H.264/AVC SVC

An overview of the Scalable Video Coding extension

Till Halbach, Norwegian Computing Center

2008-03-17

Outline

Introduction

Scalability

SVC basics and background

H.264

Scalability types in H.264

Summary

Outlook

Q&A

Introduction

Area

Compression and decompression of video

Previous standards

H.120, H.261, H.262, H.263(+,++), H.264, and

MPEG-1 Video, MPEG-2 Video, MPEG-4 Visual, MPEG-4 AVC

Standardization institutions ITU-T VCEG, ISO/IEC MPEG, JVT

Timeline

H.264 🛛 May 2003, <u>SVC</u> 🗋 July 2007

Scalability

Definition

Various types and degrees of a particular system property

Removal of bit stream portions

Scope

Temporal, spatial, quality, any combination

Motivation

Graceful degradation in lossy transmission environments

Bit rate, format, and CPU/power adaptation

Inhomogenous networks and receivers

Target applications Satellite, cable, and terrestrial broadcasting

Conversational services

Gradual quality degradation storage

SVC basics

Starting point

Loss in coding efficiency, increase in encoder and decoder complexity

Competitors Simulcast, transcoding

Concepts

Substreams as valid bit streams, layers

Maximization of substream's RD

Objectives

Single-layer coding efficiency for each substream

Single-layer decoding complexity

Easy bit stream manipulation after encoding

Backward compatibility

Background

Standardization

Progress in motion-compensated 3D transforms

CfP by MPEG in Oct. 2003

14 Submissions (thereof 12 based on <u>3D</u> wavelet transforms)

Project start in Oct. 2004

Consented in July 2007

H.264

Core coding tools Block-based hybrid video codec

Spatial (directional) prediction

ME/MC with unidirectional and weighted bidirectional temporal prediction, variable block sizes, and multiple reference frames, as well as so-called Direct/Skip mode

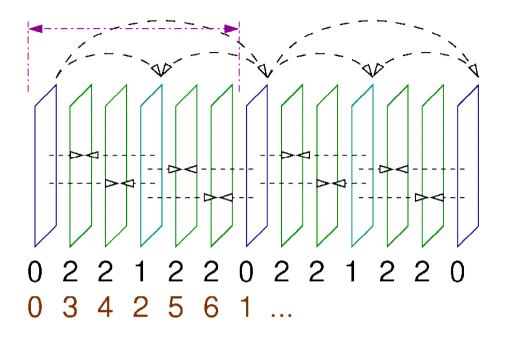
DCT-like integer transform of variable block size

Scalar dead-zone quantization

Entropy encoding

In-loop anti-blocking filter

Framework

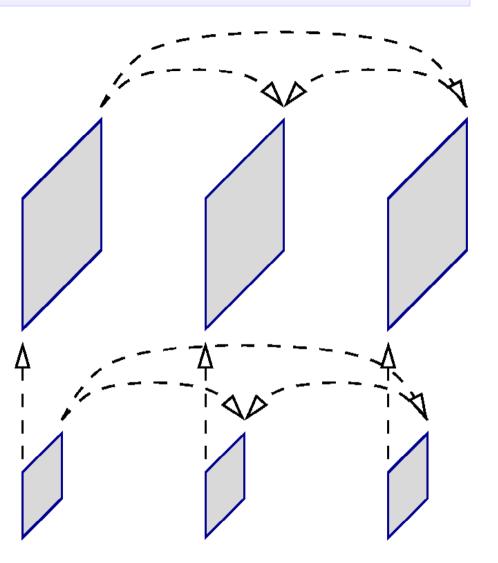

VCL

NAL, data units

Temporal scalability

Implied by core H.264

High-efficiency example

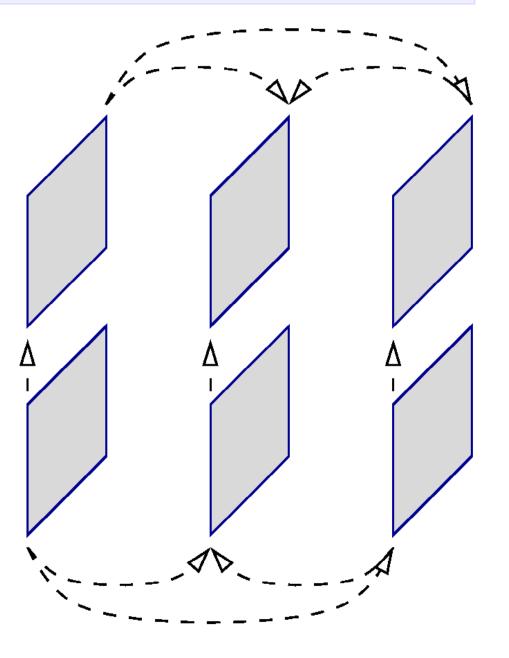

Spatial scalability

Intra- and inter-layer prediction, copy or prediction of meta data (such as macroblock and subblock mode), and residual prediction

Arbitrary resolution ratios, progressive and interlaced material

Single-loop decoding

ROI coding, additional regions

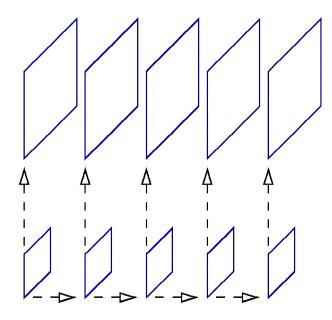


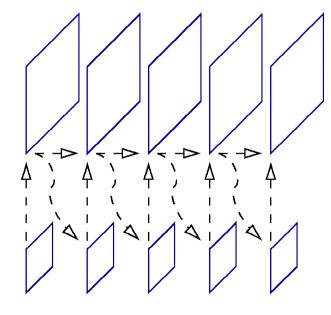
Quality scalability

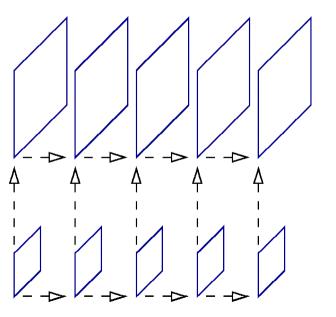
Special case of spatial scalability with identical picture sizes

<u>CGS</u> and <u>MGS</u> depending on layer switching options (the latter implying drift)

Key picture concept to trade off drift and enhancement layer coding efficiency


Combined scalability


Any desired combination


Trade-offs between provided degree of scalability and performance

Profiles: Scalable Baseline (conversational), Scalable High (broadcast, streaming, storage), and Scalable High Intra (professional applications)

Drift control

Summary

What's new?

Hierachical temporal prediction structures

Various new prediction methods

Key pictures concept, drift control

Single motion compensation loop in decoder

Substream concept

Performance

Temporal scalability without performance loss

Scalability penalty of as low as 10% bit rate increase possible

Scalable codec guaranteed better than simulcast

Outlook

Research involving <u>SVC</u> (see also references)

New profiles and levels

New extensions

H.265 from 2010 on (?)

Thank you for your attention

Questions?

References

H.264

Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 and ISO/IEC 14496-10 (MPEG-4 AVC), ITU-T and ISO/IEC JTC 1, May 2003 (Version 1)

H.264 SVC

Overview of the Scalable Video Coding Extension of the H.264/<u>AVC</u>) Standard, Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, <u>IEEE</u> Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 9, Sep. 2007, pp. 1103-1120

H.264 SVC spatial scalabity

Spatial Scalability Within the H.264/AVC Scalable Video Coding Extension, C. Andrew Segall and Gary J. Sullivan, <u>IEEE</u> Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 9, Sep. 2007, pp. 1121-1135

H.264 SVC performance

Performance Analysis of <u>SVC</u>, Mathias Wien, Heiko Schwarz, and Tobias Oelbaum, <u>IEEE</u> Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 9, Sep. 2007, pp. 1194-1203