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Abstract

Method names make or break abstractions: good
ones communicate the intention of the method, whereas
bad ones cause confusion and frustration. The task of
naming is subject to the whims and idiosyncracies of
the individual since programmers have little to guide
them except their personal experience. By analysing
method implementations taken from a corpus of Java
applications, we establish the meaning of verbs in
method names based on actual use. The result is
an automatically generated, domain-neutral lexicon of
verbs, similar to a natural language dictionary, that
represents the common usages of many programmers.

1. Introduction

At the heart of programming is abstraction, the
creation and naming of a set of behaviours — an
implementation — to form an aggregated behaviour
that can be invoked by referring to the name. The
wonderful thing about abstraction is that it scales: we
can build new abstractions using those we have previ-
ously created. The crucial part of abstraction is to have
the name reflect the semantics of the implementation.
Failure in this regard is catastrophic, as a single faulty
abstraction contaminates all abstractions built on top
of it.

We conclude that the problem of naming is vital
to the task of programming. The programmer must
constantly ask of herself:

• What names should I use?
• Is this a good name for the behaviour?
• Will other programmers understand the meaning

of this name?
• How can I be sure that I’ve used a name correctly?
If we were dealing with words in natural language,

we might consult a dictionary to help answer these
questions. Lacking such a tool, we turn instead to the

implementation that the name is supposed to repre-
sent. Consider, for instance, the following simple Java
method, where the name has been omitted:

Person ___() {
return p;

}

In spite of the missing name, we immediately notice
that it is a getter, that is, a method whose name should
start with get, and which returns the value of a local
field.

Adding a parameter and a loop, we get:

Person ___(String id) {
for (Person p : persons) {

if (p.getID().equals(id)) {
return p;

}
}
return null;

}

Now we would consider it sloppy naming, if not
downright wrong, if the method name started with get;
here we are clearly trying to find something.

While trivial, these examples illustrate something
important: there are clues in the implementation that
can be used to indicate whether or not a name is
suitable. This leads us to formulate the problem in-
vestigated in this paper: Can we create a semantics
which captures our common interpretation of method
names?

The essence of our approach is to encode the
implementation of a method by means of semantic
attributes; properties that a given implementation may
or may not possess. A simple example is whether or
not the implementation contains a loop. This encoding
can then be used to characterise the name of the
method, by aggregating all the encodings that share the
same name. The characterisation constitutes a sort of
“usage semantics” for the method name. Clearly, this
is radically different from the formal semantics of the
program itself. In a sense, it is the difference between



the semantics of the informal programmer language on
one hand and the formal programming language on the
other.

For simplicity, we consider only the domain-neutral,
action-oriented initial part of a Java method name.
Typically, this is a verb. Hence, if the full method
name is findPersonByID, we abstract the name
to be simply find. In other words, we investigate the
properties of getters, setters, finders, closers, adders
and so forth. These names indicate the basic actions
performed by Java methods. By linking these verbs to
the attributes of the method implementations, we are
able to create the missing dictionary of “programmer
English”. We call this dictionary The Programmer’s
Lexicon.

The contributions of this paper are:
• A set of attributes, defined on Java byte code, that

can be used to characterise the implementation of
a method (Section 4).

• A definition of the usage semantics of a name by
means of the distribution of attribute-value com-
binations in a corpus (Section 2.3), establishing
a formal relationship between method names and
implementations.

• A measure for the precision of a name in program-
mer English (Section 3.3), based on a notion of
entropy related to the semantics.

• A technique for comparing names, based on com-
paring their semantics (Section 3.4).

We use our techniques to analyse a large software
corpus (Section 5), and explain the results by investi-
gating some notable examples (Section 6).

The contributions are manifest in The Programmer’s
Lexicon, an automatically generated description of
domain-neutral verbs often used in Java programming.
The lexicon can be found in the appendix.

2. Definitions

2.1. Preliminaries

An attribute has an attribute name a and a binary
value b, that is, the value is 0 or 1. For simplicity,
we consider an attribute and its name as the same.
An object o has three features: two symbols and a
set of attributes a1, . . . , am with values v1, . . . , vm.
The symbols are a unique fingerprint u and a name
n. We use fingerprints for technical purposes and
never consider their actual values. Unique fingerprints
ensure that a set made from arbitrary objects o1, . . . , ok

always has k elements, that is, they prevent that several
set elements collapse into one.

A corpus C is a set of objects with the same
attributes. We sometimes leave C implicit when there is
no risk of confusion. There are two fundamental ways
of dividing a corpus into parts: group objects with the
same name together, or group objects with the same
attribute values together. We need both.

2.1.1. Objects with same name. The n-corpus of C,
denoted C(n), is the set of all objects from corpus C
that have the same name n. The cardinality of name
n in C, denoted |n|C , is defined as follows:

|n|C
def= |C(n)|

where |C(n)| is the cardinality of set C(n). The relative
frequency of an attribute a with respect to a name n,
denoted ξa(n), is the fraction of objects in C(n) that
has attribute a set to value 1.1

2.1.2. Objects with same attribute values. If two
objects o, o′ have the same values for all attributes we
say that they are attribute-value identical, denoted o '
o′. Note that this relation ignores the fingerprint and
name of an object. Using relation ' we can divide a
corpus C into a set of equivalence classes EC(C) =
[o1]C , . . . , [ok]C , where [o]C is defined as:

[o]C
def= {o′ ∈ C | o′ ' o}.

We simplify the notation to [o] when there can be no
confusion about the interpretation of C.

By definition the equivalence classes of a corpus are
disjoint — each object belongs to exactly one equiv-
alence class. The cardinality |[o]C | is the number of
distinct objects in C that are equivalent to o by relation
'. The sum of the cardinalities of the equivalence
classes equals the cardinality of C,

|[o1]|+ · · ·+ |[ok]| = |C|.

2.2. Distribution and entropy

We repeat some information-theoretical concepts
related to entropy [2]. Let X be a discrete random
variable with alphabet χ and probability mass function
p(x) = Pr{X = x}, x ∈ χ. Since a) for all
i = 1, . . . , k it holds that 0 ≤ p(xi) ≤ 1; and b)∑k

i=1 p(xi) = 1, we have that p(x1), . . . , p(xk) form
a probability distribution.

The Shannon entropy H of X can then be defined
as:

H(X) def= −
∑
x∈χ

p(x) log2 p(x)

1. Gil and Maman call ξa(n) the prevalence of ‘pattern’ a [5].



where we assume 0 log2 0 = 0.
The entropy of a distribution measures the uncer-

tainty of a random variable having that distribution.
Alternatively, it measures the expected number of bits
required to represent an event from the distribution.

Next we define the entropy of a corpus, and based
on this, the entropy of a name. Let the probability mass
function p([o]) of corpus C be defined as

p([o]) def=
|[o]|
|C|

, [o] ∈ EC(C).

By the definitions of [o] and cardinality, it fol-
lows that a corpus has a probability distribution
p([o1]), . . . , p([ok]). Thus we can define the entropy
of corpus C as

H(C) def= H
(
p([o1]

)
, . . . , p([ok])

)
.

Since C(n) also has a probability distribution, we have
that a name has an entropy, denoted H(n), defined as
the entropy of C(n),

H(n) def= H
(
C(n)

)
.

2.3. The Usage Semantics of Names

We define the usage semantics of a name n, written
JnK, in terms of C(n) as follows:

JnK def=
{
([o], |[o]|)

∣∣ [o] ∈ EC(C(n))
}
,

where ([o], |[o]|) is the pair consisting of the equiva-
lence class [o] and the cardinality of that class.

Thus JnK reflects all the ways in which n is used
in C(n), as well as the number of times it is used in
each way. We can visualise JnK by drawing a vertical
bar for each equivalence class [o] in the probability
distribution of C(n). We refer to this visualisation as
the distribution diagram for n (see Section 6).

Finally, we define a function S that yields a set of
equivalence classes which each cover at least a fraction
q of the objects in C(n):

S(n, q) def=
{
([o], |[o]|)

∣∣ ([o], |[o]|) ∈ JnK ∧ p([o]) ≥ q
}

We call this a spike set. It has a straightforward inter-
pretation in light of distribution diagrams, in that the
most prominent equivalence classes reveal themselves
as spikes in the diagrams.

3. Approach to Name Analysis

The names we consider in this paper are abstractions
of the real method names used in Java programs. The
aim is to capture the essence of the common names —

typically verbs — used to denote the actions performed
by Java methods. For instance, the concrete method
names open, openConnection and openFile
will all be considered instances of the abstract name
open. Hence a name is an abstraction that will typically
represent many concrete methods.

We investigate the name abstraction by looking at
what is being abstracted; that is, we distill information
from analysing the implementation of each method. In
doing so, we apply a corpus-based usage semantics
for names, in that the meaning is determined by the
actual use of the name in a large software corpus. This
is similar to how the semantics of words in natural
language is established.

Of particular interest to us is the precision of the
name, that is, how clearly the abstraction indicates the
semantic content of the method, a description of the
name, that is, what the typical semantic content is, and
a comparison of the name to other names, in particular
to find names that are similar or related in some way.

A problem not addressed in our current work is
that of polysemy: the same name may have more than
one meaning. If present, polysemy will manifest itself
indirectly as lowered precision in the characterisation
of the name, as well as a potentially skewed description
of the name itself.

3.1. Restricting the Set of Names

Since the set of names used in programming is
potentially unbounded, we device an algorithm for
establishing the set of common names based on all the
names in the corpus.

To ameliorate the effect of any idiosyncracies in
large software projects (for instance, Sun’s Java API),
we sort the corpus of applications alphabetically, me-
chanically divide it into k subcorpora, and choose the n
most frequent names in each subcorpus. Constructing
the intersection of the k sets yields a set of N names,
where |N | ≤ n. This is the set of common names. The
set of objects with common names is denoted Ccom .
We use this set as the data material from which we
establish semantic similarities and dissimilarities.

For the sake of brevity, we focus our investigation
on a subset of the m < |N | most frequent among the
common names. This is the set of names presented
in The Programmer’s Lexicon. We write Clex for the
corresponding corpus of objects.

The concrete values used in our analysis are k = 5
subcorpora with n = 150 candidate names from each
subcorpus, yielding |N | = 100 common names. The
number of names in the lexicon is restricted to m = 40.



Percentile Group name
< 5% Low extreme
< 25% Low
25% - 75% Unlabelled
> 75% High
> 95% High extreme

Table 1: Quantile groups for attribute values.

3.2. Describing Names

As is the case for natural language, it makes little
sense to describe a name in isolation; a symbol requires
the contrast of other symbols to become meaningful.
We therefore wish to say that the relative frequency of
an attribute on a name, ξa(n), is high or low compared
to that of all other names.

For a given attribute a, the relative frequencies
ξa(n)i for all names ni ∈ N are distributed within the
boundaries 0 ≤ ξa(n)i ≤ 1. We divide this distribution
into five named groups, based on the 5%, 25%, 75%
and 95% percentiles of relative frequencies, as shown
in Table 1. Each name then becomes associated with a
certain group for a, depending on the value for ξa(n):
the 5% of names with the lowest relative frequencies
end up in the “low extreme” group, and so forth.

Taken together, the group memberships for attributes
ai, . . . , ak becomes an abstract characterisation of a
name, which can be used to generate a description of
it.

3.3. Measuring the Precision of Names

Intuitively, precision denotes how consistently a
name refers to the same thing or combination of
things. In our context, this translates to attribute value
combinations. If a name n tends to indicate the same
combinations of values for the objects in C(n), we
think of it as precise. In other words, the more de-
pendent the attributes are on each other for a name n,
the more precise n is.

Since entropy is a measure of how independent
the attributes are, we can use entropy to measure the
precision of each name. A precise name has a low
degree of entropy, an imprecise name a high degree.
However, low and high are relative notions; hence, a
name can only be precise or imprecise compared to
other names. We therefore base our characterisation on
quartiles: the names with entropy in the lowest quartile
are deemed precise, in the highest quartile imprecise.

3.4. Comparing and Relating Names

A basic assumption for our work is that no name is
completely arbitrary or imprecise. For any name, then,

some equivalence classes will consist of more objects
than others. These equivalence classes can be thought
of as the distinguishing traits of the name. We exploit
this fact to compare individual names, with the aim
of characterising the relationship between them. This
allows us to conveniently ignore inevitable variations
in precision and nuance between names, and focus on
the essential similarities or differences.

We use the spike sets S(n1, q) and S(n2, q) (see
Section 2.3) to characterise two names n1 and n2 as
being:

• Similar, in which case S(n1, q) = S(n2, q).
• Generalisations or specialisations of each other.

We say that n1 generalises n2 (and, conversely,
that n2 specialises n1) if S(n1, q) ⊂ S(n2, q).

• Somewhat related, when S(n1, q)∩S(n2, q) 6= ∅.
The value for q must be set based on human judge-

ment — we simply choose the value that seems to
yield the best results: q = 0.1.

4. The Attribute Catalogue

Gil and Maman [5] define the term traceable pattern
as “a simple formal condition on the attributes, types,
name and body of a software module and its compo-
nents.” Here formal means that a program can check if
a module matches a pattern or not. The term module
includes packages, classes, methods, procedures, and
fragments of code, code attributes or names. Design
patterns [4] are not traceable: they cannot be recog-
nised mechanically. A traceable pattern on a method
or procedure is called a nano pattern.

We do not propose nano patterns here; rather, we
define a set of traceable attributes that could be
used as building blocks for creating such patterns. An
attribute is traceable if its value can be determined
mechanically. We also require that the attributes be
independent, in the sense that the value of an attribute
cannot be derived logically from another.

We define our attributes in terms of formal condi-
tions on the byte code. We have chosen to analyse byte
code because it is easily available both for open source
and commercial applications, and because we are then
guaranteed to analyse the actual code that runs.

The attributes are listed in Table 2. For explana-
tions of the terms used in the formal definitions, see
Lindholm and Yellin [8]. The selection is based on
our experience as Java programmers. The attributes
are meant to indicate the basic, generic behaviours
of a method implementation. For instance, field writer
indicates that the method alters the state of an object,
same name call hints at recursion or delegation, and
so forth.



Name Formal definition
Returns void The return descriptor is V.
No parameters The list of parameter descriptors is empty.
Field reader GETFIELD or GETSTATIC instruction.
Field writer PUTFIELD or PUTSTATIC instruction.
Contains loop Jump instructions that allow for instructions

to be executed more than once in the same
method invocation.

Creates object NEW instruction.
Throws exception ATHROW instruction.
Type manipulator INSTANCEOF or CHECKCAST instruction.
Local assignment One of the STORE instructions (for instance,

ISTORE).
Same name call Calls a method of the same name.

Table 2: The attribute catalogue.

4.1. Critique of the Catalogue

Our current choice of attributes is somewhat ar-
bitrary, in the sense that it rests on our intuitions
about what distinguishes methods from each other. A
more structured approach would be to use the marginal
entropy [5] of individual attributes to select from a
pool of candidate attributes those that provide the best
separation power. That way, we would rely less on our
own preconceptions.

Furthermore, the quality of attributes is limited by
the sophistication of our current analysis. Using simple
data flow analysis [9], for instance, we could define
more poignant attributes such as “return value stems
from field”, or “parameter value is written to field”.

5. The Corpus of Java Programs

We introduce some informal terms to aid in the
discussion of our data set. By application we mean a
compiled Java application having an intended use. Ap-
plications may range widely in domain and complexity,
from the lithe JUnit testing framework to the massive
JBoss Application Server. A software collection is
a set of applications. A corpus is large collection
chosen deliberately to cover a spectrum of intended
purposes, to ensure that it is representative of all kinds
of applications.

We had two main goals when gathering applications
for the software corpus: we wanted it to be as large as
possible, and we wanted it to consist of applications
that are commonplace or well-known.

We identified several groups of applications to help
balance the corpus, and to make sure it covered a wide
range of domains: desktop applications, programmer
tools, languages, language tools, middleware, servers,
software development kits, XML tools and common
utilities. Note that this grouping was not intended to be

Applications
Desktop applications
ArgoUML 0.24 JEdit 4.3
Azureus 2.5.0 LimeWire 4.12.11
BlueJ 2.1.3 NetBeans 5.5
Eclipse 2.3.1 Poseidon CE 5.0.1
Programmer tools
Ant 1.7.0 FitNesse
Cactus 1.7.2 JUnit 4.2
Cobertura 1.8 Maven 2.0.4
CruiseControl 2.6 Velocity 1.4
Languages
BeanShell 2.0b Jython 2.2b1
Groovy 1.0 Kawa 1.9.1
JRuby 0.9.2 Rhino 1.6r5
Language tools
ANTLR 2.7.6 MJC 1.3.2
ASM 2.2.3 JavaCC 4.0
AspectJ 1.5.3 Polyglot 2.1.0
BCEL 5.2
Middleware and frameworks
AXIS 1.4 PicoContainer 1.3
Jini 2.1 Spring 2.0.2
JXTA 2.4.1 Struts 2.0.1
OpenJMS 0.7.7a Tapestry 4.0.2
Mule 1.3.3
Servers
Geronimo 1.1.1 Jetty 6.1.1
James 2.3.0 JOnAS 4.8.4
JBoss 4.0.5 Tomcat 6.0.7b
Software development kits
Google Web Toolkit 1.3.3 Java 6 SDK
Java 5 EE SDK Sun Wireless Toolkit 2.5
XML tools
Castor 1.1 Xerces-J 2.9.0
JDOM 1.0 XOM 1.1
Saxon 8.8
Common utilities
Hibernate 3.2.1 Log4J 1.2.14

Table 3: Original list of corpus applications.

an exhaustive taxonomy for applications, but rather to
act as a skeleton to span the extent of our corpus. The
resulting list of applications is presented in Table 3.

Since applications are rarely built from scratch, they
often contain dependencies upon other bits and pieces
of software, ranging from applications to libraries to
individual class files. Hence, the corpus is littered with
all kinds of additional applications that we did not
originally plan to include.

In principle, we would like to identify, separate and
label all the different applications in the corpus. In
practice, this task is infeasible due to the multitude of
applications and versions, and the myriad ways they
can be combined and intertwined. Instead, we chose
to eliminate JAR files that contained many classes that
collide with classes in other JAR files, that is, when
the classes had the same fully qualified name.

The pruned corpus contains:
• 1004 JAR files
• 190572 class files



• 1384205 non-constructor methods
• 157779 omitted methods
• 1226426 included methods
We enforce rather strict qualifications for the meth-

ods to be included in the corpus. In addition to ignoring
constructors, we also omit all synthetic methods. Fur-
thermore, we demand that method names follow the
standard camel-case convention for Java, use letters or
digits only, and consist of more than a single character.
For instance, the method name getParser() is in-
cluded, whereas get_parser(), getParser$1()
and f() are all omitted. The primary rationale for this
strictness is that the camel-case convention is so well-
established and well-known that we consider it a sign
of noise when it is not followed. For instance, it might
indicate that the code was generated.

6. Experimental Results

We perform a fully automated analysis of the soft-
ware corpus. The output of our analysis is summarised
in The Programmer’s Lexicon, printed in the appendix.

As an example illustrating both how the lexicon is
constructed and how to read it, we look at the name
get and its closest neighbours semantically. Note that
the observations we make merely mimic those made
mechanically by our analysis software. The name get
is interesting because it is by far the most common
one; nearly a third of all Java methods in the corpus
are get-methods.

The Programmer’s Lexicon defines get as follows:
get. The most common method name. Methods
named get often read state and have no parame-
ters, and rarely return void, call methods of the
same name, manipulate state, use local variables
or contain loops. A similar name is has. Speciali-
sations of get are is and size. A somewhat related
name is hash.

A Java programmer should not be very surprised by
this description: get methods tend to be short and
simple functions that read object state. That methods
starting with the name has, is, size and hash fit more
or less the same description also matches intuition.

The entry for each name is generated by combin-
ing several pieces of information; the frequency and
entropy of the name, an account of how its usage se-
mantics compare to that of other names, and the spikes
showing the most common attribute combinations for
the name.

The description of the characteristics of methods
with a given name is based on how the relative fre-
quencies of attributes compare to methods with other
names in the same corpus. For instance, get has a

0
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Figure 1: Distribution of relative frequencies for the
no parameters attribute.

relative frequency of approximately 0.694 for the no
parameters attribute. The distribution plot in Figure 1
shows how this compares to other names. Each dot
represents one of the common names. We can see that
0.694 places get between the 75% and 95% percentiles,
which leads us to characterise its score as high, see
Table 1. For a mapping between quantile groups and
the words used in the lexicon, see Table 5. It turns out
that get has no attribute frequencies in the extremal
groups.

Some significant entropy values are listed in Table 4.
We see that get has a higher degree of entropy than
we might have anticipated. This implies that get-
methods are not always simple field-retriever functions.
Investigating the table a bit further, we notice that there
are names such as load, with greater entropy than the
corpus as a whole. The reason is that the entropy of
the corpus is dominated by the most common names;
again, nearly a third of all methods are getters. Apart
from that, the most surprising entry is that of parse,
which appears to be much more precise than we would
have guessed. The explanation is that the Apache
XmlBeans project, which is distributed as part of
Geronimo, contributes more than 3000 near-identical
parse methods. Presumably these have been generated.
Unfortunately, there is no simple way to automatically
discover generated code.

For each name n, we visualise the probability dis-
tribution for C(n) by means of a distribution diagram.
The height of each vertical bar is p([o]), meaning that
the y-axis signifies the fraction of objects belonging
to an equivalence class. Since we use ten binary
attributes, we have 210 equivalence classes, yielding
a resolution of 1024 on the x-axis.



Corpus Entropy Comment
C 6.8893 All names
Ccom 6.7591 Common names
Clex 6.5931 Lexicon names
C(size) 2.5343 Most precise name
C(load) 7.4798 Least precise name
C(get) 4.9966 Most common name
C(hash) 3.5616
C(has) 4.1766
C(is) 4.2318
C(parse) 3.6886 Suspiciously low

Table 4: Significant entropy values.

has

get

hash

size

is

Figure 3: The relationships between get and associated
names.

Figure 2 shows the distributions for get and its
semantic neighbours2. For clarity, the relationship be-
tween the names is also illustrated in Figure 3, where
similar names are connected with a bold line, special-
isations point to generalisations, and somewhat related
names are connected with a dotted line.

Recall that an equivalence class is included in the
spike set S(n, q) for a name n if it accounts for at
least a fraction q = 0.1 of the objects in C(n). As we
can see from Figures 2a and 2b, the spikes of get and
has that are higher than 0.1 correspond perfectly. This
leads us to label the names as “similar”.

Figure 2c, on the other hand, reveals that size has a
spike that get does not, but not vice versa. The spike
indicates a significant, specialised use; hence size is
a specialisation of get. The additional spike for size,
at position x = 580, represents a group of methods
that read state, have no parameters, and also call other

2. Except is, which is omitted because it resembles size.

methods named size. This matches our intuition of
what a size method might look like, and it also makes
sense that get methods are not like that.

Finally, the lexicon entry says that get is somewhat
related to hash. This stems from the fact that they have
a spike in common (where only the attributes reads
state and no parameters are set), but also that they
both have spikes that are not shared by the other. To
see this requires a little scrutiny of Figures 2a and 2d.
The bar at position x = 512 for get represents 10.8%
of all getters, whereas the corresponding bar for hash
represents merely 3.1% of hash methods. It is more
obvious that hash has at least one spike not shared by
get; namely, a spike at position x = 580 similar to the
one that differentiates size from get.

6.1. Exploring Nuances with a Larger Lexicon

The Programmer’s Lexicon has been kept tiny for
the sake of brevity and readability. Our approach can
easily be used to generate a much larger and more
detailed lexicon for the same corpus, allowing us to
investigate more subtle nuances between names. The
only prerequisite is that the cardinality for each name,
|n|C , must be large enough for the analysis to be
meaningful.

In such a case a printed lexicon might become
unwieldy, but relationships can still be investigated
meaningfully using graphs. An example graph of dis-
pose and related words, taken from a lexicon generated
with n = 200 candidate names and m = 100 chosen
names (see Section 3.1), is shown in Figure 4. The
corpus is the same that was used to generate The
Programmer’s Lexicon.

7. Related Work

The importance of names is well-understood by
industry practitioners. In blogs and articles, fairly so-
phisticated discussions of names are carried out for
instance by Martin Fowler, investigating the confusion
caused by homonyms in source code3, and Steve
Yegge, complaining about the emphasis put on nouns
over verbs in Java4.

Among researchers, names have primarily been
analysed in the context of readability and program
comprehension. Deißenböck and Pizka [3] define pre-
cise rules for the conciseness and consistency of names
based on a manually constructed formal model. Lawrie

3. http://martinfowler.com/bliki/TypeInstanceHomonym.html
4. http://steve-yegge.blogspot.com/2006/03/

execution-in-kingdom-of-nouns.html
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(d) hash

Figure 2: Distribution of get and its semantic neighbours.



close

destroy

validate

stop

refresh

clear

dispose

flush

reset

Figure 4: Methods related to termination.

et al. [7] try to approximate the results achieved by
Deißenböck and Pizka while avoiding the need for an
expert to create the formal model by considering only
the syntactic structure of identifiers.

A more thorough analysis of function identifiers is
carried out by Caprile and Tonella [1] who investigate
the structure of function identifiers in C programs,
build a dictionary of identifier fragments (“words”),
and propose a grammar that describes the roles of the
fragments. The authors also apply concept analysis to
perform a classification of the words in the dictionary.

Our work departs significantly from other efforts
in the attempt to ground the semantics of names in
attributes derived from the implementation. In trying
to define traceable attributes to correlate to names, we
have been influenced by Gil and Maman’s work on
Micro Patterns [5].

8. Conclusion

We believe that the analysis of semantic relation-
ships between names in computer programs bears
many low-hanging fruits, and that in generating The
Programmer’s Lexicon, we have picked but one.

Defining the meaning of names is useful because
it leads to greater awareness and might contribute to
more precise use of names. It is easy to envisage
a tool, for instance an Eclipse plug-in, that could
automatically check whether or not the initial verb of a
method name suits the implementation of the method,

give warnings when imprecise names are used, and so
forth.

More radically, we could detach the action-oriented
verbs from the rest of the method names, and raise
the verbs to the status of syntax in the language. Then
the programmer could write something like Person
find PersonByID, and have the compiler verify
that the implementation is not in conflict with the
action specified by the name find.

The idea outlined above marks the beginning of
a decomposition of the method name into a more
operative language, similar to keyword messages in
Smalltalk [6]. In our present work, we have focused
on the verbs that tend to form the beginning of a
method name. As Caprile and Tonella [1] have shown,
these verbs form part of a structure; a sentence. In the
example above, if we were to identify By as a special
word, the logical next step would be to try to link
the identifier fragments Person and ID to types. The
goal would be to generate a full lexicon for all the
words that appear in method names, and potentially
type names as well.

Since methods tend to invoke other methods, under-
standing the content of a method body is inherently a
recursive problem. In our future work, a key challenge
will be to define a suitable model that allows us to
define names in terms of other names, much as is the
case in natural language.
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Appendix
The Lexicon

Introduction.
Below we print The Programmer’s Lexicon, auto-
matically generated from our analysis of the most
common names in the software corpus. In our context,
a name is the action-oriented initial part of a Java
method name; typically a verb. Like a natural language
dictionary, the lexicon does not have to be read in
full. Some entries we have found interesting are check
(throws exceptions), find (contains loops) and equals
(calls methods of the same name, and performs type-
checking). Table 5 explains the terminology used in
the lexicon.

Lexicon Entries.
accept. Methods named accept very seldom read state. Furthermore, they

rarely throw exceptions, call methods of the same name, create objects,
manipulate state, use local variables, have no parameters, perform type-
checking or contain loops. The name accept has a precise use. A similar
name is visit. Generalisations of accept are handle and initialize. Somewhat
related names are set, end, is and insert.
action. Methods named action never call methods of the same name. Further-
more, they very often read state. Finally, they often return void, and rarely
throw exceptions, have no parameters or contain loops. The name action has
a precise use. Similar names are remove and add.
add. Among the most common method names. Methods named add often
read state. Similar names are remove and action.
check. Methods named check very often throw exceptions. Furthermore, they
often create objects and contain loops, and rarely call methods of the same
name. Unfortunately, check is an imprecise name for a method.
clear. Methods named clear very often have no parameters. Furthermore,
they often return void, call methods of the same name and manipulate state,
and rarely create objects, use local variables or perform type-checking. A
generalisation of clear is reset. A somewhat related name is close.
close. Methods named close often return void, call methods of the same name,
manipulate state, read state and have no parameters, and rarely create objects
or perform type-checking. A generalisation of close is validate. A somewhat
related name is clear.
create. Among the most common method names. Methods named create very
often create objects. Furthermore, they rarely call methods of the same name,
read state or contain loops.
do. Methods named do often throw exceptions and perform type-checking,
and rarely call methods of the same name. Unfortunately, do is an imprecise
name for a method.
dump. Methods named dump never throw exceptions. Furthermore, they very
often create objects and use local variables, and very seldom read state. Finally,
they often call methods of the same name and contain loops, and rarely
manipulate state. The name dump has a precise use.
end. Methods named end often return void, and rarely create objects, use
local variables, read state or contain loops. Generalisations of end are handle
and initialize. A specialisation of end is insert. Somewhat related names are
accept, set, visit and write.
equals. Methods named equals never return void, throw exceptions, create
objects, manipulate state or have no parameters. Furthermore, they very often
call methods of the same name and perform type-checking. Finally, they often
use local variables and read state. The name equals has a precise use.
find. Methods named find very often use local variables and contain loops.
Furthermore, they often perform type-checking, and rarely return void.
generate. Methods named generate often create objects, use local variables
and contain loops, and rarely call methods of the same name. Unfortunately,
generate is an imprecise name for a method.
get. The most common method name. Methods named get often read state and
have no parameters, and rarely return void, call methods of the same name,
manipulate state, use local variables or contain loops. A similar name is has.
Specialisations of get are is and size. A somewhat related name is hash.
handle. Methods named handle often read state, and rarely call methods of
the same name. A similar name is initialize. Specialisations of handle are
accept, set, visit, end and insert.
has. Methods named has often have no parameters, and rarely return void,
throw exceptions, create objects, manipulate state, use local variables or
perform type-checking. The name has has a precise use. A similar name is
get. Specialisations of has are is and size. A somewhat related name is hash.
hash. Methods named hash always have no parameters, and never return void,
throw exceptions, create objects or perform type-checking. Furthermore, they
very often call methods of the same name. Finally, they often read state, and
rarely manipulate state or use local variables. The name hash has a precise
use. Somewhat related names are has, is, get and size.
init. Methods named init very often manipulate state. Furthermore, they often
return void, create objects and have no parameters, and rarely call methods
of the same name.
initialize. Methods named initialize often return void and manipulate state,
and rarely call methods of the same name or read state. A similar name is
handle. Specialisations of initialize are accept, set, visit, end and insert.
insert. Methods named insert often throw exceptions, and rarely create objects,
read state, have no parameters or contain loops. Generalisations of insert are
handle, end and initialize. Somewhat related names are accept, set, visit and
write.
is. The third most common method name. Methods named is often have no
parameters, and rarely return void, throw exceptions, call methods of the
same name, create objects, manipulate state, use local variables, perform type-
checking or contain loops. The name is has a precise use. Generalisations of
is are has and get. Somewhat related names are accept, visit, hash and size.
load. Methods named load very often use local variables. Furthermore, they
often throw exceptions, create objects, manipulate state, perform type-checking
and contain loops. Unfortunately, load is an imprecise name for a method.



make. Methods named make very often create objects. Furthermore, they
rarely return void, throw exceptions, call methods of the same name or contain
loops.
new. Methods named new never contain loops. Furthermore, they very seldom
use local variables. Finally, they often call methods of the same name and
create objects, and rarely return void, manipulate state or read state.
next. Methods named next very often manipulate state and read state.
Furthermore, they often throw exceptions and have no parameters, and rarely
return void.
parse. Among the most common method names. Methods named parse very
often call methods of the same name, read state and perform type-checking.
Furthermore, they rarely use local variables. The name parse has a precise
use.
print. Methods named print often call methods of the same name and contain
loops, and rarely throw exceptions or manipulate state.
process. Methods named process very often use local variables and contain
loops. Furthermore, they often throw exceptions, create objects, read state
and perform type-checking, and rarely call methods of the same name.
Unfortunately, process is an imprecise name for a method.
read. Methods named read often throw exceptions, call methods of the same
name, create objects, manipulate state, use local variables and contain loops.
Unfortunately, read is an imprecise name for a method.
remove. Among the most common method names. Methods named remove
often throw exceptions. Similar names are add and action.
reset. Methods named reset very often manipulate state. Furthermore, they
often return void and have no parameters, and rarely create objects, use local
variables or perform type-checking. A specialisation of reset is clear.
run. Among the most common method names. Methods named run very often
read state. Furthermore, they often have no parameters, and rarely call methods
of the same name.
set. The second most common method name. Methods named set very
often manipulate state, and very seldom use local variables or read state.
Furthermore, they often return void, and rarely call methods of the same
name, create objects, have no parameters, perform type-checking or contain
loops. The name set has a precise use. Generalisations of set are handle and
initialize. Somewhat related names are accept, visit, end and insert.
size. Methods named size always have no parameters, and never return void,
create objects, manipulate state, perform type-checking or contain loops.
Furthermore, they very seldom use local variables. Finally, they rarely read
state. The name size has a precise use. Generalisations of size are has and
get. Somewhat related names are is and hash.
start. Methods named start often return void, manipulate state and read state.
to. Among the most common method names. Methods named to very often
call methods of the same name and create objects. Furthermore, they often
have no parameters, and rarely return void, throw exceptions, manipulate state
or perform type-checking.
update. Methods named update often return void and read state.
validate. Methods named validate very often throw exceptions. Furthermore,
they often create objects and have no parameters, and rarely manipulate state.
A specialisation of validate is close.
visit. Methods named visit rarely throw exceptions, use local variables, read
state or have no parameters. A similar name is accept. Generalisations of visit
are handle and initialize. Somewhat related names are set, end, is and insert.
write. Among the most common method names. Methods named write often
return void and call methods of the same name, and rarely have no parameters.
Somewhat related names are end and insert.


