmask to be included if imgType is 1KM
coltab text file with colour table to be applied in the exported product

 SnowLab software documantation 35

In addition the class (mask) codes in the input and output files should be specified.

Output data
The raw products are combined with the corresponding cloud mask and the static land/water
mask into a presentable result. The result may be gives as ENVI-files and/or tiff-files in gray
tones and/or colours, as well as a jpg-file or png-file in colours.

36 SnowLab software documentation

4 Appendix

4.1 Configuration files
The configuration file should contain information needed by the controller to perform the right
operations on the different datasets. The general format of the configuration file is as follows. It
should consist of keyword-value pairs: <keyword> = <value>. (The keywords currently defined
are marked with bold font in the example below). The keyword should consist of one or more
strings and be separated from the value with the '=' sign. The value may consist of either a
single value which can be one or more strings ended by EOL, or it can be a list. The start and
end of the list should be marked by parentheses, and each item should be separated by a comma:
{<item1>, <item2>, <item3>}. Each item may consist of one or more strings, and the list may
run over several lines. Comments should start with an '#' and end at EOL.

4.1.1 The main configuration file
In the following example, the format of the configuration file is described in more detail:

CONFIGURATION FILE
Production line for cryospheric variables

project = cryo # Name of project. Default value: 'cryo'
maxLog = 100000 # Maximum size of logfile in bytes
 # Default value: 100KB

image catalog = /nr/project/bild/images
 # Must be an existing directory!
 # Default value: $CRYO_TOP/data

The following parameters must be set - there are no default values

Specify the
nof providers = 2 # Number of data providers

 number of (external) providers and their ID.

providers = {ksat, nasa} # Names of providers.
 # For download of data over ftp, there
 # will also need to be one ftp-configuration
 # file per provider. The format of this will
 # be explained below.

For each provider, specify the mail address of the sender
(There should only be one sender per provider)
ksat sender = mailer@ksat.no
nasa sender = mailer@nasa.no

#Specify the number of datatypes and their ID.
nof datatypes = 2 # Number of datatypes
datatypes = { modisKsat, modisNasa} # Names of datatypes

Specify the number of steps in the processing chain for the datatypes.
Syntax: <datatype name> nof steps = <nof steps>
There should be one processing chain for each data type.

modisKsat nof steps = 4

 SnowLab software documantation 37

Specification of steps in the processing chain.
Syntax: <datatype name> steps = { … }
There should be one line for each step, where each step
will correspond to a function in the “method API”
Each line should be comma separated. The syntax of each line is:
<name of operation> <name of function> <dataset in> <dataset out> <cfg >
Where:
<name of operation> - the name which will appear in the GUI
<name of function> - the corresponding name of the function to be called
<dataset in> - a number specifying the dataset which is input
<dataset out> - a number specifying the dataset which is output
<cfg> - name of a configuration file for the function.
If none is needed a dummy name should be given.
(The file could be located under the static-
directory)

modisKsat steps = {
import import_modisdata 1 2 ksat_import.cfg,
basic basic_products 2 3 basic_products.cfg,
project project_modisproduct 3 4 project_products.cfg,
export export_modisproduct 4 5 sca_export_ksat.cfg
}
Here the datasets which are input and output should be given a number as
an ID, with the numbering starting from 1. This corresponds to dataset
number 1, which will always be the original raw data fetched either
remotely or locally. Hence, in the example above, the original dataset
will be input to convert, and the convert function will put the output in
the directory for dataset number 2. Dataset number 2 will then be input
to preprocess, which puts the results in dataset 3. The extraction reads
from dataset 3 and puts the result in dataset 4. Finally, a display
function is used to show the results in dataset 4. This function gives no
output, and the output dataset is therefore also set to 4.

Specification of steps in the modis processing chain.
modisNasa nof steps = 4
modisNasa steps = {
import import_modisdata 1 2 nasa_import.cfg,
basic basic_products 2 3 basic_products.cfg,
project project_modisproduct 3 4 project_products.cfg,
export export_modisproduct 4 5 sca_export_ksat.cfg
}
Specification of local mail. (Needed for automatic remote download.)
mailusr = cryo # local mail user
mailpwd = cryo # local mail password
mailhost = mail.nr.no # local mail host
mailport = 100 # local mail port

4.1.2 Configuration files for each step in the production chain

4.1.2.1 Import configuration
The configuration file ksat_import.cfg will identify the various image types (resolutions) to
import and refer to an image type specific configuration file.

ksat_import.cfg:
imgTypes = { 1KM, 250 }
250_import = modis_Q_import.cfg
1KM_import = modis_cloud_import.cfg

38 SnowLab software documentation

Each image type specific configuration file will contain info of what parts of the image to
import

modis_cloud_import.cfg
Information on file and bands to be read from MOD021KM
imgType = 1KM
bandnames = { 1, 4, 6, 19, 20, 26, 31, 32}

#Also read the view-angle
angleFields = {SensorZenith}

#Also read the lat-lon fields
lat_lon = 1

modis_Q_import.cfg:
Information on file and bands to be read from MOD02QKM
imgType = 250
bandnames = { 1 , 2}

#Also read the lat-lon fields
lat_lon = 1

4.1.2.2 Basic products configuration
The configuration file basic_products.cfg looks like this:

Common parameters
maskCodeFile = mask_codes.cfg

Product specific config files
cloudCfg = modis_cloud.cfg
scaCfg = sca_compute_nlr_modis.cfg
stsCfg = sts.cfg
sgsCfg = sgs.cfg

map_1KM.cfg = data1KM_projection.cfg
map_250.cfg = data250_projection.cfg

The cloud detection config file defines the kNN method and the code mapping to be applied
after the kNN program :

modis_cloud.cfg:
ClassProgramName = KNNclass
CodebookFileName = codebooks/cloudclass
KNN_val_kn = 4
KNN_val_minratio = 0.0

knnCodeFile = codebooks/knn_codes.cfg

The map projection config file should refer to the map projection of the calibration area mask.

data250_projection.cfg:
inputProduct = data # default
inputType = 250
projCfg = proj_scandinavia.cfg

data1KM_projection.cfg:
inputProduct = data # default
inputType = 1KM
projCfg = proj_scandinavia.cfg

proj_scandinavia.cfg
Projection information
Available projections are: UTM, POLAR

 SnowLab software documantation 39

Projection = UTM
UtmZone = 33
Datum = WGS-84

Avoid '_' in ProjectionName
ProjectionName = scandinavia

Polarview
UpperLeft = { -76000.0, 7942000.0 }
LowerRight = { 1124000.0, 6392000.0 }

The SCA config file will identify the method and required calibration areas mask

sca_compute_nlr_modis.cfg
Configuration file for SCA from MODIS images
#--

scaResol = 1KM
scaResol = 250

Calibration masks in UTM 33 for each resolution
calibMask = calib/norge_calib_33
calibMask_250 = calib/norge_calib_250m_33
calibMask_1KM = calib/norge_calib_33

nlr_threshold_file = nlr_thresholds.cfg

The SCA-NLR config file nlr_thresholds.cfg should not be changed as it refers to threshold
parameters that have been carefully calibrated for the current satellite sensor.

The STS config file defines the Key algorithm:
stsMethod = Key
keyFileName = sts/KeyCoeffecients.txt
#AVHRR = 16
AVHRR = 0
MODIS = 1
tempRange = 2
arctic = 1

4.1.2.3 Project configuration
The project configuration file will identify how to project each product

project_products.cfg
products = { sca, cloud}
projCfg = proj_scandinavia.cfg
cell size = 250

sca_resampMet = bl
cloud_resampMet = nn
sts_resampMet = bl
sgs_resampMet = bl

sca_conf = 1

4.1.2.4 Export configuration
The export configuration file will identify how to project each product

40 SnowLab software documentation

sca_export_ksat.cfg:
Configuration file for exporting SCA-product from MODIS
#--
product = sca

dataPresentCode = 100
noProduct = 111

dataOffset = 0 default
dataOffset = 100

landMask_250 = Envisnow_mask250_norge_z33

Cloud value for NR cloud mask
in_cloud = 30
in_outside = 0

Water value for NoRut vegetation mask or land/water mask
in_water = 20

Code values for NR/NORUT sca product
out_cloud = 30
out_outside = 10
out_water = 20

coltab = col/NVE_sca_col.txt

metaFile = hdr ==> .meta-file to be included in .hdr-file
metaFile = hdr

 SnowLab software documantation 41

5 References
Andersen, T. 1982, "Operational snow mapping by satellites," Hydrological aspects of alpine and high

mountain areas, Proceedings of the Exeter symposium, July 1982, IAHS publ. no. 138, pp. 149-154.

Amlien, J and Solberg, R, 2004. “Evaluation of algorithms for the retrieval of snow surface temperature

from medium resolution satellite data”. The 8th Circumpolar Symposium on Remote Sensing of
Polar Environments, Chamonix, France, 08-12 June, 2004.

Key, J.R., J. B. Collins, C. Fowler, and R. S. Stone, 1997. “High-latitude surface temperature estimates

from thermal satellite data”, Remote Sensing of Environment, 1997. 61(2), pp. 302-309.

Koren, H, Solberg, R and Amlien, J. 2004. “Evaluation of algorithms for the retrieval of snow grain size

from optical satellite data”. The 8th Circumpolar Symposium on Remote Sensing of Polar
Environments, Chamonix, France, 08-12 June, 2004.

Malnes, E, Storvold, R, Lauknes, I; Solberg, R; Amlien, J and Koren, H, 2005 “Multi-sensor monitoring

of snow parameters in Nordic mountainous areas” IEEE International Geoscience and Remote
Sensing Symposium (IGARSS 2005), Seoul, Korea, 25-29 July 2

Solberg, R. and T. Andersen, 1994. “An automatic system for operational snow-cover monitoring in the

Norwegian mountain regions,” Geoscience and Remote Sensing Symposium (IGARSS), Pasadena,
California, USA, 1994.

Solberg, R, Amlien, J, Koren, H, Eikvil, L, Malnes, E, and Storvoll, R. 2004a. Multi-sensor and time-

series approaches for monitoring of snow parameters. IEEE International Geoscience and Remote
Sensing 2004

Solberg, R, Amlien, J, Koren, H, Eikvil, L, Malnes, E and Storvold, R, 2004b. “Multi -sensor/multi-

temporal analysis of ENVISAT data for snow monitoring” ESA ENVISAT & ERS Symposium,
Salzburg, Austria, September 06-10, 2004.

Solberg, R, J Amlien, H Koren, E Malnes and R Storvold 2005, “Multi-sensor multi-temporal snow cover

area algorithms. Part 1: Mountain regions ” Envisnow EVG1-CT-2001-00052. Norut, Feb. 2005.

Solberg, R, Amlien, J, Koren, H, Eikvil, L, Malnes, E and Storvold, R 2005b “Multi-sensor/multi-

temporal approaches for snow cover area monitoring” EARSeL LIS-SIG Workshop, Berne, February
21-23, 2005.

	1 System overview
	1.1 Purpose
	1.2 System architecture
	Modules
	1.2.2 Main process
	1.2.3 The framework

	1.3 Overview of the system modules and their main functions
	1.3.1 Import module
	1.3.2 Basic products module
	1.3.3 Geometric correction module
	1.3.4 Derived products module
	1.3.5 Export module

	1.4 Outline of the production chain
	1.5 Snow parameter retrieval algorithms
	1.5.1 Snow Covered Area (SCA)
	1.5.2 Cloud Cover Mask
	1.5.3 Surface Temperature Snow (STS)
	1.5.4 Snow Grain Size (SGS)

	1.6 Derived product algorithms
	1.6.1 Snow Surface Wetness (SSW)
	1.6.2 Snow distribution pattern
	1.6.3 Multi-SCA

	2 System Operator’s Manual
	2.1 System Installation Guide
	2.1.1 Unpacking the software
	2.1.2 Directory structure
	2.1.3 Setup of the production chain
	2.1.3.1 Configuration file format
	2.1.3.2 Main configuration file
	Configuration of automatic download
	Configuration of the production chains
	Optional main configuration parameters
	2.1.3.3 Setup of the production steps

	2.2 System Operator’s Guide
	2.2.1 Starting the software
	2.2.2 Remote modus
	2.2.3 Local modus
	2.2.4 Process control
	Temporary files
	Logfiles
	Error handling

	2.3 Instructions for operating in local modus
	2.3.1 Data download
	2.3.2 Edit list file
	2.3.3 Start the processing chain
	2.3.4 Upload the product

	3 System Developer’s Manual
	3.1 Introduction
	3.2 Interaction between the framework and the application software
	3.2.1 Main principles
	3.2.2 Modifications and specifications
	Temporary files
	Input/output catalogues
	Configuration files

	3.3 Module descriptions
	3.3.1 Module data import
	3.3.1.1 Function importModisData
	Input data
	Output data
	Configuration data
	Interactions
	Optional function compileOrbitScenes

	3.3.2 Module geometric correction
	3.3.2.1 Function establishGeometricReference
	Input data
	Configuraton data
	Output data
	Interactions
	3.3.2.2 Function resampleProducts
	Input data
	Configuration data
	Output data
	Interactions

	3.3.3 Module basic products
	3.3.3.1 Function makeBasicProducts
	Input data
	Configuration data
	Output data
	Interactions
	3.3.3.2 Function makeCloudCover
	Input data
	Configuration data
	Output data
	Interactions
	3.3.3.3 Function makeSCA
	Input data
	Configuration data
	Output data
	Interactions
	3.3.3.4 Function makeSTS
	Input data
	Configuration data
	Output data
	Interactions
	3.3.3.5 Function makeSGS
	Input data
	Output data
	Interactions

	3.3.4 Module derived products
	3.3.4.1 Function makeSDP
	Input data
	Output data
	Interactions
	3.3.4.2 Function makeSSW
	Input data
	Output data
	Interactions
	3.3.4.3 Function makeMultiSceneSCA
	Input data
	Output data
	Interactions
	3.3.4.4 Function makeMultiSensorSCA
	Input data
	Output data
	Interactions

	3.3.5 Module data export
	3.3.5.1 Function exportData
	Input data
	Configuration data
	Output data

	4 Appendix
	4.1 Configuration files
	4.1.1 The main configuration file
	4.1.2 Configuration files for each step in the production chain
	4.1.2.1 Import configuration
	4.1.2.2 Basic products configuration
	4.1.2.3 Project configuration
	4.1.2.4 Export configuration

	5 References

