
Advances in Geosciences Konstantinos Perakis, Editor 
 EARSeL, 2012 

Semi-automatic detection of burial mounds in forested 
areas 

Øivind Due Trier1, Maciel Zortea1 and Siri Øyen Larsen1 
1Norwegian Computing Center, Section for Earth Observation, P.O. Box 114 Blindern, NO-0314 

Oslo, Norway; oivind.due.trier@nr.no, maciel.zortea@nr.no, siri.oyen.larsen@nr.no 

Abstract. This paper describes a new method for the automatic detection of heap structures in 
airborne laser scanning data, and reports on a work in progress. The heaps could be ancient grave 
mounds, dating to 1500-2000 years ago. Such grave mounds are automatically protected in 
Norway. Several Norwegian municipalities are experiencing growing pressure on forested land for 
development, being it new residential areas, industry, tourism, or new highways. The traditional 
mapping of cultural heritage, mainly based on chance discovery and inaccurate positioning, has 
proven inadequate for land use planning. Therefore, the Norwegian Directorate for Cultural 
Heritage, in cooperation with some counties and municipalities, are investing in the development 
of new methods, using new technology, for a more systematic mapping of cultural heritage. 

Grave mounds are one of the most frequent types of archaeological structure in Norway. We have 
earlier developed a method for the automatic detection of circular soil marks and crop marks in 
cereal fields in satellite and aerial images. Several of these detections have been confirmed to be 
leveled grave mounds. 

Methods based on optical images are of limited value in forested areas, since the archaeology 
tends to be obscured by the tree canopies. However, by using lidar data, the forest vegetation can 
be removed from the data, making it possible to detect archaeology in a semi-automatic fashion, 
provided the archaeology manifests itself as structures in the digital elevation model of the lidar 
ground returns, and that these structures may be described using some kind of pattern. In the 
majority of Norway’s 19 counties, there are intact grave mounds in forested areas. This means that 
a semi-automatic method for the detection of grave mounds in lidar data would be an important 
tool in a more systematic mapping of archaeology in Norway. 

The automatic method has been applied on lidar data from Larvik municipality in Vestfold County, 
Norway. Preliminary results are promising, and indicate that this may be a very useful tool for 
archaeologist in Norway for a more systematic mapping of cultural heritage.  

Keywords. Grave mounds, airborne laser scanning, lidar, pattern recognition, confidence 
estimation. 

1. Introduction 

Several Norwegian municipalities are experiencing growing pressure on forested land for 
development, being it new residential areas, industry, tourism, or new highways. The traditional 
mapping of cultural heritage, mainly based on chance discovery and inaccurate positioning, has 
proven inadequate for land use planning. Therefore, the Norwegian Directorate for Cultural 
Heritage, in cooperation with some counties and municipalities, are investing in the development of 
new methods, using new technology, for a more systematic mapping of cultural heritage. 

One of the most frequent types of archaeological structure in Norway is grave mounds (Figure 
1). We have earlier developed a method for the automatic detection of circular soil marks and crop 
marks in cereal fields in satellite and aerial images [6]. Several of these detections have been 
confirmed to be levelled grave mounds, dating to 1500-2500 years ago.  
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Figure 1. Examples of grave mounds, Larvik municipality, Vestfold County, Norway. Top: a grave mound in 

Bøkeskogen, with a thin layer of snow. Bottom: a grave mound in Brunlafeltet, with a looting pit in the middle. 

Methods based on optical images are of limited value in forested areas, since the archaeology 
tends to be obscured by the tree canopies. By using airborne laser scanning data, also called 
airborne lidar data, and by only keeping the ground returns and not the returns from trees and 
buildings, the forest vegetation can be removed from the data, and a very detailed digital elevation 
model (DEM) of the ground surface can be constructed [1]. This makes it possible to detect 
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archaeology in a semi-automatic fashion, provided the archaeology manifests itself as features in 
the digital elevation model of the lidar ground returns, and that these features may be described 
using some appropriate kind of pattern. In the majority of Norway’s 19 counties, there are intact 
grave mounds in forested areas. This means that a semi- automatic method for the detection of 
grave mounds in lidar data would be an important tool in a more systematic mapping of 
archaeology in Norway. 

We have recently developed a method for the semi-automatic detection of hunting systems and 
iron extraction sites from airborne lidar data [7]. These archaeological features manifest themselves 
as pits in a digital elevation model (DEM) derived from the lidar ground returns. The method 
detects pits automatically in this DEM, followed by manual inspection by an archaeologist. This 
method is now in use as part of the standard procedure for archaeological mapping in Oppland 
County, Norway. This method can be modified to detect heaps instead of pits. 

 

 
Figure 2. A 210 m × 225 m part of the Kaupang, Larvik training data set for heap detection. True (green) and false (red) 

grave mounds have been labelled manually. 
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Figure 3. A 245 m × 200 m part of the Bøkeskogen, Larvik test data set for heap detection. True (green) and false (red) 

grave mounds have been labelled manually. 

2. Data and Methods 

2.1. Airborne lidar height measurements 

Larvik municipality in Vestfold County is known to contain a large number of grave mounds in 
forested areas. A lidar data set covering about 150 km2 of the southern part of Larvik municipality 
was acquired on 3-7 June 2010, with 22 emitted pulses per m2 on average. From this data set, 12 
small portions containing known grave mounds were extracted. Four of these are used as a training 
set: Kaupang (Figure 2), Store Sandnes, Tanum, and Ødelund. The remaining eight comprise a test 
set: Berg, Bommestad, Bøkeskogen (Figure 3), Hvatumskjeet, Kjerneberget, Lunde, Valby, and 
Valbysteinene. 

 

2.2. Automatic detection of heap structures 

Building on our previous work [6][7], we propose a processing chain for the automatic detection 
of heaps in lidar data: 
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Figure 4. Heap template, shaped as a half-dome circumscribed by a flat ring. Black pixels are +1, white pixels are –1, 
and grey pixels in between. The medium grey pixels outside the white ring edge are exactly zero, thus not contributing 

to the convolution value. This particular heap template has 3.4 m radius 

 
1. Obtain lidar data from a commercial provider, in the form of LAS files [3]. The point 

density should be at least 5 emitted pulses per m2, and the discrete returns must be 
labelled as ground, building, vegetation, etc. 

2. Convert the lidar ground returns to digital elevation models (height images) with 0.2 m 
resolution. 

3. Convolve the height images with dome-shaped heap templates (Figure 4) of varying sizes. 
Threshold each convolution result to obtain candidate heap detections. 

4. Merge detections that are overlapping, keeping the strongest detections. 
5. For each candidate heap detection, compute various measures of the deviation from an ideal 

dome. 
6. Using thresholds on some of the measures, remove the most obvious non-heaps. 
7. Assign confidence levels, either using a statistical classifier, a decision tree classifier, or a 

combination. 
8. The list of detected heaps is verified by an archaeologist, first by visual inspection of the 

lidar data, then by field work. 
 

2.2.1. Computation of attributes 
In step 5 above, the following 15 attributes are computed: 

1. Correlation value, obtained from the convolution step. 
2. Normalized correlation value, that is, the correlation value divided by the radius. 
3. Average heap height, measured as the height difference between the highest point inside the 

heap and the average height on the ring edge outside the heap. 
4. Minimum heap height, measured as the height difference between the highest point inside 

the pit and the highest point on the ring edge. 
5. Normalized average heap height, that is, average heap height divided by the radius. 
6. Normalized minimum heap height. 
7. Standard deviation of height values on the ring edge. 
8. Root mean square (RMS) deviation from a perfect hemisphere, i.e., a perfect U-shaped heap. 
9. RMS deviation from a perfect V-shaped heap. 
10. For each heap, a threshold is defined as the value that separates the pixels inside the heap 

into two groups, the 25% of the pixels that are brighter than the threshold, and the 75% 
that are darker. Use this threshold to extract a bright blob segment from a square image 
centred on the heap, with sides equal to six times the radius.  This is called the 25%-
segment. If this results in a compact, central segment inside the heap, connected to a 
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larger segment outside the pit, with only a few connecting pixels on a ring just outside 
the heap, then the central segment is separated from the outside segment. From the 
extracted segment, the following measures are computed: 
a. Offset: distance from heap centre to the segment’s centre. 
b. Major axis length; for a definition, see e.g., [4]. 
c. Elongation, defined as major axis divided by radius. 

11. Similarly to above, extract the 50%-segment and compute offset, major axis and elongation 
from that segment as well. 

2.2.2. Initial screening 
Thresholds are set on some of the attributes to remove detections that are very unlikely to be 

archaeology, while at the same time keeping all true archaeological features. By sorting a training 
set of labelled detections on one attribute at a time, one can manually identify attributes that can be 
thresholded so that all detections labelled as ‘true’ or ‘possible’ archaeology be kept, keeping 
several ‘unlikely’ and ‘false’ detections as well, but at the same time removing many ‘unlikely’ and 
‘false’ detections. These thresholds should not be set too tight, to allow for slightly more variation 
in the attribute values for the ‘true’ and ‘possible’ archaeological features than was observed in the 
training data. 

2.2.3. Statistical classification versus decision tree 
For step 7 in the detection method above, a manually designed decision tree could be used to 

assign confidence values 1-6, with 1 meaning ‘very low’ and 6 meaning ‘very high’ [7]. However, 
this requires that a number of fixed thresholds be set manually, based on training examples. An 
alternative is to use a statistical classifier, and use thresholds on the estimated probability that a 
heap is a grave mound. We have previously compared the two approaches for automatic pit 
detection in the context of semi-automatic detection of pitfall traps and charcoal burning pits [8]. 
The statistical approach was better than the manually constructed decision tree when the confidence 
was medium high or better. For medium or lower confidence, the manually constructed decision 
tree seemed to be better. Thus, it appears that a combined approach could be a good alternative. We 
will compare two approaches: (1) using statistical classifier, and (2) first using statistical classifier, 
then for confidence levels medium or lower, using a decision tree to reassign the confidence levels. 

2.2.4. Automatic heap detection method: common steps 
The first five steps in the heap detection method are common for both the manually designed 

decision tree and the statistical classifier approach. These five steps were applied on the Larvik data 
set. A number of parameters had to be selected in this process. A DEM grid size of 0.2 m was used 
to preserve the accuracy of the lidar height measurements, thus converting the ground hits to 25 
interpolated height values per m2. In the convolution step, heap templates corresponding to heap 
radii from 1.0 to 10.0 m were used, corresponding to the wide range of expected grave mound sizes. 
Each template has 0.2 m larger radius than the next smaller. As this is a first attempt, to avoid 
overlooking true grave mounds, the initial screening uses very relaxed thresholds on a subset of the 
attributes as follows: 

1. Normalized correlation > 1.0 
2. Average heap height > 0.2 m 
3. Minimum heap height > 0.0 m 
4. RMS u-shape < 0.2 
5. RMS v-shape < 0.2 
6. 25% segment elongation < 5 
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Figure 5. Performance of the six different classifiers on the Larvik training set, as a function of the number of attributes 

The result of the initial screening was a training set with 785 heap detections, of which 96 were 
labelled ‘true’ and the remaining ‘false’; and a test set of 905 heap detections, of which, 96 were 
labelled ‘true’ and the remaining labelled ‘false’. The labelling was done by a non-archaeologist. 

2.3. Automatic heap detection using statistical classifier 

When using a statistical classifier, a number of parameters need to be estimated from the 
training data. The actual number of parameters varies between the different statistical classifiers. 
With a limited training set size, there is a trade-off. If we use a model with many parameters, less 
accurate estimates of these parameters may result than when using a model with fewer parameters. 
The following six different classifiers were evaluated [2]: 

1. Decision tree (CART algorithm) 
2. Nearest neighbour 
3. Naïve Bayes (assuming independent attributes) 
4. Mahalanobis distance 
5. Linear discriminant analysis 
6. Quadratic discriminant analysis 
 
For each classifier, the best subset of the 15 attributes computed in Section 2.2.1 is determined 

using the sequential forward attribute selection algorithm [5]. The subset of attributes that 
maximizes the 10-fold cross-validation of average accuracy in the training set is retained. The best 
classifier turned out to be the Mahalanobis distance classifier (Figure 5), with the following seven 
attributes, in order of importance:  
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1. RMS U-shape 
2. Correlation 
3. Elongation of 25% segment 
4. Offset of 25% segment 
5. Standard deviation on edge 
6. Major axis of 50% segment 
7. Offset of 25% segment 
 
We will now use the estimated posterior probability, that is, the probability that the detected 

heap is a grave mound, to assign a confidence level to each detection. With six confidence levels, 
we need to determine five thresholds. These can be found by defining and solving an optimization 
problem. As initial threshold values, we use the values corresponding to the 10th percentile, 25th, 
50th, 75th and 90th percentile. Then we can count the number of pits and non-pits in each 
confidence level, multiply with penalty weights (Table 1) and accumulate to obtain a score for the 
particular choice of thresholds. The counts for the grave mound and non-grave mound classes are 
normalized according to the respective number of samples. By adjusting the threshold values 
iteratively using a sequential loop strategy, they can be optimized to minimize the final score. By 
doing this on the training set, the thresholds in Table 2 are obtained, which assign ‘medium high’ or 
better confidence to most of the true grave mounds, and ‘medium’ confidence or lower to most non-
archaeological heaps (Table 3). 

 
Table 1. Penalty weights used for optimizing confidence level thresholds. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

pit 1024 256 64 16 4 1
non-pit 1 4 16 64 256 1024  

 
Table 2. Optimized thresholds for confidence assignment for heap detection. 

1 2 3 4 5
0.05072984 0.05121662 0.47666119 0.67167690 0.76737689  

 
Table 3. The result of using the Mahalanobis distance classifier for confidence estimation on the Larvik training set. 

score value 1 2 3 4 5 6

confidence
very 
low

low medium
medium 

high
high

very 
high

sum

grave mounds 16 47 21 12 96
not grave mounds 55 1 554 72 7 689

sum 55 1 570 119 28 12 785  
 

2.3.1. Using a decision tree to reassign low confidence values 
Since the statistical classifier does not assign meaningful confidence values when the 

confidence values are very low, low or medium, neither for pits, as observed in another study [8], 
nor for heaps (Table 3), a decision tree classifier may be used to reassign confidence levels medium 
or lower. For this purpose, a number of thresholds were used (Table 4).  
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Table 4 Thresholds for reassigning confidence levels 

optimised on training set
measurements low medium
RMS diff from U-shape ≤0.08 ≤0.06
radius ≥1.4 ≥1.8
correlation ≥1.2 ≥2.0
25% segment elongation ≤4 ≤1.6
standard deviation on ring edge ≤0.7 ≤0.4
25% segment offset ≤25 ≤15
normalized avgerage height ≤0.3 ≤0.25
normalized avgerage height ≥0.05 ≥0.06
normalized correlation ≤8 ≤8
normalized correlation ≥1 ≥1.5
average height ≥0.1 ≥0.2

confidence

 
 
If a heap detected by the Mahalanobis distance classifier has medium or lower confidence, then 

it is first set to very low. If all the threshold tests for low in Table 4 are met, then the detection gets 
low confidence. Next, if all the thresholds for medium in Table 4 are met, then the confidence 
changes again from low to medium. 

3. Results 

3.1. Automatic heap detection using statistical classifier 

By running the Mahalanobis distance classifier on the Larvik test set, a slightly higher number of 
true grave mounds obtained high or very high confidence (Table 5) compared with the training set 
(Table 3). At the same time, about twice as many false detections obtained medium high, high or 
very high confidence. None of the true detections and almost none of the false detections got ‘low’ 
or ‘very low’ confidence. So, in an operational setting, to successfully verify the 14 true grave 
mounds with ‘medium’ confidence, 647 false detections have to be checked as well. By 
accumulating the detection counts (Table 6), the trade-off between detecting as many grave mounds 
as possible while at the same time limiting the number of false detections is more evident. E.g., 82 
out of 96 grave mounds were detected with medium high confidence or better (Table 6), this is 85% 
of the true grave mounds that were successfully segmented in the template matching step. At the 
same time, 158 of the detections with medium high or better confidence were false.  

 
Table 5. Result of running the Mahalanobis distance classifier for confidence estimation on the Larvik test set 

score value 1 2 3 4 5 6

confidence very low low medium
medium 

high
high very high sum

grave mound 14 39 25 18 96
not grave mound 4 647 144 13 1 809

sum 4 0 661 183 38 19 905  
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Table 6. Accumulated heap detection counts for the Mahalanobis distance classifier on the Larvik test set. 

score value ≥1 ≥2 ≥3 ≥4 ≥5 ≥6

confidence
very low 
or better

low or 
better

medium 
or better

medium 
high or 
better

 high or 
better

very high sum

grave mound 96 96 96 82 43 18 96
not grave mound 809 805 805 158 14 1 809

sum 905 901 901 240 57 19 905
grave mounds detected 100 % 100 % 100 % 85 % 45 % 19 %
grave mounds missed 0 % 0 % 0 % 15 % 55 % 81 %  

 
Table 7. Result of running the combined classifier for confidence estimation on the Larvik test set. 

confidence very low low medium
medium 

high
high very high sum

grave mound 1 5 8 39 25 18 96
not grave mound 145 351 155 144 13 1 809

sum 146 356 163 183 38 19 905  
 

Table 8. Accumulated heap detection counts for the combined classifier on the Larvik test set. 

confidence
very low 
or better

low or 
better

medium 
or better

medium 
high or 
better

 high or 
better

very high sum

grave mound 96 95 90 82 43 18 96
not grave mound 809 664 313 158 14 1 809

sum 905 759 403 240 57 19 905
grave mounds detected 100 % 99 % 94 % 85 % 45 % 19 %
grave mounds missed 0 % 1 % 6 % 15 % 55 % 81 %  

 
In order to obtain more true detections, e.g., by considering all detections with medium or better 
confidence, 805 false detections are obtained as well. By using the decision tree to reassign 
confidence levels for detections with medium or lower confidence, the same numbers of true and 
false detections with medium high confidence as before are obtained (Table 7). However, it is now 
possible to detect eight additional grave mounds, with medium confidence, with the additional cost 
of obtaining 155 false detections, labelled with medium confidence. This means that 94% of the 
true grave mounds are detected with medium confidence or better, with 313 false detections in 
addition (Table 8). 

When running the automatic method on the Kaupang part of the training data, and overlaying 
with grave monuments from the official “Askeladden” Norwegian cultural heritage database, it 
becomes evident that a number of true grave mounds are not detected by the method (Figure 6). The 
percentages in Table 5-Table 8 are estimated without taking these missing detections into account. 

4. Discussion and conclusions 

The heap detection results on the Larvik test set indicate that the combined confidence 
assignment method is capable of assigning medium confidence or better to 94% of the grave 
mounds that it is applied on, while at the same time, 3-4 times as many false detections as true 
detections are assigned medium confidence or better. From previous experience [7], this is an 
acceptable trade-off. However, a substantial number of grave mounds have not been detected at all 
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(Figure 6). This could either be due to missed detections in the template matching step, or due to 
removal of true detections in the subsequent thresholding step, which aims at removing obvious 
non-heaps. We need to investigate the reason these were missed, in order to improve the method. 

Further, we need to quantify how the method performs in areas with few grave mounds. We 
suspect that the number of false detections remains relatively stable for geographical areas of 
similar size, which means that the number of false detections could be overwhelming. If this is 
indeed the case, we need to consider ways of improving the method.  

However, improving the method is of limited value if the problems are due to the quality of the 
lidar data. Previous experience with pit detection in lidar data clearly demonstrates the negative 
effect of reduced ground point density. Low ground point density may be due to wrong acquisition 
time, dense or low vegetation, too few emitted pulses per square meter, or a combination of these. 
Since there is a large proportion of deciduous trees in the forests in Larvik municipality, the 
archaeologists recommended that the acquisition of lidar data be done in late April 2010, which 
would have been an ideal time, with no snow on the ground and no leaves on the trees. For some 
reason, the lidar acquisition was postponed until the beginning of June 2010, with full-size leaves 
on the trees. We recommend that future lidar data sets be acquired in the early spring with no leaves 
on the deciduous trees, to allow more true grave mounds to be detected by the method. 

 
 

 
Figure 6. Detection results on a part of the Kaupang training data. The white polygons are previously mapped grave 
monuments, containing individually mapped grave mounds and grave field boundaries. Coloured circles are automatic 
heap detections, using the combined method for confidence assignment: blue=very high, cyan=high, green=medium 
high, yellow=medium, orange=low, red=very low.  The red square indicates a natural terrain feature which has been 
detected as a grave mound with medium high confidence (green ring). 
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Another potential problem related to the lidar ground point density is that some grave mounds 
are small, either measured as height difference relative to the surrounding landscape, or measured as 
radius from centre to edge. Clearly, if the grave mound does not manifest itself in the data, then it 
cannot be detected. There could also be a problem if the heap template does not resemble the true 
shape of grave mounds. One possible way of studying this is to estimate from the data the shape of 
an average grave mound, and how it varies; then to generate simulated grave mound templates. 

Finally, we could consider extracting more attributes from the detected heap candidates, in the 
hope that some of these may improve the ability to discriminate between grave mounds and non-
archaeological heaps. Additional attributes could include, e.g.: 

1. Average lidar ground point density within the area covered by the heap template 
2. Average lidar intensity 
3. Average height gradient 
4. Average gradient squared 
5. Average gradient entropy. 
 
The motivation for the various gradient measurements is that some heap detections are natural 

terrain features, which, by inspection of the lidar data, contain steeper slopes than found on grave 
mounds. Two of the suggested gradient measures are weighted averages, which place more 
emphasis on the high gradient values than a non-weighted average. The intensity might give some 
hints as to the hardness of the ground surface, as well as whether part of the emitted pulse did not 
reach the ground. The point density could indicate how well the shape of a possible heap is 
preserved. 

As a conclusion, the present study demonstrates that automatic heap detection could be a useful 
tool for the semi-automatic detection of grave mounds in Norway from airborne laser scanning data, 
provided the number of ground points per square meter is not too low. The method needs 
improvement to be used in an operational setting with non-optimal data.  
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