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1 Introduction

In Norway, building regulations for infrastructure such as dams, bridges and roads close
to water bodies include a legal obligation to account for hazard management related
to flood risk in the design of the structure. For instance, bridges must be designed to
withstand large floods that happen on average once every 200 years, the so-called 200
year flood, while dams should be able to withstand the 1000 year flood, see Stenius et al.
(2015) and references therein.

The estimation of the design flood is commonly performed via statistical flood frequency
analysis (FFA) by fitting a distribution function to a series of annual maximum discharge
data. The Norwegian Water Resources and Energy Directorate (NVE) issues guidelines
on how the design flood estimation should be performed, see Midttømme et al. (2011).
The recommended choice of a statistical model depends on the available discharge data
at the catchment, see Table 1.

Table 1. The Norwegian recommendations for design flood estimation with statistical flood fre-
quency analysis (FFA), see also Midttømme et al. (2011).

Data Method

> 50 years GEV estimation of at-site series
30 - 50 years Gumbel estimation of at-site series
10 - 30 years Use other long series in the area
< 10 years Use other long series in the area/

regional FFA
No data Regional FFA

In this note, we will investigate a mixture model approach that combines a regional
model, the Gumbel model and the generalized extreme value (GEV) model where the
mixture weights change depending on the amount of available data at the catchment. The
mixture weights are determined by the relative predictive performance of each model as-
sessed on out-of-sample data using proper scoring rules (Gneiting and Raftery, 2007).
Different scoring rules assess different aspects of the predictive performance and the
strength of the penalization may also vary. For these reasons, we compare weighting
schemes under various types of proper scoring rules using both scores that assess the
full distribution as well as those that focus on the upper tail or a single quantile only.
Similarly, we compare different estimation approaches for the local Gumbel and GEV
models.

The remainder of the note is organized as follows. The next Section 2 describes the three
statistical FFA models, the proper scoring rules we consider and the parameter estima-
tion approaches. The data set is introduced in the following Section 3 and the results are
presented in Section 4 along with discussions. Finally, conclusions are provided in the
last Section 5.
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2 Methods

2.1 Statistical flood frequency analysis
2.1.1 Local analysis using Gumbel and GEV distributions
Statistical flood frequency analysis (FFA) models the distribution of annual maximum
discharge by fitting a statistical distribution function F to a series y1, . . . yn of observed
annual maximum discharge. Block maxima of this type are commonly modelled using
the generalized extreme value (GEV) distribution or a special case thereof, the Gumbel
distribution (Coles, 2001). For the GEV model, F is given by

F (y) =

exp
(
−
[
1 + ε

(
y−µ
σ

)]−1/ξ) if ξ 6= 0

exp
(
− exp

(
− y−µ

σ

))
if ξ = 0.

(1)

where µ ∈ R is location, σ > 0 is scale and ξ is shape, and we assume that 1+ξ(y−µ)/σ >
0 for ξ 6= 0. The Gumbel distribution is equal to the special case in (1) where ξ = 0.

The aim of statistical FFA is commonly to estimate the size, or the return level, of a certain
design flood. The return level for a design flood with return period of T years equals the
quantile function value, F−1(p), at the probability p = 1− 1/T . That is, the quantile that
has probability 1/T of being exceeded in any given year. The quantile function of the
GEV model is given by

F−1(p) =

µ+ σ
ξ

[
1−

(
− log(p)

)−ξ] if ξ 6= 0

µ− σ log
(
− log(p)

)
if ξ = 0

(2)

and the quantile function of the Gumbel model is the special case in (2) with ξ = 0.

We estimate the parameters of the GEV and the Gumbel model independently at each
catchment using two frequentist estimation methods and Bayesian inference. The fre-
quentist estimation is performed using maximum likelihood estimation and probability
weighted moments (Hosking et al., 1985) as implemented in the R package fExtremes.
The Bayesian inference is performed as described in Steinbakk et al. (2016).

2.1.2 Regional analysis using the GEV distribution
If design flood estimates are required at locations for which no or only a very limited
amount of data is available, a regional FFA model is required. Here, we apply a regional
hierarchical GEV model (Dyrrdal et al., 2015) where the parameters µ, σ and ξ of the GEV
distribution in (1) are given by regression equations of the type

µs = θµ0 + θµ1x1s + · · · θ
µ
kxks + τµs , τµs ∼ N (0, η2µ)

for the catchment s, and similar for log(σs) and ξs. The covariates x1s, . . . , xks present
hydrological, geographical or meteorological information on the catchment s that are
available even if the discharge has not been measured. The random effect τµs is used to
account for the fact that there might be some variability in the parameter values between
the different catchments that has not been captured by the covariates x1s, . . . , xks.
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By pooling together data from a large number of catchments for which both discharge
data and covariates are available, the parameters θµ0 , . . . , θ

µ
k and η2µ may be estimated

via Bayesian inference returning a posterior sample of size I for each parameter. These
samples together with covariate values x1s′ , . . . , xks′ may then be used to infer posterior
samples of size I for µs′ , σs′ and ξs′ at a catchment s′ where no discharge data is available
and, subsequently, equation (2) may be used to obtain posterior distributions of return
levels. The Bayesian inference procedure includes a model selection component where
in each MCMC iteration, a subset of the k potential covariates is selected for each of
the GEV model parameters. The resulting posterior distributions thus represent a large
mixture model where the different components of the mixture include different sets of
covariates for each GEV model parameter. However, due to the very large number of
potential models, it is not feasible to estimate a single most likely model and we employ
the full posterior mixture. For analysis purposes, the marginal inclusion probability of
each covariate may be calculated for each of the GEV model parameters.

Table 2. Covariates used in the regional Bayesian GEV model and posterior inclusion probabilities
(%) for the location parameter µs, the scale parameter σs and the shape parameter ξs.

Covariate µs σs ξs

Constant 100 100 100
Longitude 87 100 7
Latitude 100 100 5
Effective lake percentage 99 100 1
Catchment length 14 50 3
Inflow 10 61 3
Average precipitation in May 50 97 7
Average precipitation in August 99 48 4
Average snowmelt in April 4 12 15
Average runoff in April 32 6 4
Proxy for catchment gradient 41 94 2
Average fraction of rain 2 13 68

We employ a regional model with the covariates listed in Table 2. The model is estimated
at 239 locations in Norway where the catchment area is larger than 50 km2 and more
than 20 years of discharge data are available. This data set includes the data used in the
current study. Instead of including the random effects τs in the regressions equations, we
sample fromN (0, η2µ) to obtain out-of-sample estimates. The marginal posterior inclusion
probabilities for each covariate and each GEV model parameter are given in Table 2.

2.2 Scoring rules
To assess the predictive performance of the GEV, the Gumbel and the regional model,
we use scoring rules. A scoring rule is a function, S(F, y), that assigns a score to a pre-
dictive distribution F based on an observation y, and is oriented such that a lower value
is a better score. It is (strictly) proper if the expected score of F for the observation y is
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minimized if (and only if) F is the true distribution of y (Gneiting and Raftery, 2007).

A common scoring rule is the logarithmic score, or the ignorance score as it is known in
meteorological applications, defined as

SIGN(f, y) = −log(f(y)),

where f is the predictive density, see e.g. Friederichs and Thorarinsdottir (2012) and ref-
erences therein. Another widely used scoring rule is the continuous ranked probability
score (CRPS) given by

SCRPS(F, y) =

∫ ∞
−∞

[F (z)− 1{y ≤ z}]2dz,

see Gneiting and Raftery (2007) and references therein. It evaluates the performance of F
on its entire domain.

Since we are trying to predict extreme floods, say the 1000-year flood, we are more inter-
ested in the forecaster’s ability to predict the exceedance of a certain threshold or quan-
tile. This can be assessed using the Brier score or the quantile score respectively. The Brier
score is defined as

SuB(F, y) = (pu − 1{y ≥ u})2,

where u is the threshold of interest and pu = 1 − F (u) is the predicted probability of y
exceeding that threshold. The quantile score for a given quantile τ is defined as

SτQ(F, y) = ρτ (y − F−1(τ)),

where ρτ (u) = τu if u ≥ 0 and ρτ (u) = (τ − 1)u otherwise, see e.g. Friederichs and
Thorarinsdottir (2012) and references therein.

An alternative representation of the CRPS is obtained using the quantile score

SCRP(F, y) = 2

∫ 1

0
ρτ (y − F−1(τ))dτ, (3)

see e.g. Friederichs and Thorarinsdottir (2012) and references therein. A weighted version
of the (3) gives the quantile-weighted CRPS

SqwCRP(F, y) = 2

∫ 1

0
w(τ)ρτ (y − F−1(τ))dτ,

where 0 ≤ w(τ) ≤ 1 is a weight function, see Lerch et al. (2015) and references therein.
If the interest is primarily on the upper tail of the predictive distribution, a reasonable
choice for the weight function is w(τ) = 1{τ ≥ q} for some high quantile q.

2.3 Mixture model
We will investigate the possibility of replacing the guidelines in Table 1 with a seamless
transition model, or a mixture model, with

F = ω1FGEV + ω2FGumbel + ω3Fregional, (4)
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where ω1 + ω2 + ω3 = 1. Here, we will assume that the weights ω1, ω2 and ω3 depend on
the amount of available discharge data. For instance, if a very long series is available, a
large weight should be put on the GEV model FGEV. Similarly, if no data are available,
we should have ω1 = ω2 = 0 and ω3 = 1.

One way to estimate the weights is to consider the relative performance of the three
models, such that the largest weight is put on the model that obtains the best average
score over a test set. Let SGEV, SGumbel and Sregional denote the respective average scores
of FGEV, FGumbel and Fregional, obtained using some scoring rule. Since scoring rules are
negatively oriented, the mixture weights are then given by the ratio of the inverse scores

ω1 =
S−1GEV

S−1GEV + S−1Gumbel + S−1regional

, (5)

ω2 =
S−1Gumbel

S−1GEV + S−1Gumbel + S−1regional

, (6)

ω3 =
S−1regional

S−1GEV + S−1Gumbel + S−1regional

. (7)

Another way to estimate the weights is to minimize

1

n

n∑
i=1

S(F, yi),

with respect to ω1, ω2 and ω3. Here yi, i = 1, ..., n, denotes the test set and F is the mix-
ture model given in equation (4). The minimization is done using constrOptim in the R

package stats, with the constraints being 0 ≤ ωj ≤ 1 and
∑

j ωj = 1, j = 1, ..., 3.

In order to investigate how the mixture weights change depending on the amount of
available data, we employ the following method. We limit our study to catchments for
which we have at least 75 years of data available. Given a series of annual maximum
discharge data, y1, . . . , yn, we use the last 50 observations as training data, while the pre-
ceding 25 observations are used as a test set. Based on the training set, FGEV and FGumbel

are estimated as described in Section 2.1.1, and the regional model is used as described
in Section 2.1.2. The weights are estimated using the two approaches above with various
scoring rules. We then repeat this with reduced training sets of size 40, 30, 20 and 10.

3 Data

All data used in this analysis is extracted from the national hydrological data base at
the Norwegian Water Resource and Energy Directorate. To estimate the local GEV and
Gumbel models, we use maximum annual discharge data from catchments greater than
50 km2 with at least 75 years of observations and, resulting in a total of 60 catchments.
The discharge values is usually given in the units of 1000 l/s or l/s/km2 if the data is
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normalized by the catchment area. For each catchment there is also hydrological, geo-
graphical or meteorological information available, which gives the covariate values used
in the regional model.

4 Results and discussion

To estimate the parameters for the GEV and the Gumbel model with Bayesian inference,
we draw 50,000 MCMC samples from the posterior parameter distributions. This is done
independently for each catchment by using 50, 40, 30, 20 and 10 years of data. We would
like to compare the results obtained with these estimates with similar estimates using
both PWM and MLE. However, there seems to be an error in the implementation of gum-
belFit in the R package fExtremes, leading to strange results. Thus, we only present the
results obtained with Bayesian inference and maximum likelihood estimation.

4.1 Mixture weights estimated by relative performance
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Figure 1. Box plots of the estimated weights ω1 (for the GEV model), ω2 (for the Gumbel model)
and ω3 (for the regional model) when the ignorance score is used as the scoring rule. From left
to right we see how the weights change when the years of data used in the analysis is reduced.
The upper and lower results are obtained under Bayesian inference and MLE, respectively, for the
parameter estimation in the local GEV and Gumbel models.

The ignorance score may yield negative scores when the range of the probability distribu-
tion of interest is small. Negative scores will make equations (5), (6) and (7) meaningless.
In order to make all scores positive, we add a small constant to every score. This is not
ideal, since the resulting weights will depend on the chosen constant. We choose the
smallest possible constant, since a large constant will erase much of the difference in the
scores. Box plots of the estimated weights using the ignorance score with this alternation
is given in Figure 1. With all 50 years of data included in the training set, the Gumbel
model receives the largest weight and the regional model receives the smallest weight.
From left to right, ω1 decreases while ω2 and ω3 increases. The weights change more when
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Bayesian inference is used to estimate the parameters for the local models, compared to
when MLE is used. For both estimation methods, the median of ω3 never exceeds the
median of ω2, which does not agree with the guidelines in Table 1.
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Figure 2. Box plots of the estimated weights ω1 (for the GEV model), ω2 (for the Gumbel model)
and ω3 (for the regional model) when using CRPS as the scoring rule. From left to right we see
how the weights change when the years of data used in the analysis is reduced. The upper and
lower results are obtained using Bayesian inference and MLE, respectively, for the parameter
estimation in the local GEV and Gumbel models.

Figure 2 presents the estimated mixture weights when CRPS is used as the scoring rule.
Overall, the GEV and the Gumbel model seems to perform better than the regional model,
except for the case when only 10 years of data are used to estimate the models with the
Bayesian inference approach. For this particular setting, the regional model gives better
estimates and there is some increase in the variation of the weights, due to numerical
problems when estimating the parameters based on only 10 observations.

The difference in the three weights reduces slightly as the number of years in the training
set is reduced. This somewhat agrees with the guidelines in Table 1, which suggests to use
the regional model when little data is available. However, the GEV and Gumbel model
seems to be approximately equally good for all settings, thus the recommended change
from the GEV to the Gumbel model is not obvious in these results.

The difference in the scores assigned by CRPS does not distinguish greatly between the
models. The CRPS evaluates the performance of each model on the entire predictive dis-
tribution. Thus the results in Figure 2 tells us that the GEV and the Gumbel model have
similar performance in terms of predicting return levels for all return periods, and that
they almost always performs better than the regional model. However, we are more inter-
ested in predicting extreme values, and it is therefore more interesting to look at scoring
rules that evaluate the upper tail.

The Brier score allows us to compare the different models’ ability to predict return levels
above a certain threshold u. In order to make the scores from each station comparable,
the threshold u must be the same for all stations. Figure 3 shows the resulting weights
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Figure 3. Box plots of the estimated weights ω1 (for the GEV model), ω2 (for the Gumbel model)
and ω3 (for the regional model) when the Brier score with threshold u = 425 l/s/km2 is used as
the scoring rule. From left to right we see how the weights change when the years of data used
in the analysis is reduced. The upper an lower results are obtained under Bayesian inference and
MLE, respectively, for the parameter estimation in the local GEV and Gumbel models.

under the Brier score with threshold u = 425 l/s/km2. This threshold corresponds to the
return period T = 5 for the training data from all stations pooled together. It would be
more interesting to measure the performance with a threshold corresponding to a longer
return period. However, the magnitude of the annual maximum discharge varies a lot
from station to station. The largest observed value from each catchment ranges from 75

l/s/km2 to 1897 l/s/km2, thus the threshold 425 l/s/km2 is high for some stations while
low for others. In total, for 21 stations the largest observed annual maximum discharge is
less than 425 l/s/km2. If a station has no observed values above the threshold, the Brier
scores of its estimated distributions, FGEV, FGumbel and Fregional, are approximately zero,
since the predicted probabilities pu are likely close to zero and 1{y ≥ u} is always zero.
Each model thus receives a good score, resulting in approximately equal weights, but the
performance is evaluated on a range with no observations and thus tells us little about
the relative performance of the three models.

From the results in Figure 3 we see that when Bayesian inference is used the Gumbel
model is given the largest median weight, except for when only 10 observations are
available, when again the regional model seems to be the best choice. Overall, the three
weights are approximately centered around 1/3, with ω1 and ω3 skewed to the left and
ω2 to the right. This can be explained by the fact that a lot of the stations do not have
observations above the threshold, resulting in approximately equal weights for the three
models, as explained above. These results contribute to the median of each weight such
that it is close to 1/3. Thus the way the box plots are skewed tells us something about the
relative scores for the stations which have observations above the threshold.

The quantile score measures the different models’ ability to predict events above a certain
quantile, where the quantile corresponds to different return values for each station. In
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Figure 4. Box plots of the estimated weights ω1 (for the GEV model), ω2 (for the Gumbel model)
and ω3 (for the regional model) when the quantile score at the quantile τ = 0.995 is used as the
scoring rule. From left to right we see how the weights change when the years of data used in
the analysis is reduced. The upper and lower results are obtained under Bayesian inference and
MLE, respectively, for the parameter estimation in the local GEV and Gumbel models.

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

B
ayes

M
LE

50 40 30 20 10
Number of observations

ω1

ω2

ω3

Quantile score, 0.995 (T=200)

Figure 5. The average value of ω1 (for the GEV model), ω2 (for the Gumbel model) and ω3 (for the
regional model), estimated using the quantile score with τ = 0.995, plotted against the number of
observations used to estimate the parameters of the GEV and the Gumbel model. The upper and
lower results are obtained using Bayesian inference and MLE, respectively.
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Figure 4 we see the estimated weights when this scoring rule with the quantile τ = 0.995,
corresponding to the return period T = 200, is applied. Here we see more variation in
the weights as the number of years included in the training set is reduced.

Figure 5 shows how the average weights changes as the number of observations is re-
duced. The weights seem to follow the assumed trend, namely that the regional model
receives the largest weight when less than 10 years of data is available and that the Gum-
bel model is preferred otherwise. When MLE is used to estimate the parameters for the
local models, the largest weight is put on the regional model even when 20 years of data is
available. For both MLE and Bayesian inference, the GEV starts out with a larger weight
than the regional model, but this relationship shifts as the number of observations re-
duces from 50 to 40.

Figure 6 presents the resulting weights when the quantile-weighted CRPS is applied,
with weight functions w(τ) = 1{τ ≥ 0.8}, w(τ) = 1{τ ≥ 0.9} and w(τ) = 1{τ ≥ 0.99}.
The results for τ ≥ 0.8 and τ ≥ 0.9 are similar to the results for the CRPS, while the
results for τ ≥ 0.99 resemble the results obtained with the quantile score. For each of
these results we see some of the expected change in the weights, and this change becomes
more apparent as we move our focus further out in the upper tail.

If we look at how the mean weights plotted against the amount of data used in the analy-
sis, as displayed in Figure 7 for the quantile-weighted CRPS withw(τ) = 1{τ ≥ 0.9} and
w(τ) = 1{τ ≥ 0.99}, we see that ω3 exceeds ω1 earlier for the latter weight function. The
shift in the relationship between ω2 and ω3 occurs at the same point in both cases.

4.2 Mixture weights estimated by minimizing the average score
The weights obtained by minimizing the ignorance score of the mixture model are given
in Figure 8. Here, we see a high variability in the estimated weights for all settings. This
can be explained as follows. For each catchment, the weight tends to be put on only one
model. However, the model that receives the large weight changes from catchment to
catchment.

It is easier to compare the results by looking at how the average weights change when
the number of available observations reduces, as shown in Figure 9. The weight corre-
sponding to the regional model, ω3, increases as the number of observations is reduced.
The two other weights alternate between increasing and decreasing, but in total they de-
crease from 50 to 10 observations.
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Figure 6. Box plots of the estimated weights ω1 (for the GEV model), ω2 (for the Gumbel model)
and ω3 (for the regional model) under the quantile-weighted CRPS with weight functions w(τ) =
1{τ ≥ 0.8} (top), w(τ) = 1{τ ≥ 0.9} (middle) and w(τ) = 1{τ ≥ 0.99} (bottom). From left to
right we see how the weights change when the years of data used in the analysis is reduced. In
each plot, the upper and lower panels show results obtained under Bayesian inference and MLE,
respectively, for the parameter estimation in the local GEV and Gumbel models.
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Figure 7. The average value of ω1 (for the GEV model), ω2 (for the Gumbel model) and ω3 (for
the regional model), estimated using the quantile-weighted CRPS with w(τ) = 1{τ ≥ 0.9} (top)
and w(τ) = 1{τ ≥ 0.99} (bottom), plotted against the number of observations used to estimate
the parameters for the GEV and the Gumbel model. The upper and lower panel in each plot are
obtained with Bayesian inference and MLE, respectively.
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Figure 8. Box plots of the estimated weights ω1 (for the GEV model), ω2 (for the Gumbel model)
and ω3 (for the regional model) when minimizing the average ignorance score of the mixture model
over the test set. From left to right we see how the weights change when the years of data used in
the analysis is reduced. The upper and lower results are obtained under Bayesian inference and
MLE, respectively, for the parameter estimation in the local GEV and Gumbel models.
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Figure 9. The average value of ω1 (for the GEV model), ω2 (for the Gumbel model) and ω3 (for
the regional model), estimated by minimizing the average ignorance score, plotted against the
number of observations used to estimate the parameters for the GEV and the Gumbel model.
The upper and lower results are obtained with Bayesian inference and MLE, respectively.

5 Conclusion

The different estimation methods for the mixture weights, with different scoring rules,
suggest quite different weighting schemes. The trend we expect to see based on the cur-
rent guidelines for flood frequency analysis is most apparent when using scoring rules
that focus on the upper tail, i.e. the quantile score and the quantile-weighted CRPS for
high quantiles. In general, the weight corresponding to the regional model increases

Mixture models for statistical flood frequency analysis 19



when the number of observations in the training set is reduced, while the two other
weights decrease. The Gumbel model tends to receive larger weight than the GEV model,
indicating that it overall performs better than the GEV model. The weight put on the
Gumbel model is relatively large also when we look at only 10 years of data.

For future work it can be interesting to investigate how the weights change if we include
more than 50 years of data in the training set. This can for example be done by using
all 75 observations from the catchments used in this study as training data and apply
cross validation methods to asses the performance of the different models. The best es-
timates for the GEV, the Gumbel and the regional model might depend on the mixture
weights. Thus we could try estimation approaches where we estimate all the parameters
simultaneously, instead of assuming that the parameters for three models are given when
estimating the mixture weights.
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