
STREAMED MULTIMEDIA PRESENTATION FOR LOW-BANDWIDTH MOBILE TERMINALS:
A VIRTUAL MACHINE APPROACH

Lars Aarhus, Håvard Hegna, Thor Kristoffersen,
Wolfgang Leister, Anders Moen, Bjarte M. Østvold

Norwegian Computing Center
Postboks 114 Blindern,
NO-0314 Oslo, Norway.
http://www.nr.no

Abstract

We present a simple and robust client–server architecture for
streaming synchronized multimedia presentations to mobile
terminals over a low-bandwidth connection.

The server is similar to a compiler, and translates high
level SMIL descriptions of multimedia presentations into
low level content instructions. The client resembles a vir-
tual machine, operating on content instructions that control
the multimedia presentation. The compilation process on the
server is designed to reduce the buffering on the client, and
hence reduce the start-up delay for the user. Since the server
takes the larger burden of the total work, the client can be
kept simple.

Upon request, the server assembles a sequence of content
instructions corresponding to a multimedia presentation, un-
der the optimistic assumption of a minimum communication
bandwidth, and streams the content instruction sequence to
the client without any other feedback mechanism than flow
control. If the bandwidth assumption holds, the client ren-
ders the presentation as specified; otherwise, it is able to
make controlled pauses in the presentation.

We also describe a specific news application based on our
architecture.

1 Introduction

Until recently streamed multimedia applications have not
been widely available for low-bandwidth mobile termi-
nals. Especially video bandwidth requirements have not
been supported by current mobile telecom networks such
as Global System for Mobile communication (GSM). With
the introduction of higher bandwidth and packet based mo-
bile networks such as Universal Mobile Telecommunica-
tions System (UMTS) this is expected to change. However,
next generation mobile telecom networks will also have
varying bandwidth depending on location. Mobile termi-
nals will have limited resources compared to desktop termi-
nals on wired networks. Streamed multimedia presentation
in mobile networks will still be a challenge.

In this paper we present a client–server based system ar-

chitecture supportingstretchablestreaming of synchronized
multimedia presentations on mobile terminals. By stretch-
able we mean that controlled pauses may be introduced by
the client at suitable times in the presentation, in order to
allow smooth continuation of the presentation under low-
bandwidth and varying network conditions. Our architecture
does not use an application level feedback mechanism for
stream control, but the stretchability compensates for this.
A main design goal for the architecture is reducing the start-
up delay for the user.

The paper is organized as follows: The current section
motivates our architecture by an example application. Sec-
tion 2 describes related architectures. In Section 3 our ap-
proach to the design challenges is presented, which in Sec-
tion 4 leads to a description of the overall system architec-
ture on a conceptual level. Sections 5 to 7 conclude our work
by discussing the architecture and describing the prototype
implementation.

1.1 The News Reader Application

An example news reader application has been developed to
demonstrate the proposed architecture. The application idea
is for a user on a hand-held terminal to get up-to-date multi-
media news items on demand. The news items are supplied
from a server over a low-bandwidth network. Each trans-
ferred item consists of both continuous (audio, animation)
and static media (images, text), which are presented syn-
chronously on the mobile client. A 3D animated head, ac-
companied by voice audio, is used to simulate a TV news
anchor’s face reading the news.

We use data compression for all data types. The use of an
animated news reader also constitutes a form of compres-
sion: animation information take up very little bandwidth
compared to video.

The application user interface is simple, and allows the
user to select a news item from a menu list of available
items offered by different news channel. Available items are
dynamically updated on the server. An on-going presenta-
tion can be stopped upon request by the user. Each mobile
client connects to the server individually, on a one session

1

per client basis.
Up-to-date content is stored in a database accessible to

the server. The content is built around audio clips of human
voice. Corresponding lip movements for the animated head
are extracted, while suitable head movements and eye blink-
ing are generated automatically. Images and a textual sum-
mary of the spoken words are then added to the presentation.

News items are represented using the Synchronized Mul-
timedia Integration Language (SMIL) [10], which is an
XML document type definition. A SMIL specification struc-
tures a multimedia presentation into sequential and parallel
schedules that can be nested to any depth. Relative timing
and spatial information can be added. The basic building
blocks are media elements that refer to the media files.

2 Related Architectures and Technologies

Common approaches to streamed multimedia in varying,
low-bandwidth network environments use layered coding
techniques for continuous and static media. The layered
continuousmedia approach is used in both RealSystem iQ
streaming, and MPEG-4 coding described below. This could
include adapting the media data rate to the network char-
acteristics, which requires dynamically monitoring network
parameters such as delay and jitter to avoid buffer under-
flow [8].

Turner and Ross [9] find the optimal number of layers for
static media in order to maximize the overall presentation
in bandwidth-limited networks. They assume that the band-
width of the continuous media is constant, and the presenta-
tion time-line is fixed.

Georganas et al. present a multimedia news on demand
application [1, 4]. The system relies on feedback over the
network. It operates with a fixed time axis on the client, and
must therefore delay or drop frames in case of starvation
threats from the network.

On wired Internet there are many streaming media ar-
chitectures. Two dominant commercially available technolo-
gies are RealSystem iQ1 from RealNetworks, and Windows
Media Technologies2 from Microsoft. Both are client–server
architectures with point-to-point connections that use pro-
prietary streaming media formats, with typical data rates
downwards limited to 28.8 kb/s or 56.6 kb/s.

RealSystem iQ is of particular interest as it supports
SMIL content presentation streaming, as well as Real Time
Streaming Protocol (RTSP) for client-driven application-
level media server control.

The MPEG standards are relevant to our work. The
MPEG-2 [2] transport stream (MPEG-TS) is designed for
feedback-less broadcast and involves multiplexing of vari-
ous multimedia streams into a single transport stream. These
features also inspired our architecture. MPEG-2 is intended

1http://www.realnetworks.com/
2http://www.microsoft.com/windows/windowsmedia/

for digital TV with orders of magnitude higher bandwidth
requirements.

MPEG-4 [3] is used for distributing general layered mul-
timedia objects, and is designed for lower bandwidth links
down to video bit rates of 10 kb/s. MPEG-4 has character-
istics that makes it suitable for use when distributing multi-
media to mobile terminals [6]. However, both MPEG archi-
tectures try to cover many areas of usage so that they cannot
efficiently address typical requirements for use on client ma-
chines with scarce resources.

3 Design Choices

In this section we present the challenges posed by the news
reader application. We then address the design choices that
we made for our architecture in order to meet those chal-
lenges.

3.1 Challenges

The nature of the news reader application, and the physi-
cal constraints imposed by typical mobile terminal hardware
and wireless networks, pose serious design challenges [7].

1. The client should start multimedia presentations as
soon as possible and presentations should not stop at
random times. In the case of the news reader applica-
tion this gives users a “news on TV” feel.

2. Client hardware resources are limited, especially pro-
cessor speed and memory. Consequently client-side
processing must be simple.

3. Wireless networks have limited bandwidth, and in gen-
eral their quality varies over time in unpredictable
ways. They suffer from greater risk of packet loss than
wired networks, mostly due to physical conditions, e.g.,
rain, and user motion [11].

Of these challenges number 1 represents the requirements of
our news reader application, while challenges 2 and 3 arise
from physical constraints.

3.2 Approach

Our system architecture is based on the following design
choices. The choices address the indicated challenges from
the previous section:

Challenge 1.In this class of applications, solution strate-
gies are divided into two classes:preventive, i.e., strategies
that attempt to avoid problems, andcorrective, i.e., strate-
gies that attempt to solve problems when they occur [4]. To
address challenge 1 we employ both types of strategies.

With respect to the synchronization reference model, mul-
timedia content transfer is streamed at the stream layer and
at the object layer. This enables the client to start a mul-
timedia presentation even if it has not yet received all the
timestamped content data that the presentation consists of.
This scheme requires, however, that the client knows when

2

SMIL code

compiler instructions/data virtual machinesource

media files

CLIENTSERVER NETWORK

Figure 1 System architecture.

it can start the presentation without the risk of running out
of data. We provide such a mechanism following a preven-
tive strategy based on server-side calculations which assume
knowledge of the communication bandwidth within a safety
margin.

In our application, audio data have the largest volume
among multimedia data, and therefore we treat it specially.
The audio is split into segments at points where there is a
natural pause in the news reader’s voice, e.g., at the end
of a phrase. The result is a series of non-stretchable au-
dio segments punctuated by stretchable pauses. This enables
the client to employ a corrective strategy by enlarging these
pauses if it is starved of data on the network connection.

Challenge 2.The server translates SMIL multimedia
presentations into smaller, low-level units of content with
timestamps before sending it to the client. Therefore the
client-side of the application can follow simpler rules to an-
alyze and display multimedia content, and have simpler data
structures (no SMIL representation).

Challenge 3.For data transport we use a single Transmis-
sion Control Protocol (TCP) connection per client, where
different media types are compressed and multiplexed into
one socket stream. This choice is a pragmatic one, since the
inherent reliability of the protocol makes the architecture
implementation simpler. Also, the use of TCP means that
the server cannot overrun the client, and the link is kept sat-
urated from the start.

4 Multimedia Compiler and Virtual Machine

This section describes the overall system architecture, which
is illustrated in Figure 1. The figure shows the analogy be-
tween the following two sets of entities: (i) The server and
its multimedia content, the network and a client playing the
content, and (ii) A compiler and its source files, instructions
(code) and data, and a virtual machine executing the instruc-
tions.

The server transmits to the client a sequence of multime-
dia content instructions, that make up an entire multimedia
presentation corresponding to a news item. These instruc-
tions constitute a compiled version of the SMIL sources
and media files, tailored for interpretation on the virtual ma-
chine. The virtual machine interprets low-level content in-

structions that convey the multimedia data to be rendered,
as well as precise information about how, where, and when
to render it.

4.1 SMIL Compiler

While the client is largely insensitive to the order of the con-
tent instructions that it receives, the exact sequencing is im-
portant with respect to reducing the waiting time for the user
before the presentation starts. Since most individual content
instructions are not sensitive to the order in which they are
executed, careful scheduling of items can be used to achieve
streaming at the presentation level. As an extreme example
of suboptimal scheduling, if the opening image of the pre-
sentation is transmitted last in the content, the user will have
to wait until the entire content has been transferred before
the presentation can start.

The news content is stored persistently on the server in a
hierarchically structured multimedia database. Before trans-
fer to a client, a news item is compiled into a content se-
quence of virtual machine instructions suitable for network
transmission. This compilation consists of several passes.

The first pass,flattening, generates timestamps for the in-
structions. In a SMIL schedule, all timings are relative to
one another, so that for instance it is possible to swap two
elements in a sequential schedule without the need to spec-
ify a different timing. The virtual machine, however, expects
the instructions belonging to one presentation to be times-
tamped relative to the start of the presentation. The result
of this pass is a sequence of timestamped multimedia items,
i.e., the SMIL structure is removed.

The second pass,splitting, splits the multimedia items
into content instructions. There are four instruction types:
zero , atomic , render , andfragment .

Theatomic instruction is for small volume multimedia
data like text, whereas therender andfragment instruc-
tions are used together for large transfers, like streaming
audio. In large volume transfers multiplexing and temporal
optimization is made possible by splitting data intofrag-
ment instructions: onerender instruction is followed by
a sequence offragment instructions.

The third pass,reordering, reorders the instructions so
that their order is optimal for the virtual machine, i.e., they

3

should be sent in the sequence that minimizes the start-up
delay for the user. An important factor in deciding the or-
der of the instructions is the timestamp. The algorithm em-
ployed here is similar, but not identical, to the algorithms
described by Paul et al. [5].

The fourth and final pass,zero placement, places the
zero instruction within the constructed sequence, so that
the presentation can start as soon as it is reasonable to as-
sume that the virtual machine will not run out of data.

The resulting sequence of instructions is encoded in
a low-level client–server application protocol format and
transmitted to the virtual machine. Since the client cannot
provide any timely feedback to the server at the applica-
tion level, the channel bandwidth is assumed to be constant
within a safety margin, and the compiler bases its computa-
tions on this model bandwidth. A consequence of this is that
the instruction sequence does not need to be computed more
than once for each unique multimedia presentation.

4.2 Content Instructions and Media Data

The multimedia content is transferred to the client in con-
tent instructions and file fragments. File fragments with im-
age and audio content are assembled to files, and decom-
pressed upon their arrival on the client. Content instructions
may refer to these files, e.g.,render instructions referring
to images to be rendered.

The instruction format contains time-, location- and op-
code information, including parameters for the instruction:

seqno:timestamp region opcode params

The multimedia content is organized in numbered content
sequences, each having a time axis from 0 to infinity. A se-
quence is content-dependent, and usually corresponds to one
news item. The instructions of a content sequence have a
timestamp that is relative to the start of this sequence.

The opcode and the parameters of an instruction give the
semantics. The display of the terminal is divided into non-
overlapping regions. For media-related instructions the me-
dia type is encoded in the opcode.

4.3 Virtual Machine for Playing Multimedia

The client is a virtual machine (VM) capable of executing
content instructions and using media data and thereby exe-
cuting, or playing, a multimedia presentation (see Figure 2).
The virtual machine translates content instructions to micro
instructions, and controls scheduling and processing of mi-
cro instructions. The formats for content and micro instruc-
tions are similar. The instructions are grouped into differ-
ent types (see Table 1). Micro instructions have their opcode
and parameters organized such that no further parsing of the
content is necessary.

The play unit controller is responsible for scheduling in-
structions and data, and addressing the proper processing
units. The processing units are called pipes, one for each

Type Examples Semantics
atomic MSG, TXT content instructions for messages,

and formatted text.
state ACT, SUS instructions for control of opera-

tion.
control JMP, JIN continue playing at new content se-

quence and timestamp.
resource EXC, RCV handle instructions connected to re-

sources.
render RND, VIS render a media object (e.g., images

(RND RAS), audio (RND AUD),
and different types of visemes).

Table 1 VM micro instruction types.

region and opcode. Pipes render data, e.g., a raster image,
text on top of a raster image, or play audio. Animations,
e.g., facial animations, are driven by special pipes, called
periodically by the operating system, that feed animation in-
structions to the animation logic.

All incoming instructions are stored in the instruction
list, which is sorted in temporal order. The instructions in
the instruction list are organized in content sequences, and
grouped into play units. Play units are pieces of a sequence
which can be played without experiencing lack of resources
(e.g., missing images). Instructions are processed when the
processing-time has arrived according to the timestamp.
However, some instructions are processed immediately upon
arrival, in order to achieve an external interrupt (e.g.,JMP
instructions).

The virtual machine operates in cycles that are called reg-
ularly by a timer. In each cycle it checks whether the first in-
struction in the instruction list is to be processed. The pipes
execute the instructions.

4.4 Virtual Machine Operation

During operation, the VM is in one of two states, calledac-
tiveandsuspended. These states exist also as instructions, in
order to achieve a transition into a new state.

The active state indicates that the machine plays content.
An active-instruction indicates the start of a new play unit,
which determines when to play its content. The play units
are generated internally in the client using a heuristic.3

All content preceding the current active-instruction is al-
ways deleted, while all content between the timestamp of
the current active-instruction and the current time is played
immediately.

The suspended state indicates that the VM currently waits
for a resource to be satisfied, e.g., media content to arrive.
Instructions before the current suspend-instruction are re-
moved from the instruction list, while instructions after the
suspend-instruction are not processed. In suspended state no

3In our implementation we found it useful to let the splits in the audio
content guide the start of a new play unit.

4

controller
unit
play

region 1

display

region k

clock

instruction
list

pipe 1

pipe n

sound player

content interpreter

decompression

sound decoder

pipe 2

...

...

Figure 2 Virtual machine.

new instructions are fed to the pipes.
When a resource is needed, that has not been satisfied, a

suspend-instruction is generated, while the arrival of such a
resource generates an active-instruction.

4.5 Code Generation in the Virtual Machine

Content instructions are translated into micro instructions
upon arrival by the content interpreter. For an example of
the translation process, we refer to Figure 3. The VM has
the following mechanisms to generate instructions:

– The arrival of media files and content instructions (es-
pecially instructions to display content) trigger genera-
tion of state instructions.

– The payload of content instructions is parsed and trans-
lated into micro instructions.

– The client is capable of playing pre-stored content
blocks (jingles). This content is copied into the instruc-
tion list upon request.

– Visemes are animation instructions for the head of the
news reader. These are transferred as file fragments
from the server, and compiled on-the-fly to a great
number of animation micro instructions.

5 Discussion

Our architecture is similar in function to that of a SMIL
player, but our player is distributed, consisting of a server
and a client part. This allows the client to be light-weight,
but assumes the existence of a cooperating server on a sepa-
rate machine.

The architecture is suited for applications without abso-
lute real-time characteristics, e.g., applications where we
can afford to wait for the arrival of content for a certain, rea-
sonable time. There is no media quality based degradation
policy.

In our architecture the client can stretch the presentation
in time. In this way we handle varying network characteris-
tics. Consequently, the duration of multimedia presentations

played by the client is no longer fixed.
There is no feedback from the media rendering devices

back to the scheduling logic, because the round-trip time
over a mobile network link is relatively large. The client
can show the user special pause content while waiting, thus
avoiding the sudden freezing of the presentation.

Of the related approaches and architectures previously
discussed, that of Turner and Ross [9] is most similar to ours
since both approaches aim at low-bandwidth applications.
The main difference is that their approach has a fixed time
axis which does not support stretchable streaming. They also
use layered media coding techniques.

Georganas et al.’s news-on-demand system [1,4] operates
on MPEG video media objects in addition to other media
since it is tailored towards broadband, not low-bandwidth
networks. Their architecture assumes the existence of feed-
back mechanisms for stream control.

The other architectures are mainly available forwired
or in some cases wireless LAN, not low-bandwidth mobile
telecom networks.

One advantage of our architecture is the small footprint
it occupies on a mobile terminal. This is in contrast to en-
compassing architectures like MPEG or JMF which are not
sufficiently tailored for, or efficient enough for, those kinds
of environments.

6 The Prototype Implementation

The EricssonCommunicatorplatform was used to imple-
ment our concept. This platform supports GSM communi-
cation at 9.6 kb/s, and is equipped with a 190 MHz Stron-
gARM processor and 16 MB RAM. The system software is
the EPOC operating system, which is designed specifically
for small footprint hardware.

The server based its optimistic planning of instructions
and data transfer to the virtual machine on having a steady
bandwidth of 7 kb/s. This was sufficient for controlling the
client and less than the available bandwidth. Audio stream-
ing was based on 5.6 kb/s half-rate GSM audio coding, thus

5

server

client

SMIL code

content instructions

micro instructions

<smil>...<body><seq>
<par>
<audio src="flood.sqz" region="sound" dur="11033ms" begin="0.5s"/>

</par>
</seq> </body> </smil>

<text src="flood.tbt" region="logo" dur="11533ms"/>

1:00005 7 MSG render sound "flood.sqz"
1:00005 4 MSG render raster "flood.mbm" remove 11533
1:00005 3 TXT MORE HELICOPTERS TO HELP FLOOD VICTIMS

1:00005 3 TXT MORE HELICOPTERS TO HELP FLOOD VICTIMS
1:00005 4 RND RAS "flood.mbm"
1:00505 7 SUS "flood.sqz"

1:11538 4 DEL "flood.mbm"
1:00505 7 RND AUD "flood.sqz"

Figure 3 Code translation.

2.6–3.0 kb/s was left for the other media.
The news reader application was demonstrated at the

CeBIT 2000 business fair. At regular intervals a production
team produced news content in the required format, and up-
loaded it to the server. News content was supplied by wire
services.

7 Concluding Remarks

Our system architecture represents a general approach to
the problem of delivering multimedia presentations to mo-
bile terminals on a low-bandwidth connection. Scheduling
SMIL content on the server unburdens the client of this task.
This means that the client implementation can be sufficiently
lightweight for a mobile terminal with scarce resources.

The architecture implements streaming, and incorporates
both preventive and corrective strategies for this. As a pre-
ventive measure, the server optimistically schedules the con-
tent instructions such that everything looks fine if the band-
width assumption holds. If the bandwidth assumption does
not hold, the client virtual machine makes a controlled pause
in the presentation.

Acknowledgements

Besides the authors, Dag Belsnes, Arne-Kristian Groven,
Arve Larsen, Shahrzade Mazaher, Jonn Skretting, and
Håkon Steinbakk participated in the design and implemen-
tation of the news reader application. Fredrik Crawfurd was
our unfailing hardware guru, and Steinar Kristoffersen lead
the project. Jason Baragry, Peter Holmes, Arve Larsen and
Olaf Owe provided valuable feedback on earlier versions of
this paper. The project was financed by Mobile Media.

References

1. M. Daami and N. Georganas. Client based syn-
chronization control of coded data streams. In
Proc. Intl. Conf. on Multimedia Computing and Sys-
tems, (ICMCS’97), pages 387–394. IEEE, 1997.

2. International Organization for Standardization.
MPEG-2 – Coding of moving pictures and associated

audio for digital storage media at up to about 1,5
Mbit/s, 1993. ISO/IEC 11172-1:5.

3. International Organization for Standardization.
MPEG-4 – Coding of audio-visual objects, 1999.
ISO/IEC 14496-1:6.

4. J. Jarmasz and N. Georganas. Designing a dis-
tributed multimedia synchronization scheduler. In
Proc. Intl. Conf. on Multimedia Computing and Sys-
tems, (ICMCS’97), pages 451–457. IEEE, 1997.

5. R. Paul, M. F. Khan, and S. Baqai. Real-time schedul-
ing for synchronized presentation of multimedia infor-
mation in distributed multimedia systems. InProceed-
ings of the 3rd Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS’97), pages 177–
184. IEEE, 1997.

6. A. Puri and A. Eleftheradis. MPEG-4: An object-based
multimedia coding standard supporting mobile appli-
cations. Mobile Networks and Applications, 3:5–32,
1998.

7. M. Satyanarayanan. Fundamental challenges in mo-
bile computing. InProceedings of the fifteenth annual
ACM symposium on Principles of distributed comput-
ing, pages 1–7. ACM, May 1996.

8. Y. Song, M. Mielke, and A. Zhang. Netmedia: Syn-
chronized streaming of multimedia presentations in
distributed environments. InProceedings of IEEE Mul-
timedia, 1999.

9. D. A. Turner and K. W. Ross. Optimal streaming
of synchronized multimedia presentations with layered
objects. InProceedings of IEEE International Confer-
ence on Multimedia and Expo, 2000.

10. World Wide Web Consortium.Synchronized Multi-
media Integration Language (SMIL) 1.0 Specification.
REC-smil-19980615.

11. G. Xylomenos and G. C. Polyzos. Internet protocol
performance over networks with wireless links.IEEE
Network, 13(4):55–63, 1999.

6

