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Abstract. In this paper we present a solution for the extraction of vehicle counts from very high 
resolution satellite imagery intended for use in an operational setting, in order to accommodate 
road traffic authorities with traffic statistics. In the proposed system, we have developed separate, 
fully automatic methods for each of the necessary steps: road detection, cloud and cloud shadow 
detection, and finally, vehicle detection and classification. Input to the system is the satellite image 
and road vectors, containing geographical coordinates, including height information. The proposed 
system for extracting vehicle counts has been successfully demonstrated on a collection of 
WorldView-2 and Quickbird images from Norwegian rural area roads. The true detection rate is on 
average 85.4%, and false detection rate is 8.6%, i.e., the reported number of vehicles is on average 
94% of the correct number. A key parameter to the road authorities is the annual average daily 
traffic (AADT), which can be estimated based on short-term counts of traffic. The average error in 
AADT was estimated to 25% for low traffic roads (AADT<20,000 vehicles) using only two 
satellite images a year. The system will now be evaluated and implemented at the Norwegian Road 
Authorities as a complementary system for extracting traffic statistics. 
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1. Introduction 

The increasing availability of very high resolution remote sensing imagery has opened new 
opportunities for road traffic monitoring applications. While many traffic authorities struggle to 
create traffic statistics for as many roads as possible with traditional mobile ground based 
equipment for traffic counts, vehicle detection from satellite images has a potential to cover large 
geographical areas and can provide valuable additional information to the existing methods. This is 
especially the case for roads in rural areas and roads with sparse traffic, where ground based 
measurements are seldom prioritized due to high costs, limited personnel, or related difficulties.  

Our objective is to develop an operational solution for the extraction of vehicle counts from 
very high resolution satellite imagery. In the proposed system, we have developed separate, fully 
automatic methods for each of the necessary steps: road detection, cloud and cloud shadow 
detection, and finally, vehicle detection and classification. Input to the system is a satellite image 
and road vectors, containing geographical coordinates, including height information. 

Current commercially available satellite sensors have panchromatic resolution down to 0.5 m. 
Even at this very high resolution, substructures of vehicles (having an average size of about 2m×5 
m) can rarely be distinguished, and explicit models, as they are mostly used for vehicle extraction 
from aerial images, cannot be used [1]. Zheng et al. [2] and Jin and Davis [3] have presented 
morphological shared-weight neural networks for vehicle detection in satellite imagery of city 
scenes. Gerhardinger et al. [4] apply procedures based on the automatic classification of objects, 
using an iterative learning approach based on spectral signature and spatial context analysis, to 
derive city traffic counts from images of Baghdad, using a manually digitized road surface layer on 
sample zones of the city. They point out that good vehicle classification results are dependent on 
precise vector data describing the road surfaces, and that automatic procedures for extraction of 
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road surface should be developed if the work should have to be conducted on larger areas (like the 
entire city). Sharma et al. [5] present a pixel-based Bayesian background transformation approach, 
showing good performance in Ikonos images of central Ohio, but it strongly depends on the 
existence of a high quality estimate of a background image.  

Most of the studies found in the literature focus on highways or heavily trafficked city roads, 
and are demonstrated on roads within a rather limited geographical area [1]-[5]. Our approach has a 
different focus, in that vehicle detection takes place in entire satellite image scenes, containing rural 
(non-urban) areas, relatively narrow roads (two lanes only), sparse traffic, varying atmospheric 
conditions (including partial cloud cover, haze and shadow), as well as low sun angle. The analyzed 
images typically cover an area of 50-100 km2, and the road to be analyzed 30-40 km. Moreover, the 
road view is often partially blocked by vegetation (tree crowns) and shadows cast from trees located 
on either side of the road. We have also focused on developing methods that require no manual 
interaction at all, as the final system is intended for use in an operational setting, deriving traffic 
statistics for the national (Norwegian) road traffic authorities. 

2. Methods  

The proposed operational system consists of three detection modules: road detection, cloud and 
cloud shadow detection, and vehicle detection. The detection results are the number of vehichles 
and the cloud-free road length, which are used in a calculation module to estimate the number of 
vehicles on pre-defined road segments per hour. Each of the detection methods are described in the 
next sections. 

2.1. Automatic road segmentation 

The objective of the road detection module is to define a road mask that corresponds to the location 
of the road in the panchromatic image, so that vehicle detection can be restricted to those areas. 
Vector data are available from a GIS and need to be exploited both to identify the correct roads, as 
there may be several roads covered by an image, and to find the road positions in the images. If the 
images and vector data were very accurately co-registered, the road could be delimited simply by 
selecting an area corresponding to the width of the road around the vector data. Unfortunately, this 
is not the case (Figure 1, left). There are two reasons for this: (1) the current national digital 
elevation model of Norway is not detailed enough to allow for accurate automatic georeferencing of 
very high resolution satellite imagery, and (2) manual georeferencing should be avoided in a system 
which is intended to be otherwise fully automated. However, the vector data still provide useful 
information about the approximate position and trace of the road in the image.  

Our method starts by extracting an image area around the road vector, with a size relative to the 
expected magnitude of the geographical displacement. This area is found by sampling the image 
along lines perpendicular to the road vectors. The result is a long and narrow image along the road. 
In this way, the complexity of the road trace is heavily reduced. (In case of perfectly co-registered 
vector and image, the road would run as a straight line along the middle of the transformed image). 
In the transformed image, we know that the road must run through all the lines, hence, we analyze 
the image line by line, searching to trace the road. We perform this search using a snake-based 
approach, initialized by the road vector. A similar method has been used in the past [6], but without 
our transformed image space, which significantly simplifies the process. The snake is guided by 
external and internal forces, which are determined by the image data and vector data, respectively. 
More specifically, the external force is found from the transformed image, using the blue band of 
the multi-spectral image. The blue band was found to give the best contrast between road and 
surrounding landscape, based on visual inspection. The internal force is based on local smoothness 
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of the trace, where the assumption is that the position will not change dramatically over adjacent 
lines. We have also developed an adaptive weighting system of the two terms, such that the external 
force is zero in areas covered by clouds. We then use dynamic programming (more specifically, the 
Viterbi algorithm [7]) to find the set of points that optimize the sum of internal and external forces 
over the total set of lines. Since we are using the blue band up to this point, the resulting road mask 
must finally be resampled and adjusted in order to achieve a smooth representation in panchromatic 
resolution. We apply a region growing step, initiated by the resampled road mid line, followed by a 
series of morphological operations and distance thresholding, to obtain the final result (Figure 1, 
right). 

 

   
Figure 1: Left: road vector (red contour) directly overlaid on the (here: pansharpened) image. Right: resulting road mask 

(red layer) overlaid on panchromatic image. 

 

2.2. Cloud and cloud shadow detection 

When using cloud contaminated images, cloud and cloud shadow masks are required to assist the 
detection of road and vehicles, and to estimate the correct observed road length for the statistics. We 
apply a classification based approach, classifying the image into clouds, cloud shadows, green 
vegetation, water, haze, and bare ground. We model the data representing each class using a 
multivariate Gaussian distribution where the mean vector and covariance matrix is estimated from 
the training data, which is constructed by visual inspection and labeling of regions in a set of 
training images.  

An important challenge in this type of classification problem is that there may be a poor match 
between training data and test data, due to atmospheric, geographic, botanic and phenological 
variations of the image data. To solve this we build on earlier approaches [8], [9] that aim at 
exploiting the intrinsic relationships between the training and test data. Although the data 
distribution for a given class varies between the training images, and also varies between the 
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training images and the test images, the training data domain and the test data domain are generally 
neither identical nor uncorrelated. This makes it possible to adapt the training data distributions to 
the corresponding distributions in the test domain. 

Bruzzone and Prieto [8] propose a method for retraining the classifier when the test data differs 
slightly from the acquired training data. When applying this method to our data we obtain a very 
good statistical fit of the likelihood to the test image, but the mixture components have no longer a 
physical meaning in the sense that, e.g., the mixture component of a given land cover type no longer 
models that land cover type, but something else. Building on this method we have therefore 
developed an alternative approach which applies a low rank modeling of the parameters in order to 
reduce the number of degrees of freedom and the flexibility of the model [10]. In this way we force 
the class structure of the training data to be maintained in the test image. We also extend it by 
incorporating several training images, each with different class dependent data distributions. 

For classification of clouds and cloud shadows we use the multispectral image, which first has 
been downsampled by a factor of eight. We organize the classification process in two stages, where 
we in the first stage classify the clouds, and in the second stage classify the cloud shadows [10]. The 
detected cloud pixels are masked in the test images prior to the cloud shadow classification stage. 
For classification of clouds, we use bands 2 and 3 (red and green bands), as features in a Gaussian 
distribution. We assume that the class covariance matrix in the test image is the average of all the 
training image covariance matrices. The mean vector is assumed to be the average mean vector, 
plus a component of rank one. For cloud shadow detection we have also included an NDVI band 
and the ratio between bands 2 and 4 (the green and the infrared bands) as features. Here we model a 
given class mean vector in the test image as a weighted average of the corresponding training image 
mean vectors, constrained to have only non-negative weights.  

 

 
Figure 2: Result of cloud and cloud shadow classification. Clouds and cloud shadows are outlined in red and blue, 

respectively. 

To avoid false positive cloud shadow areas, we have added a postprocessing step, where we 
apply context information about the azimuth and elevation angles of the satellite and the sun. The 
shadow of each cloud is located in the opposite direction relative to the sun apparent azimuth. 
However, the projected position of the cloud in the image is different than its actual geographical 
position for off-nadir imaging. For each cloud, the corresponding shadow is searched for by finding 
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the shadow direction relative to the projected cloud position. This direction is independent of the 
cloud height and may be calculated explicitly [11].  

2.3. Vehicle detection 

The vehicle detection uses a two-stage object segmentation approach, followed by classification, 
and, finally, object linking (for vehicles consisting of more than one object). In the first 
segmentation step, a small image filter, which resembles the kind of objects we are interested in, is 
used to search through the image. Locations where the filter in some sense matches the underlying 
image are marked as candidate locations for possibly interesting objects. In a second step, object 
regions must be defined at the locations that were marked during the first filtering step. 

As seen from above, vehicles have rectangular shape, but at ~0.5 m resolution, the corners are 
blurred, and elliptical filters seem to be a good choice to search for vehicles in the image. We have 
extended the scale space circular blob detection approach proposed by Blostein and Ahuja [12] to 
the more general approach of detecting elliptical blobs. We find bright or dark elliptical blobs in the 
image by convolving it with Laplacian of Gaussian filters over a range of scales, and comparing the 
result to that expected for an ideal elliptical region of constant gray level. Details of this step are 
described in [13]. 

Once the blob locations have been marked in the image, we use region growing to define the 
shape of the object. Starting from the center pixel of the detected blob, we include neighboring 
pixels according to certain intensity thresholds that are defined automatically based on local values. 
From each object we then extract a number of features that can be used to separate vehicles from 
other type of objects, such as road marks, tree shadows, road surface patches, etc. The features used 
for classification include spectral, geometrical and contextual features, and the optimal feature set is 
found for bright and dark blobs separately. Classification is performed using k-nearest-neighbors 
(kNN), after shifting the feature space to the origin, and scaling the features to unit total variance. 

To allow for efficient construction and updating of a training data base, we keep only one non-
vehicle class, while the remaining objects are identified as belonging to one of the following six 
classes: 1) passenger car, 2) truck (or heavy vehicles), 3) bright spot on dark car (reflection of the 
sun, often seen as overexposed spot in the image), 4) motorcycle, 5) small vehicle shadow (shadow 

 

          
 

          
Figure 3: Class division scheme for classification of road objects. The upper row shows example objects in original 

image. The second row shows the corresponding segmentation result. Color codes: red - passenger car, green - truck, 
yellow - motorcycle, blue - bright spot on dark car, cyan - small vehicle shadow, magenta - large vehicle shadow, 

maroon - other (non-vehicle). 
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of passenger car), 6) large vehicle shadow (shadow of truck), see Figure 3. After classification, each 
vehicle may be represented by one or more road objects - typically, the vehicle and its shadow, but 
we also have several examples where either the vehicle or the shadow object is lost, either in the 
segmentation or the classification. Therefore the objects should be linked, in order to ensure that 
each vehicle is counted once, and only once. For each object classified as vehicle or vehicle shadow, 
we construct a rectangular box with the same center, width and length as the object, but oriented in 
the same direction as the road at this location. We then extend the box in the length direction, with 
the idea that overlapping boxes may be treated as one vehicle. Finally, the vehicle types (size 
classes) are registered. If a vehicle consists of objects with non-consistent vehicle types (e.g., 
passenger car+large vehicle shadow, or passenger car+truck), we choose the largest type. 

2.4. Estimation of number of vehicles per road segment  

The national road database in Norway contains a number of road segments, with one segment 
typically extending from one intersection to the next. For the purpose of vehicle counting, one may 
assume that no vehicles enter or leave the road in the middle of a road segment. The number of 
vehicles per hour for a given road segment can then be computed from the number of detected 
vehicles within the segment, the observed length of the segment within the satellite image, and the 
speed limit on the road segment, as follows: 

 
number of detected vehicles · vehicle speed (km/h) / length of observed road (km.) 
 
In the current situation, the Norwegian Public Roads Administration uses ground-based sensors 

to collect traffic statistics. The basis curve method [14] is used to estimate the annual average daily 
traffic (AADT), including precision estimate, for count sites where counts are available for only a 
limited part of the year. The method is based on a statistical regression model, the complexity of 
which is adapted to the amount of data available. Traffic statistics have historically been collected 
for a large number of roads in Norway, and given us an overview of statistical trends (Figure 4). 
Given these trends, and the date and time of image acquisition, it is possible to estimate the yearly 
average number of vehicles per day for the imaged road segment.  

 

 

 
 

Figure 4: The above graphs show normal variation in traffic volume for small-town/countryside roads and totally for all 
vehicle size classes on weekly over a year (top) and hourly over a week (bottom) scale. 
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Assuming that satellite data may be used for reliable traffic counts, there would still be a very 
restricted amount of data available for input to the basis curve method. Detecting vehicles from 
space requires very high resolution imagery, taken on a cloud free day, preferably during the snow 
free season of the year. The elevation of the sun in the sky also plays an important role for the 
quality of the images. With the commercial satellites of today, this means that we could expect from 
one to a few useful images per year. One image covering a five kilometer road section where the 
average speed is 60 kilometres per hour could hold the information equivalent to five minutes long 
in-road (i.e., a single point in the road) count. It is important for the road authorities to understand 
how reliable the estimate for the amount of traffic is, based on one single image acquisition, and 
based on multiple acquisitions. This was the purpose of a separate study [15] where we analyzed 
whether a few counts of only a few minutes each is sufficient for the basis curve method to make an 
acceptable estimate of AADT. For roads with relatively large AADT as seen in a national context 
(i.e., AADT >20,000 vehicles) the results were promising (absolute error less than 20% given two 
satellite images a year), with the precondition that the vehicle detection algorithm is fairly accurate. 
For roads with smaller AADT (<20,000 vehicles) the corresponding average error was around 25%. 
With AADT less than 1,000 vehicles, a larger error is expected, although, as traffic statistics hardly 
exist for such roads, there was no data evidence to verify this. 

3. Results 

The methods were validated on a total of five QuickBird and WorldView-2 scenes (Table 1). In 
each case, the entire road in the image was analyzed, except those parts where the road has more 
than one lane in each direction (according to manually constructed "ignore area" mask), and areas 
covered by clouds (as defined by the automatically constructed cloud mask). 

 
Table 1. Experimental data set. 

Location Lon. Lat. Route Date Time 
(UTC) 

Sun 
elev. 

Image area 
(km2) 

Obs. road 
len. (km) 

Østerdalen north 10.8 62.0 Rv3 Aug 10, 2004 10:39 43.1 59 31.6 

Østerdalen south 10.8 61.7 Rv3 Aug 10, 2004 10:39 43.4 94 43.1 

Østerdalen north 10.8 62.0 Rv3 Sep 6, 2009 10:29 33.9 59 28.8 

Mosjøen 13.1 66.1 E6 Jun 10, 2010 11:30 47.0 95 31.0 

Nordkjosbotn 18.9 69.2 E6 Jun 8, 2010 11:02 43.8 55 12.7 

 
The validation was performed manually as follows: for each scene we made a "ground truth 

database" of vehicles that should be found. Then, the algorithm was applied, and for each vehicle in 
the ground truth database, the operator registered 1) whether or not it was detected, 2) whether or 
not the vehicle type registration was correct, and 3) whether or not it was counted twice. The 
remaining detections were registered as false. Results are presented in Tables 2 and 3. The true 
detection rate is 85.4%, and false detection rate is 8.6%, i.e., the reported number of vehicles is on 
average 94% of the correct number. False detections include road ditches, road marks and asphalt 
patches (Figure 5). Missed detections include vehicles with low contrast to the road, vehicles 
overlapping tree shadows, and low contrast due to cloud shadows or haze (Figure 6). 
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Table 2. Detection rates per image. 

 Østerdalen 
north 2004 

Østerdalen 
south 2004 

Østerdalen 
north 2009 

Mosjøen 
2010 

Nordkjos-
botn 2010 

true vehicles (manual count) 43 129 39 71 32 

system detection rate (%) 109.3 99.2 92.3 81.7 75.0 

true detection rate (%) 97.7 91.5 84.6 71.8 75.0 

false detection rate (%) 11.6 7.8 7.7 9.9 0.0 

 
 

Table 3. Results based on vehicle class and type of error. 

 pass. car truck mc total 

true vehicles (manual count) 239 68 7 314 

system detected 229 60 6 295 

true detections 205 57 6 268 

false detection 24 3 0 27 

missing detection 34 11 1 46 

system detected, wrong type 4 20 6 30 

false detection, double count 2 2 0 4 

segmentation failed 11 5 0 16 

 
 

       
Figure 5: Example false detections, from left to right: road ditch, road mark, asphalt patch. 

 

       
Figure 6: Examples of missed detections, from left to right: weak contrast between truck and road, car overlaps tree 

shadow, bright car in cloud shadow and haze. 
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4. Discussion and conclusions 

An approach covering all the steps needed for a fully automatic satellite based system for extraction 
of traffic information has been developed. The methods have been tested on a variation of scenes, 
covering long stretches of rural roads, and show promising results.  

The detection rate varies considerably between the images, and the performance is closely 
related to the image conditions. Not surprisingly, the best detection rate is seen in the Østerdalen 
north 2004 image (true detection rate 97.7%), which is a totally cloud-, haze- and shadow-free 
image, with clear and orderly conditions. In the opposite end of the scale we have the Mosjøen 
image (true detection rate 71.8%), which contains a lot of clouds, haze and fog, making the image 
grainy, much of it also combined with low contrast shadow areas. 

The precision of the road mask is a crucial quantity for high vehicle detection performance. For 
reliable operation it is necessary that the accuracy of the road mask be about 0.5m. This is an 
extreme situation compared to other remote sensing applications. Future work will focus on 
integrating contextual information, such as traffic lanes, tunnels, bus stops, etc., which may improve 
the accuracy of the road mask. So far, the system is developed for roads with one lane in each 
direction only. Since the available road vector did not include information about the number of 
lanes, we constructed a mask indicating parts where the road in the image has more than one lane in 
each direction (this applies only to minor parts of the images). This manual step can easily be 
excluded when the number of road lanes is included in the road vector data. However, future work 
should also extend the algorithms such that we are able to handle an arbitrary number of lanes. 

The method would need generalization if it were to be used for other types of highway 
environments than those mentioned. We are currently planning a test phase where the presented 
methods will be validated on a large selection of images.  
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