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1 Introduction

Biomolex has technology for real-time digital imaging of radioactive emissions. In Section
1.1 we will describe this technology, while its applications will be described in Section 1.2.
Finally, challenges with the Biomolex technology, which is also the topic of this note, will
be introduced in Section 1.3.

1.1 The Biomolex technology
The detector of the Biomolex technology is a double-sided silicon strip detector (DSSD).
It consists of 640×1280 parallel strips running orthogonal on each side of a silicon core
with a strip pitch of 50µm (see Figure 1). The DSSD will respond to energy depositions in
the silicon core of the sensor. For each radioactive event that hits the detector the energy
and the exact position, with a precision down to 50µm is registered. The high sensitivity

Figure 1. Left panel: A schematic illustration of the DSSD principle. Right panel: The DSSD attached to
its adjoining read-out electronics.

of the patented read-out electronics allows detection of particles with energies as low as
20-25 keV, thus supporting the use of the most common β-emitters used for labeling of
biomolecules e.g. 33P, 35S, 14C, 131I, 18F, 75Se, 89Sr, 99Tc, 153Sa. These are all low energy
emitters which are easily shielded.

During an array recording, the sensor is bombarded with a high number of β-particles.
For each of the pixels/strip intersection (50×50µm) the energy of all events are registered.
Then an image is produced where the intensity value of each pixel is the number of reg-
istered events/hits.

1.2 Applications of the Biomolex technology
The two main applications of the Biomolex technology considered in this note are protein
kinase analysis and tissue autoradiography.

Protein Kinase Analysis - Array images Kinase arrays are used to analyze protein
and peptide phosphorylations, a reversible modification of a protein that serves to mod-
ify / regulate protein activity. The function of these post-translational modifications is to
alter the substrate’s activity, subcellular localization, binding properties, and/or associa-
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tion with other proteins.
Phosphorylation is a ubiquitous regulatory mechanism found in both eukaryotes and

prokaryotes. These mechanisms are regulated by protein kinases and phosphatases for
adding and removing phosphate groups respectively. The reversible phosphorylation of
proteins can result in the activation or termination of many important cellular events
including cell signaling, growth, and differentiation. An example of an array image is
shown in Figure 2.

Tissue autoradiography - Tissue images Microscopic imaging and dissymmetry of
antibody distribution in tumor and tissues in time and space are essential in order to
verify pharmacokinetic modeling and elucidate internalization rates. Detailed imaging
with high sensitivity and high spatial resolution are crucial to get accurate knowledge of
transport and the uptake of labeled biomolecules.

Tissue imaging opens for a wider use of isotopes, thus making it possible to exploit the
underlying capabilities, provided by the technology, of using multiple isotopes during a
single acquisition. Since the technology is able to detect the accurate amount of energy
each particle deposits in the detector, an exact energy spectrum can be defined for any
given radioactive isotope. An example of a tissue image is shown in Figure 3.

1.3 Challenges with the Biomolex technology
The production of DSSDs is a very complicated process and production of flawless sen-
sors is practically impossible. One challenge is then that some strips are defect, i.e. they
do not register any signal. This results in a corresponding missing stripe in the image, i.e.
a stripe where all pixel values are missing. Besides, for some of the missing stripes the
signals in the neighbor stripes will be too high, because they register signal that should
have been registered by the missing stripe. Also, the signal strengths of the stripes may
vary. A method for restoring images for reducing these problems will be proposed and
tested in Section 2.

An important issue when analyzing array images is to estimate the total number of
hits in each spot in the image. A method for estimating such spot sizes will be pro-
posed in Section 3. Standard methods for estimating spot and background intensities
used in microarray imaging cannot be used because the spots consist of fewer pixels and
events/hits.

The Biomolex technology opens up for the possibility of using multiple isotopes dur-
ing a single image acquisition. A challenge is then to decompose the measured signal into
signals for the different isotopes, i.e. decide which fractions of the signals/hits that come
from which isotope. In Section 4 a method for decomposing signals will be proposed and
tested on simulated data. The method is based on using information about the energy
spectra and decay times for each of the radioactive isotopes.
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Figure 2. Part of an array image.

Figure 3. Part of a tissue image.
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2 Missing stripes

For images acquired using the silicon strip detector there is a problem that some stripes
are missing signal, i.e. no hits are registered in that stripe. This is caused by defect strips
in the detector. There are two main types of such missing stripes. In both cases the pixel
values of the stripe will be zero. First, if the strip in the detector is broken it will not
absorb any electrons. The electrons will then be absorbed by one of the neighbor strips
instead. This will result in too many registered hits in these strips, i.e. the corresponding
stripes in the images will become too bright. Second, if the strip is not broken, but the
read out channel of the ASIC is defect, the strip will absorb electrons, but the hits will
not be registered. In this case the missing stripe will not influence the pixel values of the
neighbor stripes.

Besides defect strips, there is a problem that some strips are overactive. Such strips are
registering hits continuously even if there are no hits close to the strip. This results in high
pixel values in the corresponding stripe in the image and the values in the stripe will be
more or less proportional to the projection of the image onto the stripe. Such overactive
stripes are often, but not always, neighbors of missing stripes.

One source of systematic noise in the images is the somewhat varying detection ca-
pability of the different strips. This leads to varying signal strengths of the stripes in the
image.

2.1 Method for restoring the tissue images
In this section we describe the algorithm for restoring the image, including imputation
of values in the missing and overactive stripes. First the missing and overactive stripes
are identified (see Section 2.1.1). As the overactive stripes contain no information about
the true signal of the stripes, the pixel values in these stripes are set to missing. Then
missing values are imputed/estimated (see Section 2.1.2). Besides imputing values in a
missing stripe, the pixel values in its neighbor stripes are adjusted to reduce the effect of
potential extra signal that should have been registered in the missing stripe and not in its
neighbors. Finally, a smoothing method is used to reduce the varying signal strengths of
the strips.

The described method assumes that not more than two consecutive stripes are miss-
ing or overactive. The proposed algorithm for imputing missing values is based on the
assumption that the image is quite smooth, i.e. that it contains quite large objects and that
the true signal of two neighbor stripes are quite similar. This is also an important assump-
tion when stripes are adjusted to reduce varying signal strength or to reduce the effect
of extra signal from a neighbor stripe that is missing. Tissue images are normally quite
smooth (see Figure 3), while this is not the case for array images. Figure 4 shows a part
of an array image and two single spots, one with and one without a missing stripe. We
observe that the objects consist of only a few pixels and that the pixel values have a large
variation from stripe to stripe in the spots. The method for restoring images described in
this section is therefore meant for restoring tissue images only.

10 Image restoration and analysis of biomolecular radioactivity images



Figure 4. Part of an array image and two single spots, one without and one with a missing stripe.

2.1.1 Identifying missing and overactive stripes
The missing and overactive stripes are identified from the image of interest.

A missing stripe is a stripe in the image that corresponds to a defect strip in the detec-
tor. In such a strip, no hits will be registered, i.e. the corresponding pixel values will be
zero. Because of inaccuracies in the detector, a few pixels might nevertheless be different
from zero. A stripe s in the image will be identified as being a missing stripe if almost
all pixel values are zero and it in addition is very different from at least one of its two
nearest neighbors, stripes s− 1 and s + 1 (see Figure 5).

Pixel values

Stripe number
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s− 2
s− 1

s

s + 1
s + 2

...

...
...

...

. . . as−2,t−1 as−2,t as−2,t+1 . . .
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. . . as+1,t−1 as+1,t as+1,t+1 . . .
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...
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Projection value
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ps+1

ps+2
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Stripe number . . . t− 1 t t + 1 . . .

Figure 5. An image indicating stripe s and its neighbors stripes s− 2, s− 1, s + 1, s + 2, etc. The a’s are
pixel values. If stripe s is a missing or overactive stripe, one or more of stripes s− 2, s− 1, s + 1 and s + 2
will be used for imputing data in stripe s. The projection value for a horizontal stripe s is the sum of the
pixel values in that stripe, i.e. ps =

∑t=T
t=1 as,t, where T is the number of vertical stripes. The projection

of the vertical stripes are similarly defined. If as,t occurs in the missing or overactive stripe s and missing
values have not yet been imputed, we assume as,t = 0. S is the number of horizontal stripes.

A property of an overactive stripe is that it will be more or less proportional to the
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projection of the image onto the stripe. This means that if the vertical stripe t in Figure 5
is overactive we expect its pixel values (a1,t, a2,t, . . . , aS−1,t, aS,t) to be highly correlated
with the projection of the image (p1, p2, . . . , pS−1, pS). In practice a stripe t is identified as
an overactive stripe if its correlation with the projected image is high (> 0.5) and either
the correlation of the neighbor stripes t − 1 and t + 1 with the projected image is low (<
0.2), or the projection of stripe t is at least twice that of stripe t− 1 and stripe t + 1.

2.1.2 Imputing missing values

If stripe s is a missing stripe, the pixel values in stripe s are estimated from the pixel
values in its neighbor stripes. Before imputing the missing values, the pixel values in its
neighbor stripes are adjusted too reduce the effect of extra signal that should have been
registered in the missing stripe. This is done by multiplying the pixels in stripe s − 1
and s + 1 by ps−2

ps−1
and ps+2

ps+1
, respectively (see Figure 5). When pixel values in the neighbor

stripes have been adjusted, the pixel values in stripe s are estimated from the pixel values
in its neighbor stripes as explained in Figure 6.

New value for as,t, t = 1, . . . , T

Stripe s + 1 not missing
Stripe s− 1 not missing 1

2as−1,t + 1
2as+1,t

Stripe s + 1 missing
Stripe s− 1 not missing 2

3as−1,t + 1
3as+2,t

Stripe s + 2 not missing
Stripe s + 1 missing
Stripe s− 1 not missing as−1,t

Stripe s + 2 missing
Stripe s− 1 missing
Stripe s + 1 not missing 2

3as+1,t + 1
3as−2,t

Stripe s− 2 not missing
Stripe s− 1 missing
Stripe s + 1 not missing as+1,t

Stripe s− 2 missing
Stripe s− 1 missing No new value computed
Stripe s + 1 missing Pixel value set to 0

Figure 6. Formulas for imputing values in a missing stripe s. See Figure 5 for definition of the a’s etc. In
the formulas information from a larger neighborhood might also have been used. Each aj,t in the formulas
could for example have been substituted by the average of aj,t−1, aj,t and aj,t+1.
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2.1.3 Reducing varying signal strength

One source of systematic noise in the images is the somewhat varying detection capa-
bility of the different strips. This leads to varying signal strengths of the stripes in the
image. To reduce this systematic noise, we should adjust pixel values in the image of
interest such that the signal strengths of the stripes become more similar. It is difficult
to obtain realistic estimates of the strips detection capability, i.e. of the corresponding
stripes signal strength, using only information in the image itself. However, we might do
some smoothing of the image such that the signal strengths become more similar. This is
done under the assumption that neighbor stripes should have approximately the same
projection values. This they will have because of the assumption of quite smooth images.
The smoothing is done by multiplying the pixels in each stripe s with a constant cs that is
such that a smoothing of the projections of the stripes is obtained. More precisely cs = ms

ps
,

where ms is the mean of the projection values in a neighborhood around stripe s, i.e. the
2n + 1 values ps−i, ps+i,where i = 0, 1, . . . , n (see Figure 5). After multiplying the pixels
in stripe s with cs, ms will be the new projection value of stripe s.

2.1.4 Using information from calibration experiments
In the method described above only information from the image itself is used when
restoring an image. An alternative that might strengthen the results could be to include
information from a calibration experiment that is such that the concentration of isotopes
is constant over the image. An assumption for using such information is that the strips in
the detector have the same characteristics during the acquisition of the calibration image
and the image of interest when it comes to defect strips, overactive strips and detection
capabilities.

In a calibration experiment we expect the projection values to be quite similar (see Fig-
ure 5). Missing and overactive stripes will be outliers. A stripe s might be identified as an
overactive stripe if its projection ps is much larger than the median projection value, while
it might be identified as a missing stripe if its projection ps is close to zero and is much
smaller than the median projection value. Varying signal strengths might be reduced as
described in Section 2.1.3, but where ms and ps are computed from the calibration image
and m = ms is the mean of all projection values (p1, . . . pS) that are not outliers.

The indicated approaches have not been implemented and tested as calibration ex-
periments were not available.

2.2 Results
The method described in Sections 2.1.1, 2.1.2 and 2.1.3 has been tested on several tissue
images and has also been implemented in the Biomolex system. The results of the tests
will be described and discussed in this section. The images in the test set consisted of
the images shown in Figures 7-11 and were chosen to illustrate different challenges with
restoring tissue images acquired with the Biomolex detector.

We conclude that for all images in the test set, missing and overactive stripes were
identified. The images presented in Figures 7 and 8 are satisfactorily restored both when
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it comes to imputing missing values and when it comes to removing the extra signal in
the neighbors of the missing stripes. For the image in Figure 8, with zoomed subimages
in Figure 9, we observe that use of smoothing reduces the problem of varying signal
strength between stripes. The images in Figures 10 and 11 contain no missing stripes,

Before After

Figure 7. Parts of a tissue image before and after image restoration. The upper images contain a large
object in the image. There is one missing stripe in x-direction and one in y-direction. The neighbors of the
missing stripes have too high signal. The lower images are a part of the image without an object, i.e. with
very low signal, except that it contains an overactive stripe.

but both images have several stripes that seems to have a too low signal strength. We
observe that use of smoothing reduces this problem even though it has not disappeared
completely. One possible way of reducing the problem with weak stripes even more is to
set such stripes to missing and then impute values using information from the neighbour
stripes. This has been tested for the image in Figure 11 and the results of using the missing
stripes approach are shown in the right column in that figure. We observe that setting
one of the weakest stripes to missing reduces the problem with varying signal strength
even more. The problem has still not disappeared completely because there are several
consecutive stripes that are missing, and the method for restoring the images assumes
that not more than two consecutive stripes are missing or overactive.

To conclude, the proposed method gives satisfactory results for the test set. It is a
promising method for restoring tissue images that are quite smooth and that do not con-
tain more than two consecutive stripes that are missing or overactive or that have too
low signal strength. Improved results might have been obtained by including a calibra-
tion experiment.
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Before ↓↓ ↓↓ ↓

After
Without smoothing

After
With smoothing

Figure 8. Image of a rat arterie. There are five vertical missing stripes in the image (indicated by arrows),
and one horizontal missing stripe below the arteria (not easy to see as it sourroundings are quite dark).
Also, the signal strength of the stripes is varying.
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Before

After
Without smoothing

After
With smoothing

Figure 9. Two zoomed parts of the images in Figure 8.
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Before After After
Without smoothing With smoothing

Figure 10. Part of an image of tissue from a mouse. There is one overactive stripe in the image, and several
stripes that seems to have a too low signal strength.
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Before After
Without smoothing

No missing No missing

Missing stripe
introduced

After
With smoothing

No missing No missing

Missing stripe
introduced

Figure 11. Parts of a tissue image with three overactive stripes. Several stripes seem to have a too low
signal strength. Also, there is a problem that the values in the object are very low. To reduce this problem
the original image was multiplied by 7.5 before the image was restored. The left column show the largest
part of the image, including all the three overactive stripes. The middle column show the main object after
the image has been restored. The images in the right column are zooms of the upper right part of the main
object. In the “Missing stripe introduced” images one of the weak stripes has artificially been set to missing
before the image has been restored.
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3 Estimation of spot size in array images

An important issue when analyzing array images is to estimate the total number of hits
in each spot, here denoted spot size. More precisely this is the assessment of the number
of hits (β-particles) arising from each biological sample on an array.

A method for estimating spot size when the spots are well separated is described in
Section 3.1, while the method is extended to overlapping spots in Section 3.2. In both
cases it is assumed that the the grid and the spot centers have been identified. A method
for doing this has already been implemented in the Biomolex system, while the method
for estimating spot size will be implemented later.

3.1 Well separated spots
Two factors complicate the estimation:

· Hits arising from background sources - these should be subtracted.

· Missing or atypical stripes.

These problems imply that straightforward counting of the number of hits within the
area corresponding to the biological sample may give misleading results.

One possible solution is to fit a two-dimensional surface to the pixel values. Suppose
the hits from the specific spot under consideration are found within a rectangular area
with pixel values xij , i = 1, . . . , N, j = 1, . . . ,M , and that no other spot (significantly)
affects this area. Over the area we fit a function (surface) of the form

B + Sf(i, j; Θ) (1)

where f is a two-dimensional distribution function, e.g., the two-dimensional Gaussian
distribution. f(i, j; Θ) is then understood as the function evaluated at the pixel centers,
B represent the background, while S will represent the size of the spot (since f integrates
to 1).

If we use a Gaussian distribution for f, that is,

f(x, y; Θ) =
exp (− 1

2(1−ρ2)
( (x−µx)2

σ2
x

+ (y−µy)2

σ2
y

− 2ρ(x−µx)(y−µy)
σxσy

))

2πσxσy

√
1− ρ2

(2)

the unknown parameters in Θ will be the location of the spot center (µx, µy), the standard
deviations σx and σy and the correlation ρ. Together with B and S this adds to 7 unknown
parameters. These parameters may be estimated by minimization of∑

i,j⊂Ω

(xij − f(i, j; Θ))2 (3)

over Θ. Here, Ω represents the non-missing pixels (the missing stripes thus ’disappear’
by simply not being included in the calculations).

In our tests, the minimizations were carried out using the SAS system procedure
NLIN with the Marquart minimization algorithm (a modified Gauss-Newton method).
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Explicit values for the derivatives for S and B were used, while the algorithm approxi-
mated the other derivatives. When using the algorithm, specific starting values must be
given for each spot center, while for the other parameters default starting values seem
to work well. Figure 12 shows examples of original spot images and model fits. The up-

Original spot image Model fit 1 Model fit 2

Figure 12. Examples of original spot images and model fits. The spot in the upper row has no missing
stripes. The second row is the spot in the upper row where two rows are set to missing. The lower row has
a real missing stripe. Also its two nearest neighbors have been set to missing when fitting the model. In
model fit 1 f is equal to a Gaussian with correlation=0 and equal variances. Model fit 2 is as model fit 1,
but without restrictions on the correlation and variances.

per row shows to the left an original spot image (this image has no missing stripes), the
middle panel shows an approximation obtained by fitting (1) with f equal to a Gaussian
with correlation=0 and equal variances, and the right panel the resulting surface using
a Gaussian without restrictions on the correlation and variances. The second row shows
the same spot, but two rows have artificially been set to missing. Note that the fit only
changes marginally (the estimate of the spot size changes from 1272 to 1292). The lower
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row of Figure 12 shows an example with a real missing stripe, the corresponding row and
its nearest neighbors (with too high values) have been set to missing in the estimations
shown in the middle and right panels.

Tests have been carried out on about 20 spots, partially with (artificially) missing
rows or columns. The algorithm seems robust, provided reasonable starting values are
provided for the center positions. However, before used in commercial systems, more
extensive tests on images of varying quality should be carried out.

3.2 Overlapping spots

Original spot image Model fit

Figure 13. An example of overlapping spots.

Using isotopes that emit high-energy particles, like 32P, the β-particles from one bio-
logical sample may be counted in areas corresponding to other samples. Thus a pattern
of overlapping spots may emerge as illustrated in Figure 13. We have carried out prelimi-
nary tests to see if reliable estimation is still possible. The idea is to fit a set of distributions
simultaneously to a spot and its nearest neighbors. Figure 13 shows an example of such
a fit. Technically, the procedure seems to work well, and despite a fairly high number of
parameters it only uses a few cpu-seconds. Use in real situations will, however, require
solutions to other problems. Most importantly, the ’background’ seems to be influenced
by particles that move over long distances (several spot diameters), possibly in the sup-
porting glass structures on the chip. It will then obviously be challenging to assess weak
spots situated in an area with strong spots. While it is probably hard to solve this through
a model based on physical principles, ad hoc solutions may be possible. One possible par-
tial solution may be to utilize the energy of the hits, but we have not yet evaluated this
options.

If the problems connected to overlapping spots can be overcome, an interesting per-
spective is the use of two radioactive emitters, one with high energies (contributing to a
broad spot) and one with low energies (with focused hits in the central area). This may
enable separation of the signals by fitting two distributions with the same center, and
supporting the estimation by using the energies in the hits.
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3.3 Remarks
In the method described in this section we assume that overactive and missing stripes
already have been identified and that it already has been decided whether the neighbors
of these stripes have too high signal. Besides we assume that varying signal strength is
not a problem.

A slightly modified version of the algorithm described in Section 2.1.1 might have
been used for identifying missing and overactive stripes. For identifying neighbors of
missing stripes with too high signal we might either use the parts of the image that are
outside the grid with spots or we might use information from a calibration experiment.
This might also be the solution for reducing the problem with varying signal strength.
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4 Separation of signals in tissues

It is of great interest to be able to generate images of the separate distributions of two (or
more) different isotopes present in the same tissue sample. This allows to study different
processes taking place in the same tissue simultaneously, for example comparing uptake
patterns of different radiopharmaceuticals in the same tissue sample. In order to do this,
it is crucial to be able to separate the contributions from the two isotopes. The underlying
energy spectra (distribution of energies) for the two isotopes are considered known. In
each pixel, we need to decompose the observed mixed energy spectrum into a linear
combination of the two underlying spectra. Below, we summarize some previous work
on this problem, and suggest a simpler and faster method. The new method has been
tested on simulated data. Unfortunately, no real data were available.

4.1 Notation
Known probabilities. The energy spectra for isotope 1 and isotope 2 are known. The
energy range is divided into m bins. Let h

(1)
i be the probability that a hit from isotope

1 has energy in bin i. Similarly, let h
(2)
i be the probability that a hit from isotope 2 has

energy in bin i. We then have
∑m

i=1 h
(1)
i =

∑m
i=1 h

(2)
i = 1.

Data/observations. Hits are counted for one pixel. Let n be the total number of hits in
the pixel and ni the number of hits in energy bin i, i = 1, . . . ,m, i.e.

∑m
i=1 ni = n.

From the data n1, n2, . . . , nm and the probabilities (spectra) h
(1)
i and h

(2)
i , i = 1, . . . ,m,

we want to estimate the contribution from each isotope.

4.2 Previous work
The methods currently available for the Biomolex system are described in a paper by
Kvinnsland and Skretting1. The aim of the two methods in that paper is to find estimates
of λ(1) and λ(2), where λ(1) and λ(2) are the (expected) number of hits originating from
isotope 1 and 2, respectively.

Method based on the least square method. The first method described in the paper
by Kvinnsland and Skretting is based on the the least square (LS) method. Estimates of
λ(1) and λ(2) are found by minimizing the expression

S =
m∑

i=1

(ni − λ(1)h
(1)
i − λ(2)h

(2)
i )2 (4)

This minimization might be done analytically.
Method based on a maximum likelihood approach. The second method described in

the paper by Kvinnsland and Skretting is based on a maximum likelihood (ML) approach
and models the probability of measuring b hits with energies e1, · · · , eb, as follows:

p(e1, · · · , eb|λ(1), λ(2)) =
b∑

l=0

p1(l, b− l|λ(1), λ(2)) · p2(e1, · · · , eb|l, b− l) (5)

1. Y. Kvinnsland and A. Skretting. Methods for separation of contributions from two radionuclides in au-
toradiography with a silicon strip detector. Phys. Med. Biol., 2000, 45, 1183–1193
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where

· p1(l, b − l|λ(1), λ(2)) is the probability that l hits originated from isotope 1 and b − l

from isotope 2 given the expectation values λ(1) and λ(2) and

· p2(e1, · · · , eb|l, b − l) is the probability of measuring the energies e1, · · · , eb given l

hits originating from isotope 1 and b− l from isotope 2.

This model can incorporate temporal information. However, the likelihood and the maxi-
mization of the likelihood is computationally demanding even without this complication.
The LS and ML methods above have been tested on simulated data and on a small real
image with three drops, one with pure isotope 1 (here 35S), one with pure isotope 2 (here
33P) and one drop with a mixture of the two. The results are reasonably good, but the ML
method is very computationally intensive, and does not show substantial improvements
compared to the simple LS method.

With time information incorporated, the ML method has been tested with only two
time windows, due to computational cost, and with no improvement in estimates.

4.3 Alternative method
Here we present an alternative to the two methods presented in the paper by Kvinnsland
and Skretting. First, we reformulate the description of the mixing of the two isotopes.
Instead of λ(1) and λ(2), our unknown will be the fraction a defined by:

Of the n observed hits, a fraction a is from isotope 1
and a fraction (1− a) is from isotope 2.

Hence our aim is simplified to estimating one parameter a. Let hi be the probability that
a hit from a mixture of isotope 1 and 2 has energy in bin i. We can write

hi = P (energy in bin i) (6)

= P (energy in bin i|from isotope 1) · P (isotope 1) +

P (energy in bin i|from isotope 2) · P (isotope 2)

= a · h(1)
i + (1− a) · h(2)

i

where a is defined above. We wish to find an estimate of a.

Given n, the bin numbers for the energies e1, . . . , en can be considered as a series of
n independent trials. The outcome of each trial is one of m bin numbers. The random
variables N1, . . . Nm, where Ni = the total number of n trials where the outcome is bin i,
have a multinomial distribution, i.e.

P (N1 = n1, N2 = n2, . . . , Nm = nm) =
n!

n1!n2! · · ·nm!
hn1

1 hn2
2 · · ·hnm

m (7)

Assuming the model given in 7, an estimate of a could be found using the maximum
likelihood approach. Maximizing the likelihood P (a|N1 = n1, N2 = n2, . . . , Nm = nm) is
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equivalent to maximizing the expression

L(a) = log(
m∏

i=1

hni
i ) =

m∑
i=1

ni · log(hi) (8)

=
m∑

i=1

ni · log(a · h(1)
i + (1− a) · h(2)

i ).

The value that maximizes the log-likelihood, â, is found numerically using an iterative
optimization method.

4.3.1 Maximization of the likelihood
An estimate of a that maximizes the likelihood is based on the derivative of L with respect
to a,

L′(a) =
m∑

i=1

ni · (h(1)
i − h

(2)
i )

a · h(1)
i + (1− a) · h(2)

i

(9)

=
m∑

i=1

ni · (h(1)
i − h

(2)
i )

a · (h(1)
i − h

(2)
i ) + h

(2)
i

.

We might assume that ni 6= 0 and h
(1)
i 6= h

(2)
i as such terms otherwise could have been re-

moved from the expression to be maximized. We might also assume that the bin numbers
are sorted such that h

(1)
i > h

(2)
i for i ≤ m1 and h

(1)
i < h

(2)
i for i > m1 for some number

m1, 1 ≤ m1 ≤ m. We then rewrite

L′(a) =
m1∑
i=1

ni · (h(1)
i − h

(2)
i )

a · (h(1)
i − h

(2)
i ) + h

(2)
i

−
m∑

i=m1+1

ni · (h(2)
i − h

(1)
i )

a · (h(1)
i − h

(2)
i ) + h

(2)
i

. (10)

We observe that both the numerator and the denominator in all terms in the two sums are
positive. If a increases, the denominators in the first sum increases and the denominators
in the second sum decreases. This means that if a increases, the first sum will decrease
and the second sum will increase. Then L′(a) will decrease. Similarly, if a decreases, L′(a),
will increase. From this we conclude that:

a1 < a2 ⇒ L′(a1) > L′(a2) (11)

⇒ L′(0) > L′(1)

L′(0) < 0 ⇒ L′(a) < 0 for all a

⇒ amax = 0 maximizes the likelihood L(a)

L′(1) > 0 ⇒ L′(a) > 0 for all a

⇒ amax = 1 maximizes the likelihood L(a)

L′(0) > 0 > L′(1) ⇒ there exists an amax, 0 < a < 1, such that L′(a) = 0

⇒ amax maximizes the likelihood L(a).
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Algorithm The implications above will be used in the following algorithm for maxi-
mizing the likelihood. In the algorithm, aM is the current estimate of amax and aS is the
start estimate of amax. Also, [i1, i2] is the current interval in which we search for amax and
this interval is such that L′(i1) > 0 > L′(i2).

< compute L’(0) and L’(1) >

if (< L’(0) < 0 >)

aM = 0

else if (< L’(1) > 0 >)

aM = 1

else {

< compute aS >

aM = aS

i1 = 0

i2 = 1

while (< i1 is not approximately equal to i2 >) {

if ( L’(aM) > 0 )

i1 = aM

else

i2 = aM

< choose a new value for aM in the interval [i1,i2] >

}

}

The new value chosen in the interval [i1, i2] could either be chosen in the middle of the
interval, drawn uniformly from the interval, chosen closest to the interval limit with the
smallest derivative or by some other algorithm. A new value closest to the interval limit
with the smallest derivative could for example be chosen equal to

i1 −
i2 − i1

L′(i2)− L′(i1)
· L′(i1) (12)

This corresponds to assuming that the derivative is linear. The start value for the iterative
algorithm could either be chosen in the interval [0, 1] in the same way as new values are
chosen, or it might be found using a least square approach and minimizing

S =
m∑

i=1

(ni − a · n · h(1)
i − (1− a) · n · h(2)

i )2 (13)

This is equal to Equation 4 where a · n = λ(1) and (1− a) · n = λ(2).

All above calculations are intended for one pixel only. If there are enough counts in
each pixel, the estimation of a should be pixelwise, in order not to introduce unnecessary
smoothing. Of course, it is possible to assume that neighboring pixels have the same frac-
tion of the two isotopes, and hence aggregate counts in several pixels through a moving
window f.ex. This assures enough data, but might introduce bias.
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4.3.2 Extension to time
The data/observations for each pixel are now obtained within K time windows, k =
1, . . . ,K. Let n be the total number of hits in the pixel and ni,k the number of hits in
energy bin i and time window k, i = 1, . . . ,m and k = 1, . . . ,K , i.e.

∑K
k=1

∑m
i=1 ni,k = n.

The known probabilities, h
(1)
i and h

(2)
i and the definition of the unknown fraction a are

the same as before.
Let T

(1)
h and T

(2)
h be the half-lifes of isotope 1 and 2, respectively. Let p

(1)
k be the prob-

ability that a hit from isotope 1 is observed in time window k. We derive

p
(1)
k =

c(1) · ln(2)

T
(1)
h

·
∫ tk+lk

tk

2
− t

T
(1)
h dt = c(1) · 2

− tk

T
(1)
h · (1− 2

− lk

T
(1)
h ), (14)

where tk is the start time for time window k, lk is the length of time window k and c(1) is
a constant that is such that

∑K
k=1 p

(1)
k = 1. Similarly, let p

(2)
k be the probability that a hit

from isotope 2 is observed in time window k, and derive

p
(2)
k = c(2) · 2

− tk

T
(2)
h · (1− 2

− lk

T
(2)
h ). (15)

Let h
(1)
i,k be the probability that a hit from isotope 1 has energy in bin i and is observed

in time window k, i=1, . . . ,m and k = 1, . . . ,K. Since the energy spectrum does not
change over time, h

(1)
i,k = h

(1)
i · p

(1)
k . h

(2)
i,k is similarly defined for isotope 2 and h

(2)
i,k =

h
(2)
i · p(2)

k . We observe that
∑K

k=1

∑m
i=1 h

(1)
i,k =

∑K
k=1

∑m
i=1 h

(2)
i,k = 1.

Let hi,k be the probability that a hit from a mixture of isotope 1 and 2 has energy in
bin i and is observed in time window k. We can write

hi,k = P (energy in bin i and time window k) (16)

= P (energy in bin i and time window k|from isotope 1) · P (isotope 1) +

P (energy in bin i and time window k|from isotope 2) · P (isotope 2)

= a · h(1)
i,k + (1− a) · h(2)

i,k

Given n, the bin numbers and time windows for the energies e1, . . . , en can, as before,
be considered as a series of n independent trials. The outcome of each trial is one of m ·K
combinations of m bin numbers and K time windows. The m ·K random variables Ni,k,
where Ni,k = the total number of n trials where the outcome is bin i and time window k,
have a multinomial distribution, i.e.

P (N1,1 = n1,1, . . . , Nm,1 = nm,1, . . . , N1,K = n1,K , . . . , Nm,K = nm,K) (17)

=
n!

n1,1! · · ·nm,1! · · ·n1,K ! · · ·nm,K !
h

n1,1

1,1 · · ·hnm,1

m,1 · · ·hn1,K

1,K · · ·hnm,K

m,K

Assuming the model given in 17, an estimate of a could be found using the maximum
likelihood approach. Maximizing the likelihood P (a|N1,1 = n1,1, . . . , Nm,1 = nm,1, . . . , N1,K =
n1,K , . . . , Nm,K = nm,K) is equivalent to maximizing the expression

L(a) = log(
K∏

k=1

m∏
i=1

h
ni,k

i,k ) =
K∑

k=1

m∑
i=1

ni,k · log(hi,k) (18)

=
K∑

k=1

m∑
i=1

ni,k · log(a · h(1)
i,k + (1− a) · h(2)

i,k )
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We want to estimate a. As for the case without time, the a-value that maximizes the log-
likelihood, â, is found numerically using an iterative optimization method.

An estimate of a that maximizes the likelihood is based on the derivative of L with
respect to a,

L′(a) =
∑

k∈{1,...,K},m∈{1,...,M}

ni,k · (h
(1)
i,k − h

(2)
i,k )

a · h(1)
i,k + (1− a) · h(2)

i,k

(19)

=
∑

k∈{1,...,K},m∈{1,...,M}

ni,k · (h
(1)
i,k − h

(2)
i,k )

a · (h(1)
i,k − h

(2)
i,k ) + h

(2)
i,k

.

We might assume that ni,k 6= 0 and h
(1)
i,k 6= h

(2)
i,k in all terms as such terms otherwise could

have been removed from the expression to be maximized. As before, we then rewrite the
expression above by splitting the sum into two sums depending on whether h

(1)
i,k > h

(2)
i,k

or h
(1)
i,k < h

(2)
i,k , i.e.:

L′(a) =
∑

k∈{1,...,K},m∈{1,...,M} where h
(1)
i,k>h

(2)
i,k

ni · (h(1)
i,k − h

(2)
i,k )

a · (h(1)
i,k − h

(2)
i,k ) + h

(2)
i,k

− (20)

∑
k∈{1,...,K},m∈{1,...,M} where h

(1)
i,k<h

(2)
i,k

ni · (h(2)
i,k − h

(1)
i,k )

a · (h(1)
i,k − h

(2)
i,k ) + h

(2)
i,k

The arguments for the implications in (11) still hold and the algorithm in Section 4.3.1
might be used for estimating a.

The fraction a is defined by:

Of the n observed hits, a fraction a is from isotope 1
and a fraction (1− a) is from isotope 2.

This is not the fraction of interest. What we want to estimate is the the fraction a0 at the
initial time before the decay of the radioactivity, i.e.

a0 =
R(1)

R(1) + R(2)
=

1

1 + R(2)

R(1)

(21)

where R(1) and R(2) are the initial rate of hits from isotope 1 and 2, respectively. An
expression for a0 as a function of a is found using the following formula for the expected
number of hits from isotope 1 in time window k

λ
(1)
k =

∫ tk+lk

tk

R(1)2
− t

T
(1)
h dt = R(1) T(1)

h

ln2
2
− tk

T
(1)
h (1− 2

− lk

T
(1)
h ) (22)

and the similar formula for isotope 2. We derive

a =
∑K

k=1 λ
(1)
k∑K

k=1 λ
(1)
k +

∑K
k=1 λ

(2)
k

(23)

=
R(1)e(1)

R(1)e(1) + R(2)e(2)
=

e(1)

e(1) + R(2)

R(1) e
(2)

=
e(1)

e(1) + ( 1
a0
− 1)e(2)

,
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where e(1) = T
(1)
h

∑K
k=1 2−tk/T

(1)
h (1−2−lk/T

(1)
h ) and e(2) = T

(2)
h

∑K
k=1 2−tk/T

(2)
h (1−2−lk/T

(2)
h )

are known constants. An estimate of a0 is then found from a using the formula

a0 =
e(2) · a

e(1) − (e(1) − e(2)) · a
. (24)

Remark Assuming that there is no time gap between the time windows, and that
t1 = 0, a simpler expression for a as a function of a0 might be derived as follows:

a =

∫ T
0 R(1)2

− t

T
(1)
h dt∫ T

0 R(1)2
− t

T
(1)
h dt +

∫ T
0 R(2)2

− t

T
(2)
h dt

(25)

=
R(1)T

(1)
h (1− 2

− T

T
(1)
h )

R(1)T
(1)
h (1− 2

− T

T
(1)
h ) + R(2)T

(2)
h (1− 2

− T

T
(2)
h )

=
T

(1)
h (1− 2

− T

T
(1)
h )

T
(1)
h (1− 2

− T

T
(1)
h ) + R(2)

R(1)−T
(2)
h (1− 2

− T

T
(2)
h )

=
T

(1)
h (1− 2

− T

T
(1)
h )

T
(1)
h (1− 2

− T

T
(1)
h ) + ( 1

a0
− 1)T (2)

h (1− 2
− T

T
(2)
h )

,

where T is the sum of the lengths of the time windows. We observe that formula (25) is
equivalent to formula (23) when there is no time gap between time windows, and t1 = 0.

4.3.3 The method applied on array (spot) images
For array images, we might assume that the fraction aS of isotope 1 is constant inside
a spot when hits from the background are ignored. Similarly, we might assume that the
fraction aB of isotope 1 is constant inside a local background when hits from the spot are
ignored. The fraction of interest is aS .

Assuming a spot and a local background area have been identified in the image, esti-
mates of aS (and aB) might be computed from estimates of

· aFG, the fraction of hits from isotope 1 in the spot area (foreground, FG),

· aBG, the fraction of hits from isotope 1 in a local background area (BG),

· bFG, the fraction of hits from the spot in the spot area (foreground, FG) and

· bBG, the fraction of hits from the spot in a local background area (BG)

by solving the following equations with two unknowns, aS and aB,

aFG = bFG · aS + (1− bFG) · aB

aBG = bBG · aS + (1− bBG) · aB.
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Figure 14. Spectra for the isotopes used in the paper by Kvinnsland and Skretting. The figure has been
copied from the paper: Y. Kvinnsland and A. Skretting. Methods for separation of contributions from two
radionuclides in autoradiography with a silicon strip detector. Phys. Med. Biol., 2000, 45, 1183–1193

An estimate of aFG might be obtained by aggregating all hits inside the spot area, and
using the above pixelwise estimation on the full spot area. Similarly, an estimate of aBG

might be obtained from all hits inside the local background area.
The spot and local background areas might be identified using the results of applying

the method for estimating spot size described in Section 3. When the parameters in the
model in Equation 1 have been estimated we could for example define a pixel to belong to
the spot area if 2B ≤ f(i, j; Θ), and to the local background area otherwise. The fraction
of hits from the spot inside the spot and local background area, bFG and bBG, respectively,
may then be computed as

bFG =

∑
(i,j)∈FG Sf(i, j; Θ)∑

(i,j)∈FG(B + Sf(i, j; Θ))

bBG =

∑
(i,j)∈BG Sf(i, j; Θ)∑

(i,j)∈BG(B + Sf(i, j; Θ))

4.4 Results
The above described methods have to be tested on real images, unfortunately not avail-
able at the moment. However, the method has been tested on simulated data.

Data were generated for each of the 36 simulated experiments described in Tables 1
and 2. We have chosen the same experimental setup as the one described in the paper
by Kvinnsland and Skretting to be able to compare their and our results. The spectra
assumed for the isotopes are similar, but not equivalent, to those assumed in the paper
by Kvinnsland and Skretting 2.

In all experiments there are either one or two time windows. In the tables, t1 and
t2 are the start times for time window one and two, respectively. λ(1) and λ(2) are the
expected number of hits from isotope 1 and 2 in a pixel for the first time window, and a0

2. See Figure 14 for the spectra used in the paper by Kvinnsland and Skretting.
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is the corresponding fraction of hits from isotope 1 at the initial time. The image in each
experiment consists of 10000 pixels. Data for an experiment were obtained as follows:
First, a, the fraction of hits from isotope 1, and the expected number of hits in a pixel is
computed using information about λ(1), λ(2), t1, t2, the lengths of the time windows and
the spectra and the halflives of the two isotopes. The total number of hits registered in
the experiment is then set equal to 10000 times the expected number of hits in a pixel.
For each hit the following information is drawn randomly: i) its pixel number; ii) which
isotope it comes from; and iii) its energy bin and time window.

For each pixel, n(1) and n(2) are the number of hits from isotope 1 and 2, respectively,
in the first time window. a0, the fraction of hits from isotope 1 at the initial time, is com-
puted from n(1) and n(2) using the formula in (24) with K = 1. In Tables 1 and 2, means
and standard deviations computed from the simulated data are reported for each of n(1),
n(2) and a0.

Ignoring information about which isotope the different hits come from, estimates of
a0 are found from the simulated data using the method described in Section 4.3. n̂(1)

and n̂(2) are then computed from â0. In Tables 1 and 2, means and standard deviations
computed from these estimates are reported for each of n(1), n(2) and a0.

The results in Tables 1 and 2 are very similar to those obtained for the maximum
likelihood method in the paper by Kvinnsland and Skretting. As was concluded in their
paper, we conclude that: i) The mean values of the estimates are very close to the true
values, except when the fraction a is close to 0 or 1 ; and ii) The spectra of the (131I,99mTc)-
pair are better separated than the spectra of the (35S,33P)-pair, and then, as expected, the
standard deviations for the (131I,99mTc)-pair are lower than those for the (35S,33P)-pair. We
observed that the new method is less computationally demanding than the maximum
likelihood method proposed in the paper by Kvinnsland and Skretting, as can also be
concluded by simply comparing the descriptions of the two algorithms.

4.5 Discussion
It is obvious that the separation of contributions from two different isotopes is easier the
more separated the two underlying energy spectra are. For this reason, it is tempting to
combine low energy with high energy isotopes such as 32P. However, it is considered
an additional problem that high energy isotopes travel along the media and hits are de-
tected in other positions than where they were emitted. The extent of and implications
of this mechanism must be studied further. It is hence an aim to use isotopes with low
and medium energy, and still be able to separate well their contributions. The results ob-
tained for simulated data indicate that this should be possible also for real data, but final
conclusions cannot be drawn before the proposed method has been tested in practice on
such data.
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5 Conclusion

Biomolex has technology for real-time imaging of radioactive emissions. Images are ac-
quired for measuring radioactivity in tissue slices for assessing transport and uptake of
labeled biomolecules or in spots in protein kinase arrays for evaluating protein phospho-
rylations. The sensor used is a silicon strip detector, and there is a problem that some
strips are defect, i.e. they do not register any signal. For some of the missing stripes the
signals in the neighbor stripes will be too high. Also, the signal strengths of the stripes
may vary.

A method for restoring the images and imputing the missing data in tissue images has
been developed and it has been implemented in the Biomolex software. The proposed
method gives satisfactory results for the test set. It is a promising method for restoring
tissue images that are quite smooth and that do not contain more than two consecutive
stripes that are missing or overactive or that have too low signal strength. Improved
results might have been obtained by including a calibration experiment.

An important issue when analyzing array images is to estimate the total number of
hits in each spot. A method for estimating such spot sizes has been developed and will
soon be implemented in the Biomolex software. The image after missing data have been
imputed, is one of the outputs when applying this method. The algorithm for estimating
spot sizes seems robust. However, both this method for array images and the method for
restoring tissue images should be tested more extensively on images of varying quality
before being used in commercial systems.

The Biomolex technology opens up for the possibility of using multiple isotopes dur-
ing a single image acquisition. A challenge is then to decompose the measured signal
into signals for the different isotopes, i.e. decide which fractions of the signal/hits that
come from which isotope. A method for decomposing signals has been proposed and
has been tested on simulated data. The results are promising. Unfortunately, no real data
were available. The method is based on using information about the energy spectrum
and decay times for each radioactive isotope.
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