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1 Introduction 

This note analyses the possibility to separate between two different strata based on the gene 
expressions and our ability to classify patients between the two strata. The two strata may be 
case and control, patients with and without spread of cancer or two groups of patients that 
differ in time to prognosis. This is a theoretical study where we focus on how small 
differences/weak signals that may be detected and which methods and test statistics are best 
suited for this problem. Therefore, we use synthetic data where we know the exact properties 
of the data. 

This problem is closely related to problems that consist of many parallel subproblems and 
where the problems consist of identifying the significant subproblems. This is the case when 
we test all genes in order to find the significant genes that may be used in differentiating 
between two strata. These problems are often characterized as “p>n” problems and the use of 
false discovery rate is central. Also in this paper we analyze p-values from a large number of 
subproblems, f.ex. for each gene. But the objective of our study is very different from a study 
with many subproblem since we focus on one problem, to differentiate between two strata, 
not to identify properties of each gene. Hence, we do not have the problem with many 
significant results due to the number of independent tests. We have only one test where we 
try to differentiate between the two strata. We analyze problems where the signal is so weak 
that we cannot expect to be able to identify significant genes. Since many genes have a weak 
signal, we may still be able to differentiate between the two strata.  

The typical situation when separating between two strata is to focus on the gene expression in 
one or a few genes that already are identified. Here we assume a different situation. We 
assume:  

1. There is a weak signal that separates the two strata in a large number of genes.  
2. There is no prior information on which genes that may give a signal.  
3. The signal is an additive term in some of the (log) genes expressions and there is no 

prior information on the distribution of this additive term.  
 
The word “signal” should be interpreted that the distribution of the gene expression in the two 
different strata are not the same. This difference may be utilized to describe the gene 
expression and possibly classify patients in the two strata.  

We are looking for methods using a large number of genes to separate between the strata. We 
calculate the t-statistics for all the genes and study methods based on the empirical 
distribution of the t-statistics. We focus on the t-statistics for the genes expressions where the 
t-statistics has the largest absolute values and compare several different methods based on 
the t-statistics. For each method we perform a hypothesis test with the same significance level. 
We compare the different methods by comparing the power of the hypothesis test for 
different assumptions for the gene expressions for the two strata. Similarly, when we classify 
patients in the two strata we set a fixed probability for a false true classification. Then we 
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compare the different methods by comparing the probability for a correct true classification 
for different assumptions on the signal. Some preliminary conclusions that are common for 
both one and several time periods: 

1.  The ability to differentiate between the strata depends obviously heavily on the 
strength of the signal relative to the natural variation of the gene expression and 
number of genes with a signal. Which method that is best to identify a signal depends 
on strength and type of signal.  

2. It is possible to separate between strata and classify persons between strata also when 
no single gene is significant.  

3. If the distribution of the signal has a normal distribution or has heavier tails, it seems 
optimal to have few elements in the sum. This is close to the situation where we 
should only focus on the one-three most extreme t-values. If the strength of the signal 
is the same in a large number of genes, it seems optimal to use many elements in the 
sum also larger than the number of genes with signal. Other distributions will vary 
between these two extremes. 
 

When there is only one time period:  

1. Number of genes in the analysis does not seem to be critical. To increase from 9.000 
genes to 30.000 did only give a slight reduction on the strength of the tests.    

2. The optimal method for differentiating between the two strata seems to be based on a 
weighted sum of the largest absolute values of the t-statistics. However, the weights 
and the optimal number of elements in the sum depend on the distribution of the 
signal.  

Some preliminary conclusion when we study several time periods.  

1. Which method that is best depends on the strength of the signal in the different time 
periods and the number of data in the different time periods.   

2. Methods based on p-values from t-test in each time period seems better than 
methods based on curve groups. 

So far we have focused on the t-statistics for each gene and the weighted sum of the t-
statistics for several genes. T-statistics is the most common test statistics for these data and 
weighted sums is the most natural choice. If this is successful, it is possible to test out more 
complex models like the nearest neighbor in a high dimensional space with t-statics for each 
axis as is tested in a separate note (Holden and Holden, june 2014). 

In all our models we assume the data is independent between the genes. We know there is a 
strong dependency between some of the genes.  We have not included this in the models 
since it is difficult to find a good model that represents this complex dependency between the 
genes. We do not believe our results depend heavily on this assumption. But this is difficult to 
test without making assumptions on a particular joint statistical distribution. Our tests indicate 
that the result does not depend critically on the number of genes. Since many problems with a 
large number of correlated variables may be represented by a smaller number of independent 
variable, this may indicate that our assumption is correct. The distribution of extreme p-values 
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depends on the dependency between genes. However, our hypothesis tests and classification 
between the strata are based on randomization that maintains the joint distribution and hence 
should not be sensitive to this dependency. This implies that the result of our hypothesis test 
and classification are correct also with correlation. But when we compare the number of genes 
with a fixed strength of the signal, we may need more genes with this strength if the genes are 
correlated compared to when they are independent in order to get the same power in the 
hypothesis tests and classifications.  

2 Model for two strata and one time-period 

We have the (log) gene expressions 𝑋𝑋𝑖𝑖,𝑗𝑗, where i is gene and j is patient. Each patient belong 
either to strata A or B and this is known in the control data set. We want to find out whether 
there is a difference in the gene expression between strata A and B and to classify persons into 
strata A or B for persons in a test set. A and B may be two strata or two time periods for same 
stratum.  

For patient j in A we have 𝑋𝑋𝑖𝑖,𝑗𝑗 =  𝑌𝑌𝑖𝑖,𝑗𝑗 + 𝑎𝑎𝑖𝑖, and for  patient j in B we have 𝑋𝑋𝑖𝑖,𝑗𝑗 =  𝑌𝑌𝑖𝑖,𝑗𝑗, where 𝑌𝑌𝑖𝑖,𝑗𝑗 
is 𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2) and independent between different patients. We know very little about the 
variables 𝑎𝑎𝑖𝑖,  denoted signal, except that we expect most of them to be zero. We want to find a 
good estimator for the classification A or B for different assumptions on 𝑎𝑎𝑖𝑖. 

We have two alternative models for the 𝑎𝑎𝑖𝑖 values when 𝑎𝑎𝑖𝑖  is not identically equal to 0.  

A. 𝑎𝑎𝑖𝑖 =  ±ℎ𝑖𝑖 with equal probability for a positive or negative value (h_i>0) 
B. 𝑎𝑎𝑖𝑖  as  𝑁𝑁(0,𝑢𝑢𝑖𝑖2) Hence most of the 𝑎𝑎𝑖𝑖  values are close to 0.  

In order to compare these models we choose  𝑢𝑢𝑖𝑖 =  ℎ𝑖𝑖�𝜋𝜋 2�  such that𝐸𝐸{|𝑎𝑎𝑖𝑖|} =  ℎ𝑖𝑖 in both 

cases. In this model only about 42% of the 𝑎𝑎𝑖𝑖values where |𝑎𝑎𝑖𝑖| > 0 satisfies|𝑎𝑎𝑖𝑖| > ℎ𝑖𝑖.   

2.1 Discussion of model and extensions 
In this model there is no correlation between the gene expressions for the same patient except 
for some model of the 𝑎𝑎𝑖𝑖  variable and no time development relative to time of diagnosis in the 
different strata. The preprocessing will remove a constant added to all gene expressions for a 
patient. There are many possible extensions of the model. One possibility is to divide genes 
into groups and assume correlation between genes expressions from same group and patient. 
If some of these groups are closely related to the group of genes with non-zero 𝑎𝑎𝑖𝑖 this may 
make the test in this note much weaker. Otherwise, this correlation will not influence on the 
test described in this note.    

2.2 Hypothesis test separating the two strata 
For most genes it is natural to assume 𝑎𝑎𝑖𝑖 = 0. If |𝑎𝑎𝑖𝑖| is large for one or a few genes, we should 
focus on these genes. Here we assume |𝑎𝑎𝑖𝑖|  is different from 0 but quite small for a large 
number of genes. This makes it more natural to use a test statistics as follows:  

𝑐𝑐𝑖𝑖 = average_{j in B} (𝑋𝑋𝑖𝑖,𝑗𝑗X_i,j)  is an estimate for 𝜇𝜇𝑖𝑖  
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𝑠𝑠𝑖𝑖  is an estimate for 𝜎𝜎𝑖𝑖 

𝑇𝑇𝑖𝑖 =  1
𝑑𝑑𝑖𝑖

( 1
𝑛𝑛𝐴𝐴
∑ 𝑋𝑋𝑖𝑖,𝑗𝑗 − 𝑗𝑗∈𝐴𝐴  1

𝑛𝑛𝐵𝐵
∑ 𝑋𝑋𝑖𝑖,𝑗𝑗 𝑗𝑗∈𝐵𝐵 )  

is the t-estimator for 𝑎𝑎𝑖𝑖 𝜎𝜎𝑖𝑖� . Here 𝑑𝑑𝑖𝑖  is the estimate for the standard deviation of the numerator 
in the above expression and 𝑛𝑛𝐴𝐴  and  𝑛𝑛𝐵𝐵 are the number of patients in A and B respectively. 
Under the hypothesis  𝑎𝑎𝑖𝑖 = 0 and we may simplify the expression in the denominator.   

However, we have chosen this expression in order to get an estimate for 𝑎𝑎𝑖𝑖 𝜎𝜎𝑖𝑖� . This is probably  
not critical for the result. The nominator and the denominator in 𝑇𝑇𝑖𝑖 are independent. Hence, 
these may be simulated independently in a simulation.  We may simulate the nominator as a 
normal variable without simulating all the gene expressions in the two strata.  The critical 
variation is in the nominator and we may use fewer samples for simulating the denominator.  
For the other variables, we define 

𝑏𝑏𝑖𝑖 =  𝑇𝑇𝑖𝑖
|𝑇𝑇𝑖𝑖|

 i.e. an estimate for the sign of 𝑎𝑎𝑖𝑖  

𝐺𝐺𝑘𝑘 is the set of genes with the k largest absolute values of 𝑇𝑇𝑖𝑖 

We have two different test statistics comparing strata A and B: 

𝑍𝑍𝑘𝑘 is the k’th largest value of 𝑇𝑇𝑖𝑖 and 

𝐻𝐻𝑘𝑘 =  �𝑍𝑍𝑘𝑘
𝑘𝑘

𝑖𝑖=1

 

The hypothesis is that strata A and B have the same properties. There are several possible test 
statistics 𝑍𝑍𝑘𝑘 > 𝑧𝑧𝑘𝑘 or 𝐻𝐻𝑘𝑘 > ℎ𝑘𝑘 for k=1,2,3….. We reject the hypothesis if the selected test 
statistics is above the threshold. Here we need to choose either Z or H and value of k in order 
to make as strong test as possible.   

Figure 1-3 show the results from the tests.  Figure 1 and 2 shows that we get highest power for 
small values of k when 𝑎𝑎𝑖𝑖  is normally distributed while we for |𝑎𝑎𝑖𝑖| constant, we get highest 
power for larger values of k. If the distribution of the signal has heavier tails than the normal 
distribution, we should focus even more on the most extreme t-values, i.e. neglecting that 
there is a signal in many genes. Constant distribution of the signal in the selected genes is the 
most equal distribution of the signal. Here it seems optimal to use many t-values, even more t-
values than there are genes with a signal. Notice that in figure 1A where 𝑎𝑎𝑖𝑖 is normally 
distributed the critical change is for expected value changing from 0.4 to 0.6 increasing the 
power to about 0.9 while in Figure 1B where |𝑎𝑎𝑖𝑖|  is constant, the critical change is when the 
expected value changes from 0.6 to 0.8 increasing the power to about 0.7. Increasing the 
number of patients in each stratum with 4 corresponds to doubling of the expected value of 
𝑎𝑎𝑖𝑖. Figure 4 shows why we get highest power for small values of the tests for normally 
distributed 𝑎𝑎𝑖𝑖values. 
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Figure 1A. Figure shows the power in the test separating different strata. In all cases there are 
9.000 genes and 30 patients in each stratum and it is based on 10.000 simulations. In both 
figures there are 20 non-zero 𝑎𝑎𝑖𝑖  values that are normally distributed with expectation equal 0 
and expectation of the absolute value equal 0.2, 0.4, 0.6, 0.8 and 1 in the five lines. In the left 
figure we use the estimator 𝑍𝑍𝑘𝑘 and in the right figure we use the estimator 𝐻𝐻𝑘𝑘, which clearly 
gives higher power.  

 
Figure 1B. Figure shows the power in the test separating different strata. In all cases there are 
9.000 genes and 30 patients in each stratum and it is based on 10.000 simulations. In both 
figures there are 20 non-zero 𝑎𝑎𝑖𝑖  values that are constant equal 0.2, 0.4, 0.6, 0.8 and 1 in the 
five lines. In the left figure we use the estimator 𝑍𝑍𝑘𝑘 and in the right figure we use the estimator 
𝐻𝐻𝑘𝑘, which clearly gives higher power.  
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Figure 2A Figure shows the power in the test separating different strata. In all cases there are 
9.000 genes and 30 patients in each stratum and it is based on 10.000 simulations. In both 
figures there are lines for 40, 80, 120, 160, and 200 respectively non-zero 𝑎𝑎𝑖𝑖  values that are 
normally distributed expectation equal 0 and expectation of the absolute value equal 0.4. In the 
left figure we use the estimator 𝑍𝑍𝑘𝑘 and in the right figure we use the estimator 𝐻𝐻𝑘𝑘, which 
clearly gives higher power.  

 

Figure 2B. Figure shows the power in the test separating different strata. In all cases there are 
9.000 genes and 30 patients in each stratum and it is based on 10.000 simulations. In both 
figures there are lines for 40, 80, 120, 160, and 200 respectively non-zero 𝑎𝑎𝑖𝑖  values that are 
constant equal 0.4. In the left figure we use the estimator 𝑍𝑍𝑘𝑘and in the right figure we use the 
estimator 𝐻𝐻𝑘𝑘, which gives slightly higher power for large values of k. Notice that here the 
power increases with k in contrast to Figure 2A. 
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Figure 3. The figure shows the power in the test separating different strata. It is similar to Fig. 
2A except that there are 30.000 genes instead of 9.000 and it is based on 2.000 simulations. In 
both figures there are lines for 40, 80, 120, 160, and 200 respectively non-zero 𝑎𝑎𝑖𝑖  values that 
are normally distributed expectation equal 0 and expectation of the absolute value equal 0.4. In 
the left figure we use the estimator 𝑍𝑍𝑘𝑘and in the right figure we use the estimator 𝐻𝐻𝑘𝑘 , which 
clearly gives higher power. Notice that the power decreases slightly with increasing number of 
genes.  
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Figure 4. The average 𝑎𝑎𝑖𝑖values is largest for the most extreme quantiles of 𝑇𝑇𝑖𝑖. The figure shows 
how the average 𝑎𝑎𝑖𝑖value corresponding to 𝑍𝑍𝑘𝑘decreases with k. The upper left figure is for 
normally distributed 𝑎𝑎𝑖𝑖with expectation equal 0 and expectation of the absolute value equal 
0.2, 0.4, 0.6, 0.8 and 1 respectively and the right figure is for 𝑎𝑎𝑖𝑖  constant equal 0.2, 0.4, 0.6, 0.8 
and 1  respectively (similar to Fig 1A and 1B). In the lower figures are for varying number of a_i 
values. (similar to Fig 2A and 2B respectively). These values are calculated for 20 non-zero 
𝑎𝑎𝑖𝑖values. Notice that the values are smaller for constant 𝑎𝑎𝑖𝑖but the decrease is also smaller .This 
explains why we get strongest power in the tests for small values of k when 𝑎𝑎𝑖𝑖  is normally 
distributed. Notice also that the larger the a-value is, the easier it is to identify the large values. 
If we divide the values in one curve with the values in the curve below, these values are 
increasing with k and for curves with smaller a-values. This shows that it is easier to identify a-
values, the larger the a-values are.   

2.3 Classification of stratum for new patients 
If we find a significant difference between the strata, we would like to classify the stratum for 
a new patient. In the classification we set the probability for a false positive to 5%, i.e. the 
probability that a patient belonging to stratum B without a signal is classified to stratum A with 
a signal.  We compare the different classification method on the probability for a correct 
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positive classification, i.e. to classify into stratum A when the patient belongs to this stratum. 
This formulation of the classification is relevant for patients that are classified with cancer 
(both strata A and B) and we will only apply an additional treatment with severe disadvantages 
if we are reasonably sure that that this treatment will help (i.e. belong to stratum A). The 
classification may be based on the estimator 

𝑆𝑆𝑗𝑗,𝑘𝑘 =  
1

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
�

𝑤𝑤𝑖𝑖(𝑋𝑋𝑖𝑖,𝑗𝑗 − 𝑐𝑐𝑖𝑖)
𝑠𝑠𝑖𝑖𝑖𝑖∈𝐺𝐺𝑘𝑘

 

i.e. 𝑆𝑆𝑗𝑗,𝑘𝑘 is the weighted average of 𝑋𝑋𝑖𝑖,𝑗𝑗 for the genes i where we estimate for |𝑎𝑎𝑖𝑖| 𝜎𝜎𝑖𝑖� . to be 

largest. A possible choice is 𝑤𝑤𝑖𝑖 = 𝑏𝑏𝑖𝑖  i.e. the estimated sign of 𝑎𝑎𝑖𝑖  such that large values of 
𝑆𝑆𝑗𝑗,𝑘𝑘  indicates that patient j is in group A. We may also choose 𝑤𝑤𝑖𝑖 = 𝑍𝑍𝑖𝑖  such that genes with the 

expected largest values of |𝑎𝑎𝑖𝑖| 𝜎𝜎𝑖𝑖�  have largest weight.  

If |𝑎𝑎𝑖𝑖| 𝜎𝜎𝑖𝑖� is much larger for one or a few genes than for the other genes, our estimate should 

focus on these genes. We may then use the estimator 𝑆𝑆𝑗𝑗,𝑘𝑘for k=1,2,3. However, if many values 

of |𝑎𝑎𝑖𝑖| 𝜎𝜎𝑖𝑖� have about the same size, we should probably use a larger value of n. Hence, we 

want to find the properties of 𝑆𝑆𝑗𝑗,𝑘𝑘 and find the optimal value of k under for different 

assumptions on the distribution of   |𝑎𝑎𝑖𝑖| 𝜎𝜎𝑖𝑖� . 

 

 

Figure 5. The figure shows probability for a true positive prediction, i.e. classify correctly in 
stratum A. In all cases there are 9000 genes and 30 patients in each stratum and based on 
10.000 simulations. In both figures there are 20 non-zero 𝑎𝑎𝑖𝑖  values that are normal distributed 
with expectation equal 0 and expectation of the absolute value equal 0.2, 0.4, 0.6, 0.8 and 1 in 
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the five lines. In the left figure we use weight equal 𝑤𝑤𝑖𝑖 = 𝑏𝑏𝑖𝑖 and in the right figure we use 
weight 𝑤𝑤𝑖𝑖 = 𝑍𝑍𝑖𝑖which clearly gives higher power for k >5.  

 

Figure 5B. The figure shows probability for a true positive prediction, i.e. classify correctly in 
stratum A. In all cases there are 9000 genes and 30 patients in each stratum and based on 
10.000 simulations. In both figures there are 20 non-zero 𝑎𝑎𝑖𝑖  values with constant value 0.2, 0.4, 
0.6, 0.8 and 1 in the five lines. In the left figure we use weight equal 𝑤𝑤𝑖𝑖 = 𝑏𝑏𝑖𝑖  and in the right 
figure we use weight 𝑤𝑤𝑖𝑖 = 𝑍𝑍𝑖𝑖  which gives higher power for k larger than 5-10. Notice that we 
here have optimal value for larger values of k compared to normally distributed 𝑎𝑎𝑖𝑖  shown in 
figure 5.  

 

Figure 6. The figure shows probability for a true positive prediction, i.e. classify correctly in 
stratum A. In all cases there are 9000 genes and 30 patients in each stratum and based on 
10.000 simulations. In both figures there are lines for 40, 80, 120, 160, and 200 non-zero 𝑎𝑎𝑖𝑖   
values respectively that are normal distributed with expectation equal 0 and expectation of the 
absolute value equal 0.4. In the left figure we use weight equal 𝑤𝑤𝑖𝑖 = 𝑏𝑏𝑖𝑖  and in the right figure 
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we use weight 𝑤𝑤𝑖𝑖 =  1

(1 + 𝑘𝑘)� .  The weight seems to decrease so fast with k that there is 

almost no effect of k>25.   

 

Figure 6B. The figure shows probability for a true positive prediction, i.e. classify correctly in 
stratum A. In all cases there are 9.000 genes and 30 patients in each stratum and based on 
10.000 simulations. In both figures there are lines for 40, 80, 120, 160, and 200 non-zero 
𝑎𝑎𝑖𝑖  values respectively that are constant equal 0.4. In the left figure we use weight equal 
𝑤𝑤𝑖𝑖 = 𝑏𝑏𝑖𝑖 and in the right figure we use weight 𝑤𝑤𝑖𝑖 = 𝑍𝑍𝑖𝑖. Hence, the lowest line in each of these 
figures corresponds to the second lowest lines in Figure 5B.  

Figure 7. This figure corresponds to Figure 5 except that the number of patients is increased to 
50 in each stratum.  Otherwise, all parameters are as in Figure 5. There are 9.000 genes and it 
is based on 10.000 simulations. In both figures there are 20 non-zero 𝑎𝑎𝑖𝑖  values that are normal 
distributed with expectation equal 0 and expectation of the absolute value equal 0.2, 0.4, 0.6, 
0.8, and 1 in the five lines. In the left figure we use weight equal 𝑤𝑤𝑖𝑖 = 𝑏𝑏𝑖𝑖 and in the right figure 
we use the weight 𝑤𝑤𝑖𝑖 = 𝑍𝑍𝑖𝑖 . There is a slight increase in power, but much smaller than in testing 
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whether there is a difference between the two strata as commented in the legend to Figure 1. 
With more patients we are able to select better the genes with large values of 𝑎𝑎𝑖𝑖  which 
improves the test.  

3 Model for several time periods 

Assume we want to differentiate between two strata where we assume the (log) gene 
expressions have a different time development relative to time to diagnosis. Also here we 
assume a weak signal in many genes that develop differently in the two strata, not a strong 
signal in one or a few genes. We want to find a strong test estimator that is able to identify this 
difference as good as possible.   

Let the (log) gene expressions be denoted by 𝑋𝑋𝑖𝑖,𝑗𝑗, where i is gene and j is patient. The function 
s(j) denote the strata for patient j and is equal A or B. The stratum is known in the control data 
set. The function t(j) denote the number of time periods before diagnosis for patient j and is 
equal 1,2,…, 𝑛𝑛𝑡𝑡. We want to find out whether there is a time development in the gene 
expressions and a difference between strata A and B in the last time interval, ie. close to 
diagnosis.  We also want to classify persons into strata A or B for persons in a test set in the 
last time interval.  

The (log) gene expression is modelled as 𝑋𝑋𝑖𝑖,𝑗𝑗 =  𝑌𝑌𝑖𝑖,𝑗𝑗 + 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗) where 𝑌𝑌𝑖𝑖,𝑗𝑗  is 𝑁𝑁(𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖2) and 
independent between different patients. We know very little about the variables 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗) , 
denoted the signal, except that it is equal 0 for most genes i. We also assume that for each 
gene the signal  𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗) is so weak that we are looking for methods based on many genes.  
We don’t know which genes that gives a signal (i.e. 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗) not vanishing) and all time 
periods give information on which genes that have a signal.  We want to find as good 
estimator for the classification A or B for different assumptions on 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗). 

We have two alternative models for the 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),1, i.e. values in the final time period for gene i 
where this variable is not identically equal to 0.    

A. 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗) = 𝑡𝑡(𝑗𝑗)ℎ𝑖𝑖 > 0   
B. 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗)as N(0, (𝑡𝑡(𝑗𝑗)𝑢𝑢𝑖𝑖)2)  

 
Hence most of the 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗)values are close to 0. In order to compare these models we choose  

𝑢𝑢𝑖𝑖 = 𝑡𝑡(𝑗𝑗)ℎ𝑖𝑖�𝜋𝜋 2�  such that E|𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗)|= 𝑡𝑡(𝑗𝑗)ℎ𝑖𝑖 in both cases. In this model only about 42% of 

the 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗)values where |𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗)|>0 satisfies |𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗)|> 𝑡𝑡(𝑗𝑗)ℎ𝑖𝑖. 
   

3.1 Hypothesis test for difference between strata 
Similar to the situation for one time period, we make a hypothesis that there is no difference 
between the strata with the same significance level based on the different test statistics. Then 
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we find the power when using the different test statistics, i.e. the probability for rejecting the 
hypothesis, for different assumptions on the signal.  

We compare two strata in four time periods where each measurement of the (log) gene 
expression is independent N(0,1) values in 1000 genes and assume there are 10 patients for 
each time period and each strata. One strata has no signal and one strata has the signal 
𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗). In the test we assume the time development of the signal is 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡(𝑗𝑗) =

𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),1
(𝑛𝑛𝑡𝑡 − 𝑡𝑡(𝑗𝑗))

(𝑛𝑛𝑡𝑡 − 1)�  where 𝑛𝑛𝑡𝑡 is the first time period. Hence, the signal is monotone  

in-/decreasing in time for each gene with the same increment between subsequent time 
periods, vanishing in the first time period and equal to 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),1  at the time of diagnosis. In the 
test we vary the (expected) value of 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),𝑡𝑡𝑓𝑓  (values: 0.25, 0.5, 0.75) and the number of genes 

with a signal (values: 30, 100) and in addition whether 𝑎𝑎𝑖𝑖,𝑠𝑠(𝑗𝑗),1 is constant or normally 
distributed.   

We compare 19 different test statistics for differentiating between the two strata. We make a 
hypothesis test that has a 5% significance level. Then we find the power of a hypothesis test 
with each test statistics, i.e. the probability for true positive conclusion for the given case. The 
data is tested in a simulation based on 10 sets of 𝐷𝐷𝑖𝑖 1000 data sets. The quantiles are found in 
each of the 𝐷𝐷𝑖𝑖  data sets and then we take the average between theses 10 data sets.  The same 
random variables are used for the different test statistics.  The results are given in Table 1 with 
constant signal and Table 2 with normally distributed signal.  

Test statistics for identify difference between two strata:  

1. p-value P1. Find the p-value in a t-test for each gene comparing the gene expressions 
from the two strata from the last time period. Find the k’th smallest p-value/1-p-value 
and compare this with the corresponding p-value when the gene expressions are 
randomized between the two strata. We sort all the p-values and 1-p-values and base 
the method on the smallest of these values.  

2. p-value P12. Find the p-value in a t-test for each gene comparing the gene expressions 
from the two strata from the two last time periods. Find a new value  𝑠𝑠 = 𝑞𝑞𝑝𝑝1 + (1 −
𝑞𝑞)𝑝𝑝2  where 𝑝𝑝1 and 𝑝𝑝2 is the p-value from the two periods. Find the k’th smallest  s/1-s 
value and compare this with the corresponding p-value when the gene expressions are 
randomized between the two strata. 

3. Sum p-value P1. Find the p-value in a t-test for each gene comparing the gene 
expressions from the two strata from the last time period. Find the sum of the k’th 
smallest p-value and compare this with the corresponding value when the gene 
expressions are randomized between the two strata. 

4. Sum p-value P12. Find the p-value in a t-test for each gene comparing the gene 
expressions from the two strata from the two last time periods. Find a new value 
𝑠𝑠 = 𝑞𝑞𝑝𝑝3 + (1 − 𝑞𝑞)𝑝𝑝4 where 𝑝𝑝3 and 𝑝𝑝4 is the p-value from the two periods. Find the 
sum of the k’th smallest s/1-s values and compare this with the corresponding s-value 
when the gene expressions are randomized between the two strata. 
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5. Sum lg p-value P1. Similar to 3 above except take the sum of the logarithm of the p-

values  
6. Sum lg p-value P12. Similar to 4 above except take the sum of the logarithm of the s-

values  
7. Covariate P1. Find the p-value in a t-test for each gene comparing the gene 

expressions from the two strata from the last time period. Let 𝐷𝐷𝑖𝑖 denote the difference 
of sum of the covariates between the two strata. Find the sum of 𝐷𝐷𝑖𝑖 for the k’th 
smallest p-value and compare this with the corresponding values when the gene 
expressions are randomized between the two strata. 

8. Covariate P12. Find the p-value in a t-test for each gene comparing the gene 
expressions from the two strata from the two last time periods. Find a new value 
𝑠𝑠 = 𝑞𝑞𝑝𝑝1 + (1 − 𝑞𝑞)𝑝𝑝2  where 𝑝𝑝1 and 𝑝𝑝2 is the p-value from the two periods. Find 
𝐷𝐷′′ = 𝑞𝑞𝐷𝐷′𝑖𝑖 + (1 − 𝑞𝑞)𝐷𝐷𝑖𝑖  where 𝐷𝐷′𝑖𝑖 is the corresponding difference to 𝐷𝐷𝑖𝑖 but in time 
period 2. Find the sum of 𝐷𝐷′′𝑖𝑖  for the k’th smallest q-value and compare this with the 
corresponding expression when the gene expressions are randomized between the 
two strata. 

9. NofGenes CG, all. Classify all genes in groups based on the order of the average values 
of the gene expression in each time period. Group 1234 consist of genes where the 
average value of the gene expression increases for each time period. We compare the 
number of genes in the curve group 1234 with the number of genes in the same curve 
group when randomizing the gene expression between the two strata. 

10. NofGenes CG, 0.1/0.01 Similar to 9 above, we only count genes where the difference 
between average gene expression in the time period with smallest and largest gene 
expression is significant large, with a p-value less than 0.1 or 0.01 respectively. Hence 
we perform a t-test between the data in two time periods and only include genes 
where the p-value in this two sample t-test is less than 0.1 or 0.01 respectively.  

 

These methods represent different ideas. It is possible to improve the methods by using other 
transformations than the logarithm, depend on p-value in more periods or use other 
combinations of two or more p-values than a linear combination. F.ex. use s=min(𝑝𝑝1,𝑝𝑝2, 1 −
𝑝𝑝1, 1 − 𝑝𝑝2) + c max(𝑝𝑝1,𝑝𝑝2, 1 − 𝑝𝑝1, 1 − 𝑝𝑝2) for a constant 0<c<1. This formula may be better if 
there is only one period with small p-value or one period has a low p-value and one period has 
a p-value close to 1. We have not tried to optimize the different test statistics since this will 
depend on the situation in each case.  

The results are shown in Table 1-2. The best methods seem to sum of the logarithm of the 100 
smallest/largest p-values, sum of the 100 or 200 covariates of the smallest/largest p-values  
where we in both cases uses data from the two last time periods. But this also depends on the 
type of signal. If we know that the trend is increasing, then the curve group method is equal 
good with the best methods.  But it is more reasonable case where we don’t know the 
direction of the signal, this method is not as good. As expected, the p-value method is best for 
low order p-values when the signal is normally distributed and for higher order when the signal 
is constant. Figure 8 and 9 indicate that if the distribution of the signal for the different genes 
has heavier tails than the normal distribution, it may be better to focus on the few genes with 
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a strong signal, while with a constant value of the signal, it is best to use many genes in the 
test statistics. This is similar to the result for one time period.    

The Method denoted P1 only uses data from the last period. Notice that we are able to 
improve the predictions slightly when using data from the last two periods with methods 
denoted P12. The method based on curve groups uses data from all four periods. How much a 
method is improved by using data from more time periods depends on the strength of the 
signal in the different periods, the number of patients in each period and how we combine the 
results from the different periods. In our example, the strength of the signal increases linearly 
in time until time of diagnosis making data in the last time period most valuable. If the 
strength of the signal is the same in all periods, this will make the curve group method better. 
But it is also possible to use p-values from several time periods as illustrated above with the 
method using data from period 1 and 2, denoted P12. Figure 8 and 9 show that it is possible to 
analyze the strength of the signal in the different time periods. 

The method based on p-values seems more flexible than the curve group method. If the two 
strata have a different time development in the time periods before diagnosis, then we would 
expect to get p-values close 0 or 1 in a t-test comparing the average values between the two 
strata in some of the time periods.    

Genes with trend, 
constant 

 100 100 100 30 30 30 

Diff. last period  0.25 0.5 0.75 0.25 0.50 0.75 
Type of signal  Const. Const. Const. Const. Const. Const. 
Estimator K        
p-value, P1 10 0.081 0.25 0.77 0.059 0.10 0.24 
p-value, P1 100 0.10 0.41 0.88 0.062 0.11 0.23 
p-value, P12 10 0.093 0.39 0.94 0.065 0.14 0.42 
p-value, P12 100 0.12 0.53 0.94 0.065 0.12 0.27 
Sum lg p-value P1 10 0.070 0.23 0.71 0.053 0.091 0.24 
Sum lg p-value P1 100 0.10 0.46 0.97 0.064 0.13 0.35 
Sum lg p-value P12 10 0.086 0.37 0.90 0.064 0.13 0.46 
Sum lg p-value P12 100 0.13 0.66 0.996 0.070 0.18 0.48 
Covariate, P1 10 0.075 0.26 0.75 0.058 0.11 0.33 
Covariate, P1 50 0.098 0.45 0.96 0.060 0.13 0.41 
Covariate, P1 100 0.11 0.53 0.98 0.066 0.14 0.41 
Covariate, P1 200 0.12 0.57 0.98 0.069 0.15 0.38 
Covariate, P12 10 0.096 0.39 0.89 0.069 0.16 0.54 
Covariate, P12 50 0.12 0.62 0.996 0.065 0.18 0.62 
Covariate, P12 100 0.13 0.70 0.998 0.069 0.19 0.60 
Covariate, P12 200 0.15 0.74 0.999 0.071 0.19 0.53 
NofGenes, CG,all  0.15 0.78 0.999 0.077 0.26 0.72 
NofGenes, CG .01  0.13 0.73 0.999 0.074 0.27 0.76 
NofGenes,CG.001  0.038 0.075 0.38 0.049 0.085 0.25 
Table 1 comparing the power in 19 different test statistics when the signal is the same constant 
in all genes with signal. 
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Genes with 
trend, constant 

 100 100 100 30 30 30 

Diff. last period  0.25 0.5 0.75 0.25 0.50 0.75 
Type of signal  Normal Normal Normal Normal Normal Normal 
Estimator K        
p-value, P1 10 0.055 0.12 0.85 0.054 0.071 0.28 
p-value, P1 100 0.051 0.14 0.58 0.050 0.068 0.14 
p-value, P12 10 0.051 0.17 0.93 0.048 0.072 0.37 
p-value, P12 100 0.050 0.16 0.59 0.052 0.072 0.14 
Sum p-value P1 10 0.048 0.11 0.90 0.056 0.072 0.42 
Sum p-value P1 100 0.050 0.16 0.94 0.049 0.075 0.34 
Sum p-value P12 10 0.057 0.19 0.97 0.050 0.081 0.62 
Sum p-value P12 100 0.059 0.23 0.98 0.052 0.090 0.47 
Covariate, P1 10 0.055 0.15 0.94 0.057 0.078 0.46 
Covariate, P1 50 0.056 0.17 0.96 0.052 0.080 0.40 
Covariate, P1 100 0.055 0.18 0.95 0.052 0.077 0.30 
Covariate, P1 200 0.053 0.19 0.91 0.047 0.13 0.35 
Covariate, P12 10 0.056 0.21 0.97 0.051 0.098 0.69 
Covariate, P12 50 0.061 0.26 0.988 0.047 0.089 0.59 
Covariate, P12 100 0.062 0.27 0.981 0.050 0.090 0.51 
Covariate, P12 200 0.057 0.25 0.96 0.050 0.089 0.41 
NofGenes, CG,all  0.059 0.22 0.94 0.049 0.090 0.42 
NofGenes, CG .01  0.056 0.21 0.95 0.050 0.086 0.47 
NofGenes,CG.001  0.055 0.10 0.76 0.046 0.060 0.34 
Table 2 comparing the power in 19 different test statistics the signal is the normally distributed.  

 

Figure 8. Quantiles of the extreme smallest/largest log(p-value) values with signal  (dashed) 
and without signal (line) between the two strata. There are 30 genes with signal and the 
difference in the last period between the two strata is 0.25 in the left figure and 0.75 in two 
right figures. Normal signal in the two left figures and constant signal in the right hand figure.  

Figure 8 and 9 show the quantiles of the log(p-value) for the extreme p-values in a test with 30 
genes (figure 8) and 100 genes (figure 9) with signal and where the full difference of the 
constant signal is 0.25 and 0.75 respectively. It shows the quantiles of the extreme log(p-value) 
or log(1-p-value). For each of the 1,2,3,… values on the x-axis shows respectively quantiles of 
the 1st, 5th, 10th, 25th, 50th, 100th, and 200th most extreme  log(p-values)/ log(1-p-value) along 
the horizontal axis. The three lines show the 0.05, 0.5 and 0.95 quantiles of the distribution 
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when there is not a signal and the dashed lines show the 0.05, 0.5 and 0.95 quantiles of the 
extreme p-values when there is a difference between the two strata. The dotted line is the 
expected value of the extreme p-values when there is no signal (k-0.5)/(2*number of genes) 
where k=1,5,10,…. These figures show that it is possible to analyze the strength of the signal in 
a group when there is sufficient number of patient data that it is possible to perform a t-test 
comparing to a reference population.  Notice that the normally signal is more visible for low 
order p-values.  

 

Figure 9. Quantiles of the extreme smallest/largest log(p-value) values with (dashed) and 
without (line) signal between the two strata. Similar to figure 8 except there are 100 genes with 
signal. Normal signal in the two left figures and constant signal in the right hand figure.  

It is difficult to compare the difference when k is large since all the curves are close. In Figure 
10 the values are scaled relative to the variability when there is no signal. Notice that the 
difference is not observable for 30 genes with 0.25 as expected difference since two of the 
dotted curve is almost identically equal 0 and 1 indicating that we have the same values for the 
quantiles as if there were no signal.  When there are 100 genes with expected difference it is 
possible to notice a difference for the normal signal. When there are 100 genes with expected 
value 0.75, it is a large difference in the distribution. The difference is largest for p-value of 
order 5-10 for normally distributed signal and for p-values of order 25-100 for constant signal. 
This implies that also in the case when the signal is very weak, we will in some cases be able to 
state that there is a significant difference. Notice also that in the distribution of the ordered p-
values are partly overlapping in the three cases with different signal (100 genes constant 0.75 
difference, 100 genes constant 0.25 difference and 30 genes constant 0.75 difference). This 
means that we cannot expect to be able to identify the type of signal (e.g. number of genes, 
strength of signal in each gene) based on the distribution of the p-values in one data set.  In 
some cases it may be possible and in general it will be possible to give an overall description of 
the strength of the signal.   
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Figure 10 Quantiles of the extreme smallest/largest log(p-value) values when there is a signal 
between the two strata values scaled relative to similar quantiles when there is not a signal. 
The scale is such that (0,1)  is similar to the variability between the 0.05  and 0.95 quantile of 
the p-value when there is no signal. The left figure is for signal that is normally distributed and 
the right figure is constant signal. In both figures we have three curves with lines ( 0.05, 0.5 and 
0.95 quantiles when there are 100 genes with a constant 0.75 difference), three  dashed curves 
(0.05, 0.5 and 0.95 quantiles when there are 100 genes with a constant 0.25 difference) and 
three dotted curves  (0.05, 0.5 and 0.95 quantiles when there are 30 genes with a constant 0.75 
difference).  Horizontal axis is the order of the p-values 1, 5, 10, 25, 50, 100, 200 respectively.   

3.2 Classification of strata for new patients 
Assume that we have some data where we know the strata and performed the analysis in the 
previous section. If we receive new data where we don’t know the strata, we may try to 
classify the strata for the new persons based on the gene expression for the genes that we 
identified in the analysis described in the previous section. Figure 11 compares how the curve 
group method and the extreme p-values are able to identify the genes  with signal in an 
example with 30 out of 1000 genes have a signal and where the difference in the gene 
expression in the last time period is the constant value 0.75 relative to the standard deviation 
of the gene expression. The dotted line shows that the genes with smallest p-value/1-p-value  
has the probability 67% for being a gene with a signal and this is decreasing down to about 
10% for the gene with 200th smallest p-value/1-p-value. In the curve group method the 
average result is that the 6 genes with the most significant increase in the trend has 54% 
probability to have a signal, decreasing to the 48 genes with a monotone increase in the trend 
has 22% probability to have a signal and the remaining genes have a 1.5% probability for a 
signal. Apriori all genes have a 3% probability for having a signal. 
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Figure 11. The probability for a the signal as a function of the order of genes sorted by the 
order of the extreme p-value (dashed line) and by curve group (line)  

We will test different predictors for whether a new patient belongs to the strata with or 
without a signal. The predictors are based on the analysis in the previous section where we 
test different methods to separate between the two strata. Similar to the previous section we 
compare different test statistics for prediction whether a new patient belong to the strata with 
or without a signal. We make a classification that has a 5% probability for a false positive 
prediction, i.e. that a new patient that belong to the stratum without a signal wrongly is 
classified as the other strata. Then we find the probability for a correct positive classification, 
i.e. that a new patient that belong to the stratum with a signal is correctly classified. The 
method is tested on 10 data sets that each consists of 1000 synthetic genomes each with 1.000 
genes. For each of the genomes we have classified 10 new patients. The same random 
variables are used for the different test statistics.  The results are given in Table 3 with 
constant signal and Table 4 with normally distributed signal.  

All the predictors have the form  𝑌𝑌𝑗𝑗,𝑘𝑘 = 𝐹𝐹(𝑤𝑤) = ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘𝑋𝑋𝑖𝑖,𝑗𝑗𝑖𝑖 . We set 𝐺𝐺(𝑤𝑤) = ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘2𝑖𝑖  = 1 in 

order that 𝑌𝑌𝑗𝑗,𝑘𝑘 is N(𝜇𝜇,1)  where 𝜇𝜇 =0 in the case there is no signal. Then if 𝑌𝑌𝑗𝑗,𝑘𝑘>q_0.95 (the 0.95 
quantile in the N(0,1) distribution) this gives a prediction that patient j belong to the strata 
with signal. This predictor has a 5% probability for a false positive prediction in the case the 
patient belongs to the stratum without a signal.  From Figure 11 we see that we know the 
probability that the gene with the p-value of order 𝑞𝑞𝑖𝑖 is a gene with a signal. We want to find 
the optimal vector w such that 𝜇𝜇 = EF(w) is as large as possible in the case the person belongs 
to the stratum with a signal. This is a linear optimization of ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘𝑞𝑞𝑖𝑖𝑖𝑖  under the nonlinear 

constraint ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘2𝑖𝑖  = 1. The optimal solution of this is to set 𝑤𝑤𝑖𝑖 =  𝑞𝑞𝑖𝑖 𝑐𝑐�   for a constant c since 

this gives in the optimal point 𝜕𝜕𝜕𝜕(𝑤𝑤)
𝜕𝜕𝑤𝑤𝑖𝑖� = 𝑞𝑞𝑖𝑖 = 𝑐𝑐𝑤𝑤𝑖𝑖 = 2𝑐𝑐 𝜕𝜕𝜕𝜕 𝜕𝜕𝑤𝑤𝑖𝑖�  

The expected value of the predictor is 𝜇𝜇 = ∑ 𝑤𝑤𝑖𝑖𝑞𝑞𝑖𝑖 = 𝑐𝑐𝑖𝑖 .  
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The probability 𝑞𝑞𝑖𝑖 shown in figure 11 is quite good approximated with 𝑞𝑞𝑖𝑖= 0.75exp(-i/65) 
+0.15-i/13000. This formula is used in the trends in Table 4. In Table 3 with constant signal we 
have used the formula  𝑞𝑞𝑖𝑖= 0.75exp(-i/15) +0.1-i/13000 which gives a better match for 100 
genes with 0.75 signal. 

We have three types of predictors. First the method is based only on the data in the last time 
period. It is performed a t-test based on the data from the two strata in the last time period 
and the genes are sorted in increasing p-value/1-p-value.  We use the weight 𝑤𝑤𝑖𝑖,𝑘𝑘 =
𝑐𝑐𝑘𝑘  exp (𝑖𝑖 ℎ𝑘𝑘� ) if gene i has the i’th smallest p-value/1-p-value in the t-test. The variable ℎ𝑘𝑘 is a 

constant and ℎ𝑘𝑘 is set such that  ∑ 𝑤𝑤𝑖𝑖,𝑘𝑘2𝑖𝑖  = 1 and a sign such that a large value of 𝑌𝑌𝑗𝑗,𝑘𝑘 

indicates that the new person is in the strata with signal.  The second method use data from 
the two last periods and use the value 𝑠𝑠 = 𝑞𝑞𝑝𝑝1 + (1 − 𝑞𝑞)𝑝𝑝2  when identifying which genes 
that are most important. Here 𝑝𝑝1 and 𝑝𝑝2 are the p-value from the two periods. The weights 
𝑤𝑤𝑖𝑖,𝑘𝑘 is set similar to the first method but based on the value s for each gene instead of the p-
value. The third method is based on the curve group classification which is estimated from 
data from all the periods. We find the genes that have a systematically increase in the average 
value of the four time periods. In the first of these methods we set 𝑤𝑤𝑖𝑖,𝑘𝑘 equal the same value 
for all the genes where the average value increases in the four periods. In the second of these 
methods, we in addition require that the t-test comparing the values in the first and last time 
period is less than 0.1. It the third of these methods, we in addition require that the t-test 
comparing the values in the first and last time period is less than 0.01.   

Genes with trend, 
constant 

 100 100 100 30 30 30 

Diff. last period  0.25 0.5 0.75 0.25 0.50 0.75 
Type of signal  const Const Const Const Const Const 
Predictor,data 
period 

H_k        

P1 1 0.059 0.11 0.24 0.052 0.073 0.15 
P1 5 0.062 0.13 0.33 0.053 0.077 0.18 
P1 10 0.066 0.18 0.53 0.054 0.086 0.23 
P1 25 0.072 0.23 0.70 0.056 0.095 0.27 
P1 50 0.081 0.31 0.88 0.059 0.11 0.32 
P1 100 0.090 0.38 0.94 0.061 0.12 0.34 
P1 150 0.098 0.43 0.96 0.062 0.12 0.33 
P1 200 0.0991 0.43 0.96 0.062 0.12 0.32 
P1 250 0.0989 0.43 0.95 0.062 0.12 0.31 
P1 Tren

d 
0.091 0.39 0.94 0.061 0.12 0.35 

P1-2 1 0.062 0.13 0.27 0.053 0.085 0.20 
P1-2 5 0.064 0.16 0.40 0.055 0.094 0.26 
P1-2 10 0.071 0.23 0.65 0.056 0.11 0.35 
P1-2 25 0.077 0.31 0.84 0.057 0.12 0.42 
P1-2 50 0.090 0.43 0.97 0.061 0.14 0.47 
P1-2 100 0.10 0.51 0.988 0.063 0.15 0.47 
P1-2 150 0.11 0.55 0.993 0.064 0.15 0.44 
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P1-2 200 0.11 0.55 0.991 0.065 0.14 0.41 
P1-2 250 0.11 0.54 0.989 0.065 0.14 0.39 
P1-2 Tren

d 
0.10 0.51 0.985 0.065 0.15 0.49 

P1-4, all genes  0.095 0.31 0.80 0.061 0.10 0.23 
P1-4, p<0.1  0.089 0.32 0.85 0.060 0.11 0.27 
P1-4, p<0.01  0.069 0.21 0.70 0.055 0.093 0.26 
P1 mu  25 0.306 1.19 2.58 0.104 0.495 1.36 
Table 3 comparing the power in 22 different predictions for whether a new patient belongs to 
the stratum with signal. Mu is the expected value of the predictor in case of a signal and when 
using data from the last period and weight with h=25. 

Genes with trend, 
constant 

 100 100 100 30 30 30 

Diff. last period  0.25 0.5 0.75 0.25 0.50 0.75 
Type of signal  Normal Normal Normal Normal Normal Normal 
Predictor,data 
period 

H_k        

P1 1 0.050 0.086 0.61 0.050 0.063 0.37 
P1 5 0.051 0.095 0.75 0.051 0.066 0.42 
P1 10 0.051 0.11 0.89 0.051 0.068 0.45 
P1 25 0.051 0.12 0.94 0.051 0.070 0.45 
P1 50 0.051 0.14 0.96 0.052 0.074 0.42 
P1 100 0.053 0.15 0.96 0.051 0.074 0.37 
P1 150 0.054 0.15 0.94 0.052 0.075 0.31 
P1 200 0.054 0.15 0.92 0.051 0.074 0.28 
P1 250 0.054 0.15 0.90 0.051 0.074 0.26 
P1 Tren

d 
0.053 0.15 0.97 0.052 0.076 0.42 

P1-2 1 0.051 0.11 0.69 0.051 0.073 0.49 
P1-2 5 0.052 0.12 0.84 0.051 0.076 0.56 
P1-2 10 0.052 0.14 0.96 0.050 0.078 0.61 
P1-2 25 0.053 0.16 0.98 0.050 0.079 0.60 
P1-2 50 0.053 0.18 0.991 0.051 0.081 0.53 
P1-2 100 0.054 0.19 0.988 0.050 0.081 0.45 
P1-2 150 0.055 0.19 0.98 0.051 0.080 0.37 
P1-2 200 0.056 0.19 0.96 0.051 0.078 0.32 
P1-2 250 0.055 0.18 0.95 0.050 0.078 0.30 
P1-2 Tren

d 
0.055 0.20 0.992 0.051 0.084 0.54 

P1-4, all genes  0.051 0.082 0.40 0.051 0.060 0.12 
P1-4, p<0.1  0.051 0.088 0.50 0.052 0.060 0.15 
P1-4, p<0.01  0.048 0.084 0.64 0.049 0.059 0.24 
P1 mu  25 0.12  0.47 1.81 0.036 0.15 0.72 
Table 4 comparing the power in 22 different predictions for whether a new patient belongs to 
the stratum with signal.  

Notice that when the signal is constant it is best to have large ℎ𝑘𝑘 values that gives more weight 
to higher order p-values relative to when the signal is normally distributed. We are able to 
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increase the classification when we use weight that is closer to the curve shown in Figure 11. 
However, the optimal weights depend on the parameters of the signal. We see that p-value 
methods are better than curve groups and naturally it is better to use information from several 
time periods.  
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