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Abstract— Operational snow cover mapping by optical sensors 
has taken place for more than two decades, but there is still a 
demand for improved mapping accuracy. Most operational 
products are binary (snow/no-snow). In the work presented here, 
a new approach has been taken to achieve significant 
improvements in the accuracy. Current spectral BRDF 
characteristics of the snow and snow-free ground are modeled 
locally, per pixel. Spatial functions for these characteristics are 
established for the region to monitor. The approach opens for 
snow mapping combining several different sensors 
independently. It is a solution to the needs for long-term climate 
monitoring where inter-sensor calibration and introduction of 
new generations of sensors make it difficult achieving time 
consistency in the mapping. The method is currently under 
validation in mountain regions in Norway. 

Remote sensing of fractional snow cover area, BRDF, 
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I.  INTRODUCTION 
Snow cover has a substantial impact on the interaction 

processes between the atmosphere and the surface, thus the 
knowledge of snow variables is important in climatology, 
weather forecasting, and hydrology. The seasonal snow cover 
is practically limited to the northern hemisphere with an 
average extent during the winter months ranging from 30 to 40 
million km2.  

 Operational snow cover area (SCA) mapping by optical 
sensors has taken place for more than two decades, but there is 
still a demand for improved accuracy. Most operational 
products are binary (snow/no-snow). Since snow cover is a 
rapidly changing phenomenon in many regions, there is a need 
for frequent mapping. To achieve frequent mapping sensors 
with medium to low spatial resolution have to be used. Thus, to 
achieve the details required in many applications, fractional 
mapping is needed. A few fractional snow cover algorithms 
have been developed, but there is still a gap between the 
accuracy needed in many cases and the accuracy obtained in 
practice. It is not uncommon to see errors of 30-40% SCA. 
This is in particular due to effects from the topography in 
mountainous terrain, the effects of forest, effects from the ever-
changing spectral bidirectional reflectance distribution function 
(BRDF) of snow (due to metamorphosis and impurities) and 
the spectral BRDF characteristics of the snow-free surface. 

The requirement of frequent mapping has limited the 
number of satellite sensors that is usable operationally down to 

the NOAA AVHRR, Terra and Aqua MODIS and a few other 
sensors of low and moderate spatial resolution. This situation 
led very early to the development of fractional SCA retrieval 
for the Norwegian mountain region, a region very important for 
hydropower production. The idea of classifying each pixel into 
several snow-cover categories dates back to a proposal by 
Østrem et al. [1]. The method was fully described by Andersen 
in [2]. It is based on the assumption that there is a linear 
relationship between snow coverage and measured radiance. 
The method has been applied in Norway since it was developed 
in the beginning of the 80’ies, and it has also been used in 
Canada [3]. It has later been improved with automatic training, 
automatic geocoding, and automatic cloud detection [4].  

A relatively new approach to the problem of retrieving 
snow at sub-pixel level is spectral unmixing. Spectral unmixing 
is particularly suited for sensors having a high number of 
bands, but it is also possible to use sensors like Landsat 
Thematic Mapper. Reference [5] introduced spectral unmixing 
for fractional SCA retrieval using a linear mixture model. A 
disadvantage of the method is that it is supervised. The spectral 
endmembers have to be identified manually by training of the 
algorithm. Reference [6] proposes a method for unsupervised 
spectral unmixing. The method determines endmembers 
automatically and then compares them to a spectral library to 
estimate the mixture of each pixel (see also [7]).   

For operationally applications, the above approaches have 
various drawbacks. The algorithm in [2] actually assumes that 
all snow-free surfaces have the same reflectance and that the 
snow reflectance is the same for the whole image. It also 
neglects BRDF effects and topographic effects. At the basin 
level, and for areas above the tree line, local variations may to 
some degree cancel out when computing totals. However, there 
are also large-scale variations between basins that are not 
compensated for (one image with one calibration covers 
several basins).  

The spectral unmixing approach might compensate for 
several of these problems by decomposing more than two 
spectra, hopefully all endmembers in the scene. The original 
algorithm in [5] has, as mentioned, the problem of being 
supervised. The problem was solved in [6] including a spectral 
library, and the approach was further improved in [7] and [8]. 
However, it is practically impossible to have all snow 
reflectance classes available in a library since the snow’s 
spectral reflectance, and specifically the BRDF, develops 
continuously due to snow crystal metamorphosis and 
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contamination of the snow surface by impurities. Another and 
more general problem with spectral unmixing is that there will 
usually be, in particular with a high number of possible 
endmembers, many solutions to the set of linear equations to be 
solved. Hence, the high variability of the snow reflectance will 
with the above approaches of spectral unmixing necessarily 
give variable accuracy, in particular during the melting season. 

In the work presented here, the current spectral and BRDF 
characteristics of the snow and the snow-free surface are 
modeled locally. With good predictions of local spectra 
established, a straightforward spectral unmixing gives the 
current snow fraction of each pixel.  

II. METHODOLOGY 

A. Overall approach 
In the proposed approach for fractional SCA retrieval 

presented here, the actual, current spectral BRDF 
characteristics of the snow and snow-free ground are modeled 
locally, per pixel. The models are established by assimilation of 
remote sensing data for varying acquisition and solar geometry 
during the snow and snow-free seasons. To model snow 
metamorphosis, a “time dimension” is introduced to let the 
spectral BRDF develop. The assimilation technique, using 
sensors with moderate spectral resolution, performs modulation 
of an initial spectrum of high spectral resolution to establish a 
full high-spectral-resolution BRDF model locally. 

In order to be able to handle the development of the snow 
spectrum also when the snow cover is patchy, metamorphosis 
and impurity projection functions are introduced. These 
functions predict the development of the snow state during the 
late part of the snowmelt season. 

With local estimates of spectra for snow and snow-free 
ground established, linear spectral unmixing is applied to 
estimate the current snow fraction per pixel. An iterative 
approach is used where the predicted spectra for snow and 
snow-free ground are improved in each iteration, hence also 
giving an improved estimate for the fractional SCA. 

B. Spectral BRDF  model grid 
The snow undergoes a process of continuous 

metamorphosis and reception of impurities (the theory behind 
this is described in [9] and [10]). Snow crystals change 
structure and size, mostly due to processes related to energy 
transfer. Impurities, small particles of organic and inorganic 
material (like litter from vegetation, soil and soot), will usually 
be deposited in a rate proportional to the amount of vegetation 
and snow-free surfaces in general exposed to the air in the 
neighborhood. Metamorphosis and increased impurity content 
change the reflectance spectrum. The near-infrared region of 
the spectrum is more sensitive to the metamorphosis than the 
visual part, while the visual spectrum is more sensitive to 
impurities.  

The combined effect of terrain relief, solar illumination 
geometry and sensor acquisition geometry (here called 
geometrical effects) affects the exiting radiance for a given area 
on the ground (e.g., the area corresponding to a pixel). The 

atmosphere adds on with more effects for the observed 
radiance at the satellite.  

Except for small experimental sites, it has proven quite hard 
to carry out fractional snow cover mapping through physical 
modeling of all or most effects mentioned. There are simply 
too many variables which one has no control over.  

A fundamental aspect of the approach chosen here is to 
utilize observations as much as possible to retrieve the 
information needed that otherwise could have been created by 
complex, physical modeling. In other words, empirical models 
have been used as far as it is possible when remote sensing can 
be applied to calibrate them. 

An important part of the concept is that a spectral BRDF 
grid is established for the region to monitor. The grid size 
might correspond to the pixel size, such that there is one grid 
element for each observed pixel on the ground (however, this is 
no requirement and in general not true when different sensors 
are applied to monitor the same region). A grid element models 
the spectral BRDF for all relevant acquisition angles and solar 
illumination angles for the terrain relief associated with the 
given grid position.  

Two BRDF grids are established – one for snow and one 
for the snow-free land surface cover (senescent vegetation, 
vegetation in the winter state, when vegetation is present). The 
BRDF snow grid also has to model developing snow. Since the 
anisotropy of the snow reflectance changes with the 
metamorphosis and since the reflectance is depending on the 
local terrain orientation, there is no straightforward way to 
predict how the spectral BRDF for a snow grid element will 
develop with the metamorphosis. The approach taken here is to 
include a “time dimension” (or more correctly, a 
metamorphosis development dimension) to the spectral BRDF 
model. The metamorphosis dimension in the grid model is 
parameterized by the observed or effective grain size (various 
algorithms for retrieval of the effective grain size are presented 
in [11]).  

The grid is calibrated using a spectral BRDF assimilation 
algorithm. The BRDF grid elements are built up from 
numerous observations, through several snow seasons, to reach 
full coverage of combinations of snow metamorphosis and 
illumination and observation geometry. Similar assimilation is 
done for snow-free surface conditions during late spring and 
autumn (with senescent vegetation). It is important to avoid 
any presence of bare ground in the snow grid and any presence 
of snow in the land surface grid. This is done by a comparison 
of each new observation with statistics for the corresponding 
grid element. If the new observation represents a spectral 
BRDF outlier, it is discarded. For initialization of the grid, to 
build up the initial statistics, special filters are applied to ensure 
pure observations.  

An objective of the spectral BRDF grid is to ensure 
compatibility with different optical sensors, including sensors 
of high spectral resolution. The approach currently tested out is 
to initialize the grid with data from a hyperspectral sensor. 
Only one or a few hyperspectral observations of each grid 
element are applied. Following observations, with sensors of 
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Figure 1.  Overall approach for the new fractional SCA algorithm 

moderate or low spectral resolution, are then modulating the 
original high-resolution spectrum. 

C. Metamorposis and impurity projection 
For fractional snow cover conditions, snow metamorphosis 

and the level of impurities cannot be directly measured due to 
the spectral mixture of snow-free ground and snow. The 
terminal full snow cover conditions are here used as a baseline 
for projection algorithms. There is one model for nominal 
development of metamorphosis and several models for nominal 
development of the impurity concentration. The 
metamorphosis model builds on a degree-day approach to 
simulate the metamorphosis (similar approach is often taken in 
snowmelt models). Since the temperature normally will not be 
available, nominal development for the given region is applied.  

The process of impurity deposition in the snow is mostly 
driven by wind for areas with low vegetation, and most of the 
deposition takes place when snow-free ground appears in the 
neighborhood. The deposition process has been measured in 
the field for the development of fractional snow cover for 
several land cover types. The measurements are the basis for 
empirical functions parameterized by snow cover fraction. 
There is one function for each general land cover type.  

D. Fractional snow cover algorithm 
The overall approach for the fractional snow cover 

algorithm is illustrated in Figure 1. The algorithm starts to 
calculate an initial estimate for the snow cover fraction. A 
simple two-spectra linear mixture model is applied, where the 
two spectra represent the terminal full snow coverage as 
determined by the snow spectral BRDF grid and the snow-free 
surface as determined by the snow-free surface spectral BRDF 
grid.  

The algorithm proceeds with metamorphosis modeling, 
parameterized by the estimate of the snow cover fraction. The 
terminal full-snow-coverage snow spectrum is modulated 
accordingly. The next step is to model impurity deposition. A 
map of local land cover type is used to select the relevant 
model, and snow cover fraction is used to parameterize the 
model. The estimated impurity content is used to further 
modulate the snow spectrum. 

The next step is to apply the modulated snow spectrum, i.e. 
the predicted snow spectrum, and the corresponding grid 
element for the snow-free surface in a linear spectral unmixing 

algorithm. This gives a new and more accurate estimate for the 
snow cover area fraction for the current pixel.  

The algorithm proceeds in an iterative manner applying the 
new estimate of the snow cover fraction to make a new, and 
hopefully better, estimate of the snow spectrum, which is again 
applied in the linear spectral unmixing algorithm. The process 
is repeated until the change between two iterations is marginal 
or an upper limit for the number of iterations is reached.  

III. FIRST EXPERIMENTAL RESULTS 
The proposed approach is just in the first stage of 

validation. Therefore, only results from the first few and 
limited experiments are presented here. The quantitative results 
should be interpreted cautiously as larger experiments for a 
broader variety of snow conditions need to be carried out to 
understand how the algorithm performs in general. 

The first experiments have been carried out in the 
Heimdalen-Valdresflya test site in the Jotunheimen mountain 
region in the central part of southern Norway (9.0° E; 61.4° N). 
The area is of about 200 km2 with an elevation range of 1050 to 
1840 m a.s.l. The area is free of tall vegetation except for some 
birch in the lowest locations.  

The experiments so far have concentrated on the snowmelt 
season in 2004, for the period April-June. The site is usually 
fully snow covered in most of April, and snow patches may 
remain until late June. Fractional snow cover area has been 
retrieved from Terra MODIS data and compared to Landsat 5 
Thematic Mapper (TM) images and one aerial orthophoto 
mosaic. The available TM images were acquired 23 May and 
30 May, while the aerial photos were acquired 13 June. The 
TM images have been classified interactively using a clustering 
algorithm. The 30 m classified pixels were then converted to 
250 m pixels of fractional snow cover for direct comparison 
with the maps derived from MODIS data with the new 
algorithm. The orthophoto mosaic with 1 m spatial resolution is 
quite hard to classify due to radiometric effects from the 
varying viewing geometry within each original image, so the 
mosaic has so far only been used for comparison of small 
areas.  

The snow maps have also been compared to maps 
generated by the classical algorithm in [2] still in operational 
use. The classical algorithm has previously been compared to 
the NASA GSFC MODIS algorithm in [12], where the 
algorithms were shown to give quite consistent results.  

The snow cover was quite patchy on 13 June. Field 
measurements also showed that there was a significant amount 
of impurities in the snow. The classical fractional snow cover 
algorithm gave too low values in the area, typically 25-20% 
less SCA than the orthophoto shows. The new algorithm gave 
values typically within 5% of the orthophoto.  

The comparison with snow maps derived from the TM 
images included studies of mountain slopes in various 
directions (see Figure 2). The classical algorithm might in 
many cases give snow fractions up to 30-40% higher than the 
actual value for slopes oriented towards the sun and, similarly, 
30-40% lower values for slopes oriented away from the sun. 



Figure 2.   Landsat TM image acquired 30 May 2004 showing Heimdalshø 
mountain in the Heimdalen-Valdresflya test site. The classical fractional SCA 
algorithm gave much too low values in the northernly oriented slopes, up to 
40% too low SCA was found in this example. The new method gave errors 
within about 5% for the same slopes 

The new algorithm, which indirectly compensates for the 
terrain orientation relative to the sun, gave values within 
approximately 5% of the values derived from TM. 

IV. DISCUSSION AND CONCLUSIONS 
Operational snow cover mapping by optical sensors has 

taken place for more than two decades, but there is still a 
demand for improved mapping accuracy. Even if the contrast 
between snow and snow-free ground is quite high in general, 
accurate mapping of the snow cover is not straightforward. 
This is partly due to the situation that the snow fraction at the 
sub-pixel level is needed to obtain the required level of detail 
for the snow maps. Combined with the fact that the snow 
spectrum changes continuously and that the regions to monitor 
frequently has complex terrain relief, this has resulted in a 
failure to obtain very accurate operational fractional snow 
cover monitoring for larger regions. 

For smaller regions, high accuracy has been obtained at the 
sub-pixel level by a few authors (like in [8]). It is characteristic 
for such experiments that detailed knowledge and models have 
been established for the region at hand. For large-scale 
mapping, it is practically hard to apply the same approaches.  

The approach taken here is to avoid using detailed local 
ancillary data and complex physical models, and instead 
deriving local information from time series of remote sensing 
data to establish or parameterize empirical models. This makes 
it feasible to apply the method on larger regions. However, a 
data assimilation period is required to build up the necessary 
local models. 

The limited experiments performed so far with the new 
approach confirm that significantly higher accuracy, compared 
to classical, operational approaches, is achievable. Errors seem 
to deviate with less than 5% from SCA in the reference data 
(Landsat TM and aerial images) for regions with terrain relief 

and snow states where classical methods typically give large 
errors. If the high accuracy can be proved to be valid in 
general, the method should be attractive for local applications 
(like hydropower hydrology) as well as for global applications 
(like climate change monitoring) where high accuracy is a 
requirement. 

Future plans include large-scale validation for a variety of 
snow states and adaptation of the method to snow monitoring 
in forested regions.  
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