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1 Introduction

The purpose of this note is to give a practical introduction into Kalman filtering and one of
its byproducts, the Ensemble Kalman Filter. The motivation for this study is that the Ensemble
Kalman filter has become a popular method for doing history matching of oil reservoirs.

In 1960, Rudolph Kalman published the paper Kalman (1960) where he made a major contribu-
tion to Stochastic Control Theory, namely, Kalman filter. Engineers working in navigation quickly
realized that the Kalman filter gave a solution to a number of problems that were previously in-
tractable with the use of the Wiener filter. The Kalman filter was timely, it was discovered at a time
when significant progress was achieved in the area of digital computers. The circumstances were
perfect for testing the computationally demanding operations required by the recursive nature of
Kalman’s algorithm.

The filter was originally designed to give a solution to the classical linear least squares esti-
mation problem in signal processing and control theory. Unfortunately, it took over 20 years to
incorporate the Kalman filter into mainstream statistics, despite the straightforward interpreta-
tion as a recursive Bayesian estimator. Today the Kalman filter is covered by books in time series
like West and Harrison (1997).

The filter may be summarized as follows: It is a set of equations to estimate the state of some
process, with the possibility of assimilating new information as it arrives. The filter is optimal
in a sense that it incorporates all recently acquired information in the best possible way. The
information arrives typically when we measure the state variables of the process.

The main ideas are explained with the help of examples. We also review recent work done in
this field so as to give a flavor of the state of the art in this technique.

1.1 Lost at sea
This instructive example was extracted from Chapter 1 in Maybeck (1979).

You are lost at sea, at night, and you have no idea of your location. Call your location x

(small letters denote both stochastic variables and realizations) and assume that we are in a one-
dimensional sea. You want to stablish your position with the help of a star sighting. Unfortunately,
you do not have much experience with measuring the position, so your measurement is very inac-
curate: you get the position z1 but with some large uncertainty σ1. First detail: it is good to model
the process with some sort of uncertainty. Namely, in the sea, the waves make the boat balance
back and forth bringing uncertainty to the ’real’ position. In probabilistic terms this is known as a
random walk.

Fortunately, you are sailing with a good friend that has more experience with finding the
location. Immediately after you made your measurement, he made his decision and declared that
the position should be z2. He has less uncertainty in his result, therefore we assign him a standard
deviation σ2, which is less than σ1.

The problem now is naturally: estimate the position of your boat given these two measure-
ments. We want to use all the information available, and combine them in the best possible way.

We can put this problem in mathematical terms. Consider the variable x∗ = x|z1 and assume
that x∗ ∼ N(z1, σ1). This is the so-called prior and provides some a-priori information on the
position. The likelihood function of the second observation is given by z2|x∗ ∼ N(x∗, σ2), namely,
the effect of adding new information is given some weight.

We are interested in the moments µ and σ of fx|z1,z2 . At this point we should note one of the
essential points in Kalman estimation: the estimate µ should be a linear blend of the prior x∗ (all
past information) and the newly arrived information.

Bayes theorem states that the posterior fx∗|z2 is proportional to fz2|x∗fx∗ . This amounts to
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saying that

(1) (x∗ − µ)2/2σ2 = (z2 − x∗)2/2σ2
2 + (x∗ − z1)2/2σ2

1 + C

for some constant C. The following formulas now follow by comparing the coefficients in (x∗)2

and x∗, respectively:

µ = σ2
2/(σ

2
1 + σ2

2)z1 + σ2
1/(σ

2
1 + σ2

2)z2(2)

1/σ2 = 1/σ1
1 + 1/σ2

2(3)

We expect something like the illustration of Figure 1.

Figure 1. Assimilation of information and Bayes rule.

The estimated position µ is, as expected, a weighting average between the measurement taken
by you and your friend. Since your friend is better navigator, a larger weight is given to his/her
measurement z2. On the other hand, the variance σ2 is proportional to the harmonic mean of the
variances in the observations. In particular, the new standard deviation is less than both! This is
an important remark: the variance of the "update step" decreases.

A good notation could be:

· xf = E[x|z1] = z1: the average state of the process, given the existing information/measurement
(your poor measurement)

· xa = E[x|z1, z2] = µ: updated average state of the process, given the newly arrived informa-
tion (thanks to your friend)

· (σf )2 = var(x|z1) = σ2
1 , your rather large variance

· (σa)2 = var(x|z1, z2), the updated variance

With this notation, the update step (see (2)) is a linear combination of the average state and the
new measurement:

(4) xa = xf +K[z2 − xf ]
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where K := (σf )2/((σf )2 +(σa)2) is commonly known as Kalman gain. This is the first important
equation of the Kalman update (or analysis).

Likewise, the uncertainty (see (3)) may be written as:

(5) (σa)2 = (σf )2 −K(σf )2 = (1−K)(σf )2.

And this is the second equation of the Kalman update. We are now done with the static problem.
Your friend is now alone in the boat and he knows that he is moving according to the following

model:

(6) dx/dt = u+ w.

In other words, u is the velocity of the vessel, and w is some noise term (white Gaussian) that
models the uncertainty in the knowledge of the actual velocity due for example to disturbances,
changes in wind speed, etc. Our intention is to replace the role of your bad observation by a
“forecast” of the average of your friend’s observation at the initial time. Now you are the math-
ematician again and this is your goal: “project forward in time” the available estimate until your
friend takes another look at the stars tomorrow. That is, you let the model forecast the position
tomorrow. The average position has moved according to the motion law, and the uncertainty in
the position tomorrow will become larger than today.

A discrete interpretation of the law of motion with Euler time stepping is simply

(7) xt = x0 + ∆tu+ ∆tw0

where the position today x0 ∼ N(z0, σ0) and w0 ∼ N(0, σw). The superscript "t" means "true state
of the process according to the model”.

Equation (7) moves the state of the process, along with the moments. One derives the equa-
tions:

xf = z0 + ∆tu(8)

(σf )2 = σ2
0 + ∆tσ2

w(9)

Note the increase in variance of σf ! These are now playing the role of your inaccurate observations
and becomes the a-priori information.

Your friend is now trying to draw some information from the true state:

(10) z = xt + v

where v ∼ N(0, σ). He/She is just measuring xt, and no other function of the position. In general
Kalman filtering one may allow for a so-called observation operator to affect the state process.

We may now write the update equations:

xa = xf +K1[z1 − xf ](11)

(σa)2 = (1−K1)(σf )2(12)

where the Kalman gain is K1 = (σf )2/((σf )2 + σ2). The process is restarted with the moments xa

and σa of the initial state x0.

1.2 The oil connection
One may now recognize the philosophy of Kalman filtering. The following two steps are distin-
guished:

1. Project forward in time the current state to obtain the a-priori estimate.
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2. Incorporate the new measurement and obtain an improved a-posteriori estimate.

How do one applies these ideas into oil reservoir monitoring? Say that you are interested in pro-
duction variables evolving in time like gas/oil ratio in some wells. Say that you know the per-
meability and porosity today. The first step above is carried out by some flow simulator. Obtain
some forecast of tomorrow’s state of the reservoir given today’s data. Take a new measurement
tomorrow and update the a-priori estimate. Proceeding this way, one intends to mimic the behav-
ior of the reservoir. Note that in general, the simulators are highly non-linear, so Kalman filter will
break down. The use of the Ensemble Kalman Filter (EnKF) has proved useful in tackling with
these problems, see Nævdal et al. (2005). We will come back to this later.

2 The discrete Kalman Filter

A very friendly exposition of the Kalman filter is found in the book Brown and Hwang (1992).
For a summary of the problem and the equations we also recommend Welch and Bishop (2004).

2.1 The problem
Throughout the literature one encounters that xk ∈ IRn denotes the stochastic process itself. This
is to distinguish the process and observations from matrices that are denoted by capital letters.
So, assume that some process is governed by the linear stochastic difference equation:

(13) xk = Axk−1 +Buk−1 + wk−1, k ≥ 1.

with initial state

(14) x0 = ξ ∼ N(x0, P0)

This process is measured and one gets m possible measurements, namely, zk ∈ IRm:

(15) zk = Hxk + vk.

The initial state, the process noise wk and the measurement noise vk are mutually independent.
The noises have the law

wk ∼ N(0, Qk)(16)

vk ∼ N(0, Rk)(17)

(18)

Matrices A and B relate the actual state of the process with a previous state and control process,
respectively. Matrix H is a so-called measurement operator. Note that both the process and the
measurements are described by linear models. In practice models like this are too restrictive. One
of the main applications of the Kalman filter is actually into non-linear models.

2.2 Kalman filter equations
Consider the problem:

xk = Axk−1 +Buk−1 + wk−1(19)

zk = Hxk + vk(20)

Here xk−1 denotes the state at time tk−1 and xk denotes the state at some later time tk. Let xf
k

denote the a-priori estimate of the process at this later point based on all our knowledge prior to
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this point, in mathematical terms:

(21) xf
k = E(xk|z∗)

where z∗ denotes the available information up to time tk−1. This is our best guess prior to assim-
ilating the measurement zk.

Let xa
k−1 means the best estimate of the process with assimilated information up to tk−1, i.e.,

(22) xa
k−1 = E(xk−1|z∗)

Equation (19) is used to obtain the forecast estimate at time tk. Conditioning on the observations
z∗ gives:

(23) xf
k = Axa

k−1 +Buk−1

The forecast covariance matrices are updated according to the matrix relation:

(24) P f
k = AP a

k−1A
t +Qk−1.

where

P f
k = E

[
(xf

k − xk)(xf
k − xk)′

∣∣∣ z∗],(25)

P a
k−1 = E

[
(xa

k−1 − xk−1)(xa
k−1 − xk−1)′

∣∣ z∗].(26)

Once we have obtained the moments of the prior distribution, we are able to assimilate new
information. The assimilation/analysis step is carried out as follows. The a-posteriori mean is
given by:

(27) xa
k = xf

k +Kk(zk −Hxf
k)

where

(28) Kk = P f
k H

′(HP f
k H

′ +Rk)−1

is the Kalman gain matrix. The a-posteriori error covariance matrix is computed by the formula

(29) P a
k = (I −KkH)P f

k .

Equations (23), (24), (27), (28) and (29) constitute the Kalman filter equations.

2.3 Examples
We will now illustrate the behavior of the filter on two one dimensional examples.

2.3.1 Estimation of a random constant
This is a simple, yet important example. The idea is to show that, for the problem of estimating a
random constant with infinity a-priori variance, the Kalman estimation gives the usual estimate
z̄, i.e., the mean of the observations.

The model is simply:

xk = xk−1,

zk = xk + vk.

The variable to estimate is x0 ∼ N(µ0, σ
2
0) and the error noise is vk ∼ N(0, 1). So, assumingQk = 0

is to keep this variable static, and Rk = 1 is the observation variance.
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We only carry out the two first iterations.
k=1:

F :

{
xf

1 = xa
0

P f
1 = P a

0 = σ2
0 .

Assuming σ0 = ∞we proceed to assimilate the first observation:

A :


K1 = P f

1

P f
1 +R1

= 1

xa
1 = xf

1 +K1(z1 − xf
1 ) = z1 .

P a
1 = (1−K1)P

f
1 = R1P f

1

P f
1 +R1

= 1

The equalities to 1 are in sense of taking the limit when P f
1 → ∞. We may go on to compute the

second step.
k=2:

F :

{
xf

2 = xa
1 = z1

P f
2 = P a

1 = 1.

A :


K2 = P f

2

P f
2 +R2

= 1/2

xa
2 = xf

2 +K2(z2 − xf
2 ) = z1 + 1

2 (z2 − z1) = z1+z2
2

P a
2 = (1−K2)P

f
2 = 1/2

2.3.2 Random walk
This example is essentially the "lost at sea" example from the introduction, namely,

xk = xk−1 + wk−1,

zk = xk + vk.

We take Qk = 1 for k ≤ 10 and Qk = 1/2 for the rest. The observation errors have variance
Rk = 1/2. In figure 2 you may see how the arrival of observations influence the filter and how
this is able to reproduce the true x−process shown as a solid line.

3 Ensemble Kalman Filter

We drop the indices, and concentrate on the iterative nature of the filter. The Kalman filter is
designed for linear models. Consider a nonlinear model like:

xt = f(x) + w(30)

z = Hxt + v(31)

for some non-linear function f of the state. An early attempt to extend the Kalman filter to these
problems is the Extended Kalman filter, which is based on linearization of the nonlinear model
with the tangent operator (Jacobian F := ∂f

∂x ). However, the extended Kalman filter is not suitable
for very large models, and fails if the nonlinearities are too severe.

The Ensemble Kalman Filter (EnKF) was introduced by Evensen (1994) to handle nonlinear
ocean models, and has shown to be a promising approach.

Given the nonlinear character of the model dynamics, the moments of the real state xt are in
general difficult to find, see (25). We resort to simulation. The idea is to start with a set or ensemble
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Figure 2. Random walk example.

of model states (we postpone the simulation details), evaluate each realization of the model state
through the model dynamics (30) and obtain a new ensemble. This is the a-priori ensemble, from
which statistics can be extracted from usual estimation. The update step is done now, again with
all the members in the ensemble, but we simulate this time an ensemble of observations, taking
as mean the true observations. Each of the a-priori ensemble member is then updated to reflect
the simulated observations. The process is then repeated to hope for convergence.

In few words, the EnKF is a Monte Carlo type Kalman Filter.
The true state of the process is approximated by the mean of the members of the ensemble.

This substitution has no effect in the form of the equations.

3.1 Notation
Here is a short overview of the notation we use for the ensemble Kalman filter. Note that the time
index is still omitted. The notation and equations are the same as in Evensen (2003).

· X := [x1, . . . , xN ] ∈ IRn×m matrix of ensemble members. Each state vector xi is in IRn.

· X̄ := X[1, . . . , 1]′N ∈ IRn×1 the ensemble mean vector. The elements of the ensemble mean
are the mean of the rows of matrix X .

· z ∈ IRm×1: vector of observations

· Pe := (X−X̄)(X−X̄)′

N−1 ∈ IRn×n: the ensemble covariance matrix.

· Z := z + Υ ∈ IRm×N matrix of perturbed observations

· Υ := (ε1, . . . , εN ) ∈ IRm×m vector of perturbations where εi ∼ N(0,Σe
i ), and Σe

i is a diagonal
matrix.

· Re = ΥΥ′

N−1

The Ensemble Kalman Filter - theory and applications in oil industry 13



3.2 EnKF Algorithm
The main idea to bear in mind is that the EnKF is a Monte Carlo Kalman filter. Simultaneous state
vectors are simulated, advanced in time, and updated for each time an observation arrives. The
statistics of the forecast step are not available explicitely, as in the linear case. Hence the need
for simulation. The statistics are estimated from the ensemble, namely X̄ and Pe. As the number
of ensemble members increases, these estimates will converge towards the true first and second
moments of a-priori distribution after the forecast step. The EnKF algorithm is given below.

1. Initialize: Define an initial ensemble X ∼ N(µ0,Σ0)

2. Forecast: Project forward in time the ensemble X using the equation:

(32) Xf = f(X) +W

where the model noise matrix W = (wi) is make by drawing the random numbers wi ∼
N(0,Σw

i ). Repeat this step until you reach an observation time.

3. Analysis: Generate observations Z by perturbing the real observations z. Update the ensem-
ble Xf using the equation

(33) Xa = Xf + PeH
′(HPeH

′ +Re)−1(Z −HXf ).

Go to the Forecast step.

The algorithm stops at some user defined time T . One of the tricky parts of the algorithm is
precisely the inversion of the matrixHPeH

′+Re in the analysis step. A detailed discussion of this
issue is found in Evensen (2003). We only mention that for oil applications, where the number of
observations m is large, the inverse maybe computed at a cost proportional to mN (recall that N
is number of samples in the ensemble) instead of m2.

It is worth mentioning that the EnKF belongs to the family of so-called particle filters or Monte
Carlo filters. These filters appeared in the 90’s and turned out to produce better results than the
Extended Kalman Filter. For a nice set of examples and references see Kitagawa (1998), see also the
nice tutorial Arulampalam et al. (2002). The EnKF is designed for large-scale filtering problems.

3.3 Examples
We have implemented two examples in order to illustrate the algorithm. We start by considering
a synthetic history matching problem, where the fluid simulator is a simple radial flow simula-
tor, for which analytic solutions are known. The parameters and equations are from Ahmed and
McKinney (2005). The second example is taken from Evensen (2003).

3.3.1 Well test equation
We consider an example of radial flow into a well bore. In absence of reservoir heterogeneities,
the flow into or from a well will follow radial flow lines a substantial distance from the well bore.
Figure 3 shows idealized flow lines for a radial flow system. In this example, oil is flowing through
a porous medium. The equation governing the flow is normally written in terms of the pressure.
Since we assume radial symmetry, the pressure P depends only on the radius r and time t. The
equation reads:

(34)
1
r

∂

∂r
(r
∂p

∂r
) =

φµc

0.0002637κ
∂p

∂t
.

This is the so-called diffusivity equation and it is considered one of the most important mathemat-
ical expressions in petroleum engineering. This equation is derived under the assumption that the
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Figure 3. Plan and side view of flow into a well bore.

permeability and viscosity are constant over pressure, time and distance ranges. The fluid is as-
sumed to be slightly compressible, like, say, oil. The notation ∂p

∂r and ∂p
∂t means partial derivative

with respect to r and t respectively. The parameters with their units of measurement are:

p : pressure in psi

r : radius in ft

t : time in hours

κ : permeability in md

µ : viscosity in cp

φ : porosity in percent

c : total compressibility in psi−1

The constant 0.0002637 is just a conversion factor from, say, feet into cm, darcies into milidarcies,
etc. The diffusivity equation is defined in a reservoir that is a cylinder with a hole. A slice of the
reservoir, illustrating the different parameters from the geometry is provided in Figure 4. These
are the relevant parameters:

re : external radius

rw : well radius

pb : pressure at well surface (bottom-hole pressure)

h : thickness of the reservoir

A parabolic differential equation requires an initial condition and boundary conditions. The initial
condition is the initial state of the pressure before the well is opened. So, we let p(r, 0) = pi.
Immediately after opening the well, the well pressure drops and fluid starts flowing into the well.
This is caused by a difference in pressure, i.e., the fluid moves from high pressure regions into

The Ensemble Kalman Filter - theory and applications in oil industry 15



Figure 4. Reservoir geometry.

low pressure regions. One of the ideal assumptions in order to obtain a closed form solution is
to impose a Dirichlet boundary condition at re = ∞, namely, we assume and infinite reservoir
and let p(∞, t) = pi. It now remains to impose a boundary condition on the wall of the well.
Essentially, there exists two kinds of boundary conditions: Dirichlet and Neumann. In this case
we are interested in controlling the flow rate q into the well. This is typically a Neumann boundary
condition. Darcy’s law comes to rescue us in the form:

(35) q = 0.001127
2πrhκ
µ

∂p

∂r
|r=rw

.

Is it customary to express the flow rate as q = B0Q0, whereB0 represents the oil formation volume
factor in bbl/STB (well field barrels/ stock tank barrels) and Q0 is the oil flow in STB/day. The
solution of the diffusivity equation is given by the expression:

(36) p(r, t) = pi −
[
70.61Q0µB0

κh

]
Ei

[
948φµcr2

κt

]
where Ei is the so-called exponential integral defined as:

(37) Ei(x) =
∫ ∞

x

e−u

u
du for x > 0.

EnKF
We are interested in estimating the permeability based on observations of the bottom-hole pres-
sure. So, our state vector consists of two variables, the static variable κ and the dynamic variable
pb. The theoretical bottom hole pressure is obtained from evaluating (36) at the well radius r = rw.
The observation vector has one component, namely, the observed pb. In our notation:

x = [κ, pb]′ state vector

z = pbobs observations
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We would like to model the permeability as static, thus, we assume that κ0 is drawn from a normal
distribution with some a-priori mean and variance. Subsequent κk are modeled as:

(38) κk = κk−1

where κk represents the permeability at time tk = k∆t. Note that no model error is assumed for
the permeability.

On the other hand, our simulator of pressures provides us with the following model for the
bottom-hole pressure:

(39) pbk = p(rw, tk, κk) + wk−1

Under general circumstances, the simulator is a PDE finite difference solver that takes into ac-
count the previous state of pressures for all spatial coordinates to advance in time the pressure. In
this example, a closed formula is available that gives us a dependence only on the permeability,
and not on previous pressures.

The observations can be written as follows: zk = Hxk + vk, where the operator H is the pro-
jection of the state vector, namely, H = [0 , 1].

We start by defining a time interval from time t = 0 until time T . Inside this interval we have
simulated a set of equally spaced observations by employing equation (39), namely, given κtrue,
we perturb the pressure at observation times tobs given by p(rw, tobs, κtrue) with some Gaussian
noise. The objective is to show that the filter will find the true permeability after a number of
assimilations.

Experiment
The numerical experiments in this section are intended to show how the EnKF algorithm may
be used to recover the true permeability. The experiment is set up for T = 2000 hours, with the
following parameters

rw = 0.1 ft

µ = 1.5 cp

Q0 = 300 STB/day

B0 = 1.25 bbl/STB

φ = 15 %

pi = 4000 psi

h = 15 ft

c = 12e− 6 psi−1

The time steps are half of an our, and the number of observations is 40, equally spaced and rep-
resented by circles in Figure 5. The initial ensemble is drawn with a mean permeability of 80, and
the true permeability is 60. Observe how the observations will eventually correct the permeability
in 7, and the reduction in standard deviation in 6. From Figure 8 it is clear that at each assimilation
there is a drop in the standard deviation of the ensemble, as expected.

Finally, in Figure 9 we plot the probability density functions just before we carry out the as-
similation of the pressure measurement number 5 (forecasted) and just after. The updated pdf
gets closer in mean to the observation at this time.
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Figure 5. EnKF mean and observations for pressure.

Figure 6. EnKF standard deviation for permeability.

3.3.2 Scalar example
This example is extracted from Evensen (2003). This is a linear example, where the member ψ of
the state vector is model by the a red-noise. The state vector follows the law:

(40)

[
qk

ψk

]
=

[
αqk−1

f(ψk−1) +
√

∆tσρqk

]
+

[ √
1− α2wk−1

0

]

The function f is chosen to be f(ψ) = ψ for the linear case. The parameter ρ is chosen to ensure
that the variance growth becomes independent of α and ∆t in the linear case. Observe that the
form of (40) is the one we are used to. The red-noise behaviour is controlled by the parameter α.
For α = 0 the noise term qk is simply a Gaussian noise.

Experiment
The example illustrated in figure 10 is run with α = 0.5, T = 10, ∆t = 0.1 and 5 assimilations. The
initial ensemble members are sampled from N(0, 9). The model errors are sampled from N(0, 1)
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Figure 7. Permeability progress vs. true permeability.

Figure 8. EnKF standard deviation for pressure.

and the measurements are sampled from N(0, 0.5). The number of ensemble members is 1000, to
eliminate the visual effects of using a finite ensemble.

4 Application of EnKF to history matching

Traditionally, history matching adjusts model parameters such as porosity, permeability, etc., such
that the flow simulations using the adjusted parameters match observed production variables.
This requires repeated flow simulations. In automatic history matching, we try to minimize the
mismatch between measurements and computed values. This is often done by minimizing a so-
called objective function. Some methods require computation of the gradient of the objective func-
tion, which can be time consuming when the number of parameters is large.

Several publications have discussed the use of Ensemble Kalman filtering to do history match-
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ing. The method provides an approximate solution to the combined parameter and state estima-
tion problem. The result is an ensemble of solutions approximating the posterior pdf for model
parameters (porosity, permeability), state variables (pressure, saturation), and production data,
conditioned to production history.

The EnKF methodology consists of two steps - the forecast step (stepping forward in time) and
the assimilation step, where variables describing the state of the system are corrected to honor the
observations. In history matching, the forward step is the flow simulation. It requires multiple,
independent flow simulations (one for each ensemble member), but they can be performed si-
multaneously, and the method is ideal for parallel computing. It is not dependent on one specific
type of reservoir simulator, it only requires the output from the simulator. The assimilation step
consists of updating the model variables by using the Kalman equation.

Most of the traditional methods do not allow for continuous model updating, as new produc-
tion data become available. The EnKF is able to do continuous updating of the reservoir model in
the assimilation step. In this way, the reservoir models are always kept up-to-date.

4.1 Detailed description of EnKF for history matching
The EnKF can update both static (permeability and porosity) and dynamic (pressure, saturation)
model parameters, as well as production data (production rates, bottom-hole pressures, gas-oil
ratio etc.). The state vector xi contains both model parameters (values for all grid cells) and pro-
duction data. The filter is initialized by generating an initial ensembleX of the state vector, where
the static model parameters are drawn from the prior distribution, conditioned to the model ob-
servations available at time t0. The prior distribution is assumed to be Gaussian.

To take account for the model uncertainty, Gaussian noise is added to the ensemble mem-
bers before each flow simulation. The observations are measurements of the production data in
the wells. The observations must also be treated as random variables, in order to get a correct
estimate of the variance in the ensemble. Therefore, random Gaussian noise ε is added to the ob-
servations, and new noise is generated for each ensemble member. The measurement errors are
independent, so the covariance matrixRe is diagonal. Because theoretical data are part of the state
vector, the measurement operator H given in Equation 31 is a trivial matrix with only 0 and 1 as
it components. We can arrange the matrix as

H = [0|I],

where 0 is a Nd × (Ny − Nd) matrix with zeroes and I is a Nd × Nd identity matrix. Nd is the
number of observations and Ny is the total number of variables in the state vector. The number of
observations might vary with time, and thus the matrix dimensions may change.

The static model parameters such as permeability and porosity are observed in wells before
production starts. These observations are not updated.

The forecast step and the assimilation step are run sequentially. The flow simulations end at
the next point in time where new observations are to be assimilated. The reservoir simulator is
run once for each member of the ensemble. The forecasted state vector, resulting from applying
the fluid flow simulator on the state vector from the last time step, is used to estimate the covari-
ance matrix Pe, which again is used to find the Kalman gain matrix K. In the assimilation step,
each member of the ensemble (the forecasted state vectors) is updated using the Kalman equa-
tion (equation 33). Note that in the forecast step (running the reservoir simulator), only dynamic
variables are updated, and not the static variables such as permeability and porosity. The static
variables are only updated in the assimilation step.
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4.2 Investigations and improvements of the EnKF
The first application of Ensemble Kalman Filtering in history matching is described in Næv-
dal et al. (2002a) and Nævdal et al. (2002b). The filter was used to update static parameters in
near-well reservoir models by tuning the permeability field. After this, several publications have
demonstrated the use of EnKF for history matching, and suggested further developments of the
method. In Nævdal et al. (2005), the filter is used to tune the permeability for simplified real-field
reservoir simulation models. Gu and Oliver (2004) have tested EnKF on the PUNQ-S3 reservoir
model.

Wen and Chen (2005) have investigated some important issues in the EnKF, for example the
number of realizations in the ensemble. Their study showed that an ensemble size of 50 or 100 is
too small to estimate the uncertainty. An ensemble size of 200 seems to be enough to represent the
uncertainty in the model. Another issue is the covariance function. In a synthetic study, they in-
vestigated the sensitivity on the EnKF results, of using wrong covariance model. They found that
the covariance model was not critically important in the EnKF. Wen and Chen (2005) also present
a modified version of EnKF, where it is ensured that the updated static and dynamic variables
are consistent. This will not always be the case, due to the fact that the Kalman updating is linear,
while the flow equations are nonlinear. The modification consists of an extra flow simulation on
the present time step, called the confirmation step. This flow simulation is run after the assimi-
lation step, with the updated static parameters as input, and new dynamic parameters resulting
from the confirmation step will replace the values from the assimilation step. In this way, the static
and dynamic variables are consistent, and the flow simulation is then run for the next time step.
The cost of this modification is a double in of the CPU time. Test on a synthetic reservoir shows
that the confirmation step improves the match of production data.

Skjervheim et al. (2005) incorporate 4D seismic data in the history matching. They show how
the EnKF can be used to update a combined reservoir simulation/seismic model using the com-
bination of production data and inverted 4D seismic data. The method is completely recursive,
with little additional cost compared to traditional EnKF. Test of the method on a synthetic case
shows that adding seismic data gives a much better permeability estimate.

The ensemble of reservoir simulations provides a way to evaluate uncertainty in the reservoir
description. If the ensemble of simulated reservoirs is obtained by correct sampling from the pos-
terior probability density function, they give a characterization of the uncertainty in the reservoir
model. Zafari and Reynolds (2005) discuss this. They provide examples where the performance
of EnKF does not provide a reliable characterization of uncertainty, as well as examples where the
method worked well.

The Gaussian assumption of EnKF is critical. In some multi-modal problems, EnKF can not
sample the posterior pdf correctly, even if the number of ensembles is large. For two simple non-
linear toy problems, Zafari and Reynolds (2005) showed that the ensemble mean is not a good
estimate of the true model. EnKF can not sample the posterior pdf correctly.

4.3 EnKF and Randomized Maximum Likelihood
Randomized maximum likelihood, Oliver et al. (1996), is a Bayesian method which is frequently
used to generate approximate sampling of a pdf for a reservoir model conditioned to production
data. The prior is assumed to be Gaussian. The idea is to find the model m that optimizes the
following objective function:

S(m) = (m−mus)′C−1
M (m−mus)

+[g(m)− (dobs − C1/2
D ZD)]′C−1

D × [g(m)− (dobs − C1/2
D ZD)](41)

where CM is the covariance of the random field, CD is the variance of the measurements, mus
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is a sample from the prior, and C
1/2
D ZD is a vector of normally distributed errors with variance

CD.
In the linear case (g(m) is a linear function), the method samples correctly from the posterior

pdf. For the optimization, a Gauss-Newton method is used.
Zafari and Reynolds (2005) show that EnKF becomes equivalent with randomized maximum

likelihood (RML) when the number of ensembles goes to infinity, provided that one begins with
a prior multivariate Gaussian distribution for the model, data are uncorrelated in time and the
relation between predicted data and the reservoir model is linear. In the linear case, RML provides
correct sampling of the posterior pdf, and hence, EnKF will also do this when the ensemble size
goes to infinity.

D.S. Oliver (EnKF workshop, Voss) proposes to combine randomized maximum likelihood
and EnKF in a method called Ensemble Randomized Maximum likelihood. This is an iterative
filter, and is more time consuming than the original EnKF.

4.4 Upscaling
Upscaling of reservoir properties is often required in order to perform the needed number of
reservoir simulations. This results in bias in the production history conditioned reservoir repre-
sentations when using the Ensemble Kalman filter. Lødøen and Omre (2005) show how to account
for this when using the filter, and quantify loss in accuracy and precision. The idea is to use coarse
scale fluid flow simulations results to predict fine scale fluid flow simulation results, and to as-
sess the associated prediction uncertainty. The relation between the production properties from a
coarse scale and a fine scale fluid flow simulator is estimated by the EnKF.

The up-scaling becomes an important issue when seismic data are taken into account, as these
data usually appear on a much finer grid than the grid used for reservoir simulation.

4.5 Facies modeling
The pluri-Gaussian model is a pixel-based technique for facies modeling. The method is based on
truncation of multiple Gaussian fields. Well conditioning is very difficult in the pluri-Gaussian
model, and partly because of this, the model is not widely used. Liu and Oliver (2005) use the
Ensemble Kalman filter to condition facies realizations generated by the pluri-Gaussian model to
well data.

5 Concluding remarks

History matching of petroleum reservoirs is a difficult task, and is very CPU demanding be-
cause of the reservoir simulator, which must be run a large number of times. Use of the Ensemble
Kalman filter for history matching allows for parallel reservoir simulator runs, which save time.
The Ensemble Kalman filter is tested and further developed for history matching by several peo-
ple, and the results are promising. But still, much work can be done in this field.
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Figure 9. Histograms of ensembles before and after the assimilation step number 5.

Figure 10. EnKF on scalar example from Evensen (2003).
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