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Introduction

Studies of climate change often involve the statistical analysis of climate variables (or their
meteorological counterparts) indexed in space and time (von Storch and Zwiers, 2002). Usually
these variables are observed directly from instrumental measurements (e.g., from thermomet-
ers for temperature; from rain gauges for precipitation), but it is becoming more common to
observe data indirectly from satellite measurements or as the output of global or regional cli-
mate models. As the datasets become more complex, the statistical analyses can become more
involved.

A common statistical problem is to model and assess trend in climate data (e.g., Cohn and
Lins (2005); Craigmile et al. (2004); Shen et al. (2012); Smith (1993); Weatherhead et al. (1998)).
Trends are often described by smooth changes in the certain features of a stochastic process
over longer scales. Traditionally trend refers to smooth changes in the mean of a process over
time but, as we will demonstrate, this definition can be extended to allow us to consider the
smooth changes of other characteristics of a stochastic process, or can be extended to other
dimensions of change, such as over space.

In the latest IPCC report (Hartmann et al., 2013) the issue of trends is explained in Box 2.2.
While they discuss both linear and nonlinear trend models, they chose to emphasize linear
trends, arguing that “The linear trend fit is used in this chapter because it can be applied con-
sistently to all the data sets, is relatively simple, transparent and easily comprehended, and is
frequently used in the published research assessed here." (p.180)

In this chapter we mainly focus on the estimation and assessment of trend in the presence
of dependence in time. Statistical methods that assume that the errors (after removal of the
trend component) are independent and identically distributed are usually a poor assumption
for climate data. Indeed assuming that the errors can be approximated by a simple time series
model such as the autoregressive process of order one, AR(1), is also unlikely to represent the
residual variation in the climate process. The choice of the temporal (and spatial) scale for
the trend is difficult and not well defined. We present methods to estimate both linear and
nonlinear trends, with associated uncertainty quantification. Trend estimation can be differ-
ent from changepoint analysis (the estimation of breaks in a time series). (For a discussion of
changepoints and trends see Gallagher et al. (2013).) We discuss the estimation of trend in non-
traditional settings, such as in the analysis of climate extremes, and point to future directions
in the statistical assessment of climatic trends.
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Figure 1. (a) US annual mean temperature anomalies with respect to the 1961–1990 climatology. The
gray shaded region denotes simultaneous 95% confidence intervals for the mean, calculated using
estimated standard errors from Shen et al. (2012); (b) A plot of the estimated standard errors for the
mean by year.

Two motivating examples

We motivate the estimation of trend in climate time series using two datasets of average annual
temperature. Each series has a well-defined estimate of uncertainty. The first series we consider
is the average temperature over the contiguous United States (US), while the other is a global
temperature series.

US average temperature anomaly
Shen et al. (2012) produced statistical estimates of US temperature anomalies from 1897–2008,
using the US Historical Climatology Network data set version 2 (Menne et al., 2009), corrected
for the fact that the time of day that measurements are made at can differ by site. Since US
land temperature is a statistical estimate and not a direct measurement, it has a quantifiable
standard error, with components coming from measurement error at individual stations, spa-
tial dependence, and orographic effects, etc. Shen et al. (2012) was mainly concerned with the
statistical estimation of this standard error. Figure 1(a) shows a time series plot of the anom-
alies with respect to the 1961–1990 climatology (i.e., residuals from the average temperature
over this time period). The shaded gray regions denotes simultaneous 95% confidence inter-
vals for this mean, calculated using the estimated standard errors with a Bonferroni correction
(Abdi, 2007). Figure 1(b) shows that the standard errors decrease until 1975, and then increase
again to the end of the record. The reason for this increase is the removal of stations mainly
due to reduced funding.

Global temperature series
The Berkeley Earth project (Rohde et al., 2013) uses isotropic geostatistical tools (kriging) to es-
timate the global mean temperature. The land data have been collected from 14 databases and
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Figure 2. (a) Global annual mean temperature anomalies with respect to the 1961–1980 climatology.
The gray shaded region denotes simultaneous 95% confidence intervals for the mean, using estimated
standard errors from Rohde et al. (2013); (b) A plot of the estimated standard errors for the mean by
year.

almost 45,000 stations. One of the main differences between the Berkeley Earth approach and
most other global approaches is that the former group does not attempt to “homogenize" sta-
tions (Trewin, 2010). If a measurement device is moved or replaced, it is considered a different
station, rather than being “corrected." The ocean data used in the Berkeley Earth series (Rohde
and Muller, 2015) come from the Hadley Center sea surface temperature data set HadSST3
(Kennedy et al., 2011a,b), modified by kriging of missing grid squares. This allows for a statist-
ically justifiable estimate of global mean estimation uncertainty. Figure 2, formatted identically
as Figure 1, demonstrates that the standard errors tend to be higher in the past, although this
over-simplifies the temporal patterns in the standard errors.

That temperatures tend to increase with the years is obvious in the global temperature series,
but possible trend effects are more nuanced for the US average temperatures. Both series ex-
hibit dependence over time that need to be accounted for before we can assess the significance
of possible trends. We also need to account for the uncertainty in each mean series, as measured
by the time-varying standard errors.

Time series approaches

In this chapter we mainly focus on methods of estimation and assessment of trend for time
series processes observed discretely in time. Let T ⊂ Z denote a set of possible time points.
Suppose we observe a climate series {yt : t ∈ T} regularly sampled in time. Let {Yt : t ∈ T}
denote the associated discrete-time time series process, the stochastic process that generated
{yt}. An additive decomposition for trend then assumes that

Yt = µt + ηt, t ∈ T, (1)
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where we refer {µt : t ∈ T} to be the trend component and {ηt : t ∈ T} to be the (irregular)
noise component, that captures everything in Yt that is not captured by the trend. We could also
extend the definition to include a seasonal component, {st : t ∈ T} that repeats over time. (For
a further discussion of statistical methods for estimating seasonal components in time series,
see, e.g., Bloomfield (2000); Brockwell and Davis (2002); Percival and Walden (1993).)

A multiplicative decomposition is often used to analyze data that are positively skewed or
exhibit a mean-variance relationship. The multiplicative decomposition for trend posits that

Yt = µt × ηt, t ∈ T.

When µt and ηt are positively valued for all t then we take logarithms to obtain the following
the additive decomposition:

log Yt = logµt + log ηt, t ∈ T.

While the log transformation may not be variance-stabilizing for the data in hand, the additiv-
ity of the transformed response is an attractive feature that can simplify modeling (e.g., Section
2.1 of McCullagh and Nelder (1999)).

Clearly an additive decomposition (1) for a time series is not unique, as it may not be obvious
for a given application what constitutes the trend {µt} and what is the noise {ηt}. While Kend-
all (1973) encapsulates that “the essential idea of trend is that it shall be smooth”, he does not
indicate “how smooth”. An estimate of trend is defined purely in terms of the statistical model
or method that we use to estimate it. As with any additive statistical estimation procedure,
anything that is not captured by the estimated trend, µ̂t say, will be appear in the estimate of
the errors η̂t = yt − µ̂t. This has led to defining the trend in terms of how smooth the process
is. For example: (i) letting µt = f(t) for some deterministic function f of time t, we assume a
certain number of derivatives for f or by defining the trend in terms of linear combinations
of known smooth functions (e.g., Wahba (1990); Wood (2006)); (ii) using certain functions such
as wavelets we can define the trend in terms of averages over certain temporal scales (e.g.,
Brillinger (1994a, 1996); Craigmile et al. (2004)).

Candidate models for the noise
Different statistical models for the noise will influence our ability to estimate climatic trends.
Thus, before we outline statistical methods for estimating and assessing trend, we discuss com-
monly used classes of time series models for the noise. A typical assumption is that the noise
process {ηt} is a mean zero stationary process. For a mean zero time series process, stationarity
requires that the covariance of ηt and ηt+h depends only on the time lag h, and not on the time
index t. This assumption simplifies estimation of the parameters driving the noise, and can be
a reasonable assumption if the trend is able to capture the time-varying features of climate.

As we argued at the start of the chapter, it is typically unreasonable to assume that the noise
process is uncorrelated in time (also known as a white noise process) or independent and identic-

7



ally distributed in time (also known as an IID process). In climate studies an autoregressive pro-
cess of order one, AR(1), also called a red-noise process, is commonly used to model the noise
{ηt}. This model is defined by letting

ηt = φηt−1 + Zt, t ∈ T,

where {Zt} is a white noise or IID process. The noise process is stationary (and causal) when
the autoregressive parameter φ satisfies |φ| < 1. More general dependence structures can be
obtained by increasing the order of autoregression to yield an autoregressive process of order
p, AR(p):

ηt =

p∑
j=1

φjηt−j + Zt, t ∈ T.

We can also filter the {Zt} process to obtain the ARMA(p, q) process, the autoregressive moving
average process of orders p and q:

ηt =

p∑
j=1

φjηt−j + Zt +

q∑
k=1

θkZt−k, t ∈ T.

In practice since stationary ARMA model can be written as an infinite AR model (that in prac-
tice is truncated to finite order), some statisticians working in climate prefer to use lower order
AR processes rather than ARMA processes (the parameters of AR processes can be easier to
estimate than those of ARMA processes, for example).

In more recent years, long memory processes have been used as a model for noise in studies
of climate (e.g., Barboza et al. (2014); Cohn and Lins (2005); Craigmile et al. (2004); Hussain
and Elbergali (1999); Koutsoyiannis (2003)). The choice of this class of processes could be due
to the fact these models capture the self-similar behavior of climate processes over long time
scales (e.g., Beran (1994)), but also because stationary long memory processes exhibit slowly
decaying autocorrelations. These slowly decaying correlations give the appearance of local
deviations that we commonly see in climate series, but lead to greater uncertainty in the trend
estimates.

For our two motivating datasets, we need to extend the class of models for the noise to include
modulated stationary noise, with time dependent variance. A modulated noise process {ηt} is
defined by

ηt = σtεt, t ∈ T,

where {σt} are the time-varying standard deviations and {εt} is a stationary process.

Linear trends
For some climate series it may be reasonable to assume that the mean level µt of the process
at time t, is linearly associated with some covariate xt of interest. Commonly this covariate xt
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may be a linear function of time, but it could be another series such as carbon dioxide levels
at time t (or some smoothed version of this series). A simple linear regression/trend model is then
given by

µt = β0 + β1xt, t ∈ T. (2)

A naive estimator of the intercept parameter β0 and slope parameter β1 is given by ordinary
least squares (OLS). For series of length N , The OLS estimates,

arg minβ0,β1

N∑
t=1

(yt − β0 − β1xt)2, (3)

are

β̂0 = y − β̂1x with β̂1 = r
sy
sx
,

where y is the sample mean of {yt}, x is the sample mean of {xt}, sy is the sample standard
dervation of {yt}, sx is the sample standard dervation of {xt}, and r is the (Pearson) sample
correlation between {xt} and {yt}. When the noise {ηt} is IID we have that the OLS estimates
are the best linear unbiased estimates (BLUE) of β0 and β1 (they are unbiased estimates of the
true parameters, and the variance of any linear combinations of the parameter estimates is
smallest amongst all linear estimators). Since {ηt} are usually not independent, a key question
is how the OLS estimator behaves when {ηt} is a dependent time series. When {ηt} is a mean
zero stationary process the OLS estimators are unbiased but are no longer the best when it
comes to minimizing their variance among linear competitors. The same is true for modulated
stationary processes.

When the variances of {ηt} are changing with time, but the series are still independent, the
best linear unbiased estimators come from weighted least squares (WLS). The WLS estimates are

arg minβ0,β1

N∑
t=1

wt(yt − β0 − β1xt)2, (4)

where wt = 1/var(ηt) is the reciprocal of the variance of the noise at time t.

When the error terms are dependent, let Σ| = cov(η) the covariance matrix for the noise, where
η is the column vector of the ηt, meaning that Σ| t,t′ = cov(ηt, ηt′) for each t and t′. Letting y and
x be the column vectors of the yt and xt, respectively, the general least squares (GLS) estimates,

arg minβ0,β1(y − β01− β1x)TΣ| −1(y − β01− β1x) (5)

(where 1 is a vector of ones), are the BLUEs of β0 and β1. OLS and WLS is a special case of GLS
when Σ| is a scaling of the identity matrix, or a diagonal matrix with diagonal entries var(ηt),
respectively.
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Usually Σ| is unknown. In that case, OLS is commonly used for exploratory purposes, even
when we have correlated noise. Using the residuals calculated using via the OLS estimates,

η̂t = yt − β̂0 − β̂1xt,

we find candidate time series models. Using a given candidate model, we plug in the estimated
Σ| from the model in (5). Alternatively the time series parameters can be part of the minimiza-
tion process (Goldstein, 1986), using OLS, followed by a number of steps of GLS, re-estimating
the time series parameters after each OLS or GLS step.

If we are willing to assume a distribution for the noise process {ηt}, then we can estimate the
parameters of the trend and time series process jointly using maximum likelihood (ML). For
example, suppose that {ηt} is a Gaussian process (i.e., the joint distribution of the noise at
any collection of time indexes is normal). Let θ denote the parameters characterizing the noise
model, which drives Σ| . The likelihood function that needs to be maximized is

L(β0, β1,θ)

= (2π)−N/2 [det(Σ| )]−1/2 exp
{

(y − β01− β1x)TΣ| −1(y − β01− β1x)
}
.

It can be shown that the ML estimates of β0 and β1 are the the GLS estimates substituting in
the ML estimate of θ into Σ| . Typically the ML estimate of θ is not available in closed form for
most time series models; it is obtained via numerical optimization.

Assuming the noise vector to be Gaussian with mean 0 (a vector of zeros) and covariance Σ| , the
vector of the GLS estimators β̂ = (β̂0, β̂1)

T of β = (β0, β1)
T have a bivariate normal sampling

distribution:

β̂ ∼ N2

(
β,
[
XTΣ| −1X

]−1)
, (6)

where here the design matrix X is a N × 2 matrix with first column all ones and the second
column being x. This distributional assumption assumes that we have the correct model for
both the trend and the noise. In practice for statistical inference of β, we plug-in an estimate
of Σ| . The sampling distribution of the trend estimate, µ̂ = Xβ̂ of µ = (µ1, . . . , µn)T follows
naturally (e.g., Ravishanker and Dey (2001)):

µ̂ ∼ Nn(µ,Xcov(β̂)XT ). (7)

The standard error for the fitted curve is then

se(µ̂t) =

√
xTt cov(β̂)xt t ∈ T, (8)

where xt is the tth row ofX . We can also derive a marginal sampling distribution for µ̂t based
on the t distribution when Σ| = σ2R. In this case R is a positive definite matrix and σ2 is
some positive variance parameter that is estimated using OLS; multivariate inference follows
from F-tests (e.g., Ravishanker and Dey (2001)). (The t and F distribution assumes that the
parameters characterzingR are known.)
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Nonlinear and nonparametric trends
Clearly there is no a priori reason why the trend component {µt} of the climate series needs to
be linear in time or in some covariate. Again, introducing the covariate {xt} and considering
it now to be defined as a linear function of time, a simple model that allows for the trend to
be nonlinear is the polynomial trend/regression model. A polynomial trend model of degree p has
functional form

µt = β0 +

p∑
j=1

βj x
j
t , t ∈ T.

As with the simple linear trend model the coefficients in the polynomial model {βj} can be
estimated in a number of different ways (e.g., OLS, WLS, GLS, and ML). As this is a linear
model (e.g., Ravishanker and Dey (2001)), the properties of each estimator will again be driven
by the statistical properties of the noise process, and these properties are essentially the same
as for the simple linear trend model. Compared to (6), the GLS estimator now has a (p + 1)-
variate normal sampling distribution for a Gaussian noise process, where the design matrixX
has ith row

xi = (1, xi, x
2
i , . . . , x

p
i )
T , i = 1, . . . , N.

(7) and (8) also hold for this model. In choosing a polynomial trend model for data we need
to select the degree of the polynomial, p. This is a common problem in both regression and
time series analysis,where there is a need to balance the the smoothness of the trend that we
observe in the climate series, with writing down a model that adequately captures the noise.
We should be wary of overfitting (writing down a statistical model for the trend for which
the estimated coefficient are near zero, but are highly uncertain). Overfitting leads to statist-
ical models with poor predictive performance. Penalized regression and penalized likelihood
methods can be applied to ensure that we do not fit models that are overly complicated and
poor descriptors of the data. Demonstrating the idea of penalized ML methods, we will use
the Akaike Information Criterion (AIC) in our case studies in Section 4 below.

There are others examples of parametric models for the trend beyond polynomial models. To
see this, introducing the p+ 1 functions {fj(x) : j = 0, . . . , p}, defined as

fj(x) = xj , j = 0, . . . , p,

we see that the polynomial trend can be written in more a general notation:

µt =

p∑
j=0

βjfj(xt), t ∈ T.

Replacing the polynomial functions by other smooth functions, lead to more generalized mod-
els for trend. Commonly used examples of so-called basis functions include sinusoids (e.g.,
Bloomfield (2000); Percival and Walden (1993)), wavelets (e.g., Brillinger (1994a, 1996); Craigmile
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et al. (2004); Percival and Walden (2000)), splines (e.g., Wahba (1990); Wang (1998); Wood
(2006)), and local regression models (e.g., Cleveland et al. (1992); Loader (1999)). Given the
multitude of possible functions that can be used to model trend, model selection and compar-
ison becomes more problematic. We again need to be wary of overfitting; penalized regression
and penalized regression models are popularly used for fitting trends constructed from a lin-
ear combination of basis functions. In the Bayesian paradigm there is extensive research into
building priors for the regression parameters to enforce smoothness, while guarding against
overfitting by enforcing sparseness.

Uncertainty quantification for the estimated trends are typically more involved and more com-
putationally intensive to calculate, especially when Bayesian penalized methods are used. De-
pending on the paradigm, Markov chain Monte Carlo (MCMC) (e.g., Brooks et al. (2011); Gel-
man et al. (2013)), or Monte Carlo and other resampling methods are commonly used for as-
sessing the uncertainty or significance of trend estimates (e.g., Cabilio et al. (2013); Craigmile
et al. (2004); Efron and Tibshirani (1994); Lahiri (2013)).

A particularly simple and effective nonlinear model for trend is the broken stick model, which is a
first order spline model with one knot. The broken stick model is useful when there is a qualit-
ative change in the system at some time point. Sometimes this time point is known, sometimes
only suspected. As with linear models, generalized least squares or maximum likelihood, for
example, can be used to estimate the parameters in the model, while estimating the depend-
ence in the errors. Given a change point time (or knot) τ we fit a straight line to y1, . . . , yτ as
a function of x1, . . . , xτ , and a connecting line to yτ+1, . . . , yN as a function of xτ+1, . . . , xN . If
desired, the parameter τ can also be estimated in the model. If a smoother version is desirable,
a bent cable model (Chiu and Lockhart, 2010) connects the two linear parts with a quadratic
connector. The model is then

µt = β0 + β1t+ β2

[
(t− τ + γ)2

4γ
I{|t− τ | ≤ γ}+ (t− τ)I{t > τ + γ}

]
, t ∈ T. (9)

In other words, a straight line is fitted between indexes 1 and τ − γ, a quadratic between
τ − γ and τ + γ, and another line between τ + γ and n, with the three segments connecting
continuously. The model can be fit using least squares or via ML.

Smoothing and filtering to estimate the trend
The moving average (MA) filter can be used to estimate the trend of a climate series {Yt : t =

1, . . . , n} nonparametrically. The trend estimate from an MA(q) filter is defined by

µ̂t =

q∑
j=−q

[
1

2q + 1

]
Yt−j , t = q + 1, . . . , n− q

(care needs to be taken to define the trend estimate for t < (q + 1) and t > (n − q)). The
value of q (a positive integer) controls the level of smoothing of the filter, while controlling
the influence of the noise process upon the trend estimate (i.e., it manages the bias–variance
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tradeoff in estimating the trend). Any MA(q) filter provides an unbiased estimate of a linear or
locally-linear trend (Chapter 1 of Brockwell and Davis (2002)).

Again for some positive integer q, a more general smoothing filter {aj : j = −q, . . . , q} can be
designed so that the trend estimate,

µ̂t =

q∑
j=−q

ajYt−j ,

can unbiasedly estimate trends of a given degree of polynomial (e.g., Exercise 1.12 of Brockwell
and Davis (2002)). With the additive decomposition for trend given by (1), uncertainty quan-
tification for these trend estimates follow by assuming a model for the noise, and calculating
the covariance of the filtered noise using the stationarity preserves a stationary result.

We need to be cautious with some choices of smoothing filter, because it is possible to introduce
features in the estimated trend that do not exist in the original time series. Often it can help to
think of smoothing in terms of its effect upon the low and high frequency components of the
climate series {Yt}; namely, smoothing emphasizes the low frequency components of the series
(“the trend”), and reduces the effect of the high frequency component (“the noise”). Looking
at the so-called spectral properties of filters can indicate issues that may occur with smoothing
and filtering; see, e.g., Percival and Walden (1993) for more details of the spectral approach.

Removing or simplifying trend by differencing
Rather than estimating the trend component for a climate series, we may choose to remove or
simplify it. For example the differencing operator,∇, has the ability to remove trend by taking
a polynomial of degree p and yielding a polynomial of degree p − 1 (e.g., Exercise 1.10, p.42
of Brockwell and Davis (2002)). Formally for the series {Yt}, the differencing operator ∇ is
defined by

∇Yt = Yt − Yt−1, t ∈ T.

Now suppose that µt = β0 +β1t is a linear trend in t. Then∇µt = β1 for all t. Thus differencing
a linear trend yields a constant trend, with a trend equal to the slope of the original series. This
demonstrates another way to estimate the slope for a simple linear trend model as defined
by (2): we difference the climate series, and estimate the slope using the sample mean for the
differencing time series. The statistical properties of this estimate of the slope may be involved,
and are driven by the statistical properties of the differenced noise process, {∇ηt}.

Hierarchical and dynamic linear model decompositions for trend
Writing down statistical models defined in terms of differencing, allows for stochastic rep-
resentations of trend. These stochastic representations are more commonly used in financial
applications (e.g., Tsay (2010)), but can also be used in climatic analyses. A simple example of
a model defined using differencing is the autoregressive integrated moving average ARIMA(p,
d, q) process.
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By noting that an ARIMA model can be written as a form of random walk model, we are
drawn to define stochastic models for trend in terms of a hierarchical statistical model (Durbin
and Koopman, 2012; Hyndman et al., 2008). Here follows a simple example. Again suppose
{Yt : t ∈ T} is our time series process of interest and assume the additive decomposition of

Yt = µt + ηt, t ∈ T,

where {ηt} is the noise process. Now, rather than assuming that the trend µt is deterministic
we assume a random walk model for µt:

µt = µt−1 + Zt, t ∈ T,

where {Zt} is a white noise or IID process. For this model we can estimate the latent trend com-
ponent process using the computationally efficient Kalman filtering algorithm (e.g., Durbin
and Koopman (2012); Shumway and Stoffer (1982, 2010)). Parameter estimation follows in
the Gaussian process setting using ML. In the Bayesian context this is an example of a Dy-
namic Linear Model (DLM) (Harrison and West, 1999). This class of models can be related to
the smoothing and spline methods discussed above (e.g., Hyndman et al. (2008); Lindgren and
Rue (2008); Wecker and Ansley (1983)).

Two case studies

We now return to the two data sets presented in Section 2. We will demonstrate that failure
to investigate residual structure, or to make assumptions appropriate for the data, can yield
incorrect conclusions.

US annual temperatures
The standard approach in the climate literature is to fit a linear trend to a time series using
ordinary least squares (3). Doing that for the US annual temperature anomalies yields an es-
timate of 0.55◦C per century (see Table 1 for details of all the fits in this section). The slope is
highly significantly different from zero, but that assumes the noise is IID and does not take into
account the variability of the measurements, leading to an overfit of the more uncertain early
measurements. In order to deal with this, we do a weighted least squares fit (4). The resulting
estimate is somewhat smaller (0.48◦C per century) and somewhat more uncertain, although
still highly significant (again assuming the noise is IID).

Looking at the sample autocorrelation function (ACF) of the residuals from the two least
squares fits in Figure 3, we see clear evidence of dependence for both fits. Indeed, compared to
the OLS fit, there is evidence that the dependence is stronger once we account for the change
in variability over time using the WLS fit. The last column of Table 1, showing the Ljung-
Box (Ljung and Box, 1978) P-value when testing that the residuals are IID (based on 10 lags
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Table 1. Fits of linear trend slopes to US annual average temperature anomalies

Slope per Standard Slope Ljung-Box
Model century error P-value AIC P-value
OLS 0.55 0.12 <0.0001 116.0 0.000
WLS 0.48 0.14 0.0006 124.8 0.000
Shen et al. 0.57 0.17 0.0008 N/A N/A
AR(1) 0.55 0.15 0.0004 110.6 0.066
Weighted AR(1) 0.47 0.18 0.0107 116.1 0.013
AR(4) 0.58 0.20 0.0038 109.3 0.593
Weighted AR(4) 0.53 0.26 0.0490 110.1 0.741
ARMA(3,1) 0.64 0.24 0.0092 107.4 0.814
Weighted ARMA(3,1) 0.60 0.32 0.0655 109.1 0.849
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Figure 3. Sample autocorrelation functions for the residuals from the ordinary and weighted least
squares linear trend fit to the US annual mean temperature anomalies.

of the ACF), demonstrates that there is significant dependence in the OLS and WLS residuals
that needs to be accounted for.

The most common time series model in the climate literature is AR(1). To fit the two AR(1)
models (unweighted: assuming a constant variance over time; weighted: assuming that the
variance is time-varying) we use the generalized least squares estimator, given by (5). In es-
sence, Shen et al. (2012) use this approach to estimate slopes. The resulting slopes are almost
the same as for the corresponding fits using the independence assumption, but the standard
errors become 20-30% larger. The fitted slopes are still significantly different from zero under
the AR(1)-assumption for the noise structure. At the α = 0.05 level, the Ljung-Box test rejects
the null hypothesis of IID noise for either set of AR(1) residuals.

Sticking to the autoregressive error structure, the best such fit is AR(4). The resulting slopes as
well as standard errors become larger, and the weighted AR(4) test for the significance of the
slope parameter has a P-value of just lower than 0.05. But the best ARMA-type error structure

15



1900 1920 1940 1960 1980 2000

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

WLS
Weighted ARMA(3,1)
Weighted AR(4)

Figure 4. US annual mean temperature anomalies with trend lines overlaid from the WLS fit (dotted
line), generalized least squares with weighted ARMA(3,1) errors (solid line), and weighted AR(4) errors
(dashed line). Simultaneous 95% confidence bands for the ARMA(3,1) trend are shown in gray.

is ARMA(3,1), which also yield the largest slopes. The weighted ARMA(3,1)-slope is not signi-
ficantly different from zero. Figure 4 shows three of the fitted lines. All fits from these models
pass the Ljung-Box IID noise test.

Table 1, in addition to showing that the statistical significance of the slope strongly depends on
the assumptions made, indicates that unweighted ARMA(3,1) model has the best fit according
to the AIC criterion. Choosing the model with the lowest AIC assumes that the errors are
Gaussian and that the trend is linear. Since, the weighted residuals are slightly less skewed
than the unweighted residuals, we choose the weighted ARMA(3,1) or weighted AR(4) general
least square fits to explain the dependence, which leads us to conclude that the linear trend is
only weakly significant, once we account for the time-varying variance and dependence in the
series.

Global annual mean temperature
When looking at the global temperature time series, we start by fitting a straight line using
least squares. The linear fit is not particularly good, and the residuals (Figure 5) indicate that a
quadratic fit might be better.

Using a similar approach to that in Section 4.1, we use a generalized least squares fit to a trend
that is a quadratic function of time, with time series errors following an ARMA(4,1)-model
and weights corresponding to the estimated observation variance. Figure 6 shows the fitted
model. Again, the residuals pass various tests for IID noise. We calculate the standard error of
the fitted curve from (8). A Bonferroni calculation shows that a simultaneous 95% confidence
band is given by going up and down 3.6 standard errors from the fitted curve.

A broken stick model is suggested by the idea that at some point in the twentieth century the
human-generated greenhouse gases may have started to dominate the natural forcings of the
climate system, thereby changing the rate of increase in global temperatures. The estimated

16



1850 1900 1950 2000

Year

Te
m

pe
ra

tu
re

 a
no

m
al

y 
(°

C
)

−
1.

0
−

0.
5

0.
0

0.
5

(a)

1850 1900 1950 2000

−
0.

2
0.

0
0.

2
0.

4
Year

O
LS

 r
es

id
ua

l (
°C

)

(b)

Figure 5. (a) Global annual mean temperature anomalies with respect to the 1951-1970 climatology.
The gray shaded region denotes simultaneous 95% confidence intervals for the mean, using estimated
standard errors from Rohde et al. (2013). The trend line correspond to ordinary least squares. (b)
Residuals from the ordinary least squares fit.
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Figure 6. Global annual mean temperature anomalies with respect to the 1951-1970 climatology. Differ-
ent line types denote different estimated trends. The gray shaded regions denotes simultaneous 95%
confidence bands for the quadratic trend estimate, assuming ARMA(4,1) errors and time-varying vari-
ances.
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broken stick model changes slope at 1909 (confidence interval 1894 – 1924). When fitting a bent
cable model using AR(4) error structure to the global temperature series, the resulting curve is
very similar to the quadratic fit, as seen in Figure 6. The quadratic part of the fit goes between
1863 and 2014; i.e. almost the entire series. Both the broken stick and bent cable models fall
inside the quadratic simultaneous confidence band.

Since the global series is poorly fit by a straight line, the decision in the IPCC Fifth Assessment
Report to only report straight lines is not supported by this data set. It should be noted that the
report uses the Hadley global temperature series (Morice et al., 2012), but an analysis of that
series yields nearly identical results to our analysis in this section.

Spatial and spatio-temporal trends

Statistical methods of trend estimation and assessment extend naturally to the spatial and
spatio-temporal settings. (For a review of spatial and spatio-temporal models, see e.g., Cressie
and Wikle (2011); Gelfand et al. (2010); Le and Zidek (2006); see Chorley and Haggett (1965) for
an early discussion of spatial trend estimation.) Not all of the papers that appear in this section
are climate examples, but the methodology can be applied to the analysis of climate variables
observed over space and time.

An an example, suppose we wish to estimate trend for a point-referenced (also known as a
geostatistical) spatial process {Z(s) : s ∈ D ⊂ Rp}, based on n observations from the process,
z = (z(s1), . . . z(sn))T . Assuming an additive decomposition for this process {Z(s)}we have

Z(s) = µ(s) + η(s), s ∈ D,

where {µ(s) : s ∈ D} is the spatial trend component and {η(s) : s ∈ D} is the spatial noise
component. As in the time series case, we typically assume that the noise is a mean zero station-
ary process. Again, linear model representations are commonly used for the trend component:

µ(s) =

p∑
j=0

βj xj(s),

where {xj(s) : s ∈ D} are p+ 1 spatial basis functions. Traditionally, simple polynomials (e.g.,
Cressie and Wikle (2011); Gelfand et al. (2010)), splines (e.g., Cressie and Johannesson (2008);
Nychka (2000); Sangalli et al. (2013); Wood (2003)), and other functions such as wavelets are
used to model the trend in spatial settings (e.g., Álvarez and Sansó (2008); Cressie and Johan-
nesson (2008); Nychka et al. (2002)). Inference follows in the same way as for time series (e.g.,
via least squares, ML, penalized methods, and Bayesian methods).

Also, given that we can represent spline models (and indeed other basis models) using random
spatial processes (e.g., Kleiber and Nychka (2015); Nychka (2000)), we could also assume that
the trend component {µ(s) : s ∈ D} is a random process that smoothly varies over space.
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In such a case we need to specify the model for the climate variables in such a way that the
trend component captures the smooth (long-range) variation of the process over space, and
the errors captures the noise, the short range variation of the process over space (cf Sang and
Huang (2011)).

These ideas extend to modeling spatial trends for areal processes (e.g., Besag et al. (1991); Gel-
fand et al. (2010)), point processes ( see e.g., Baddeley and Turner (2006); Brillinger (1994b);
Diggle (2013); Lawless and Thiagarajah (1996); Lawson (1988) for temporal and spatial ex-
amples), and to river networks (e.g., O’Donnell et al. (2013)). Spatio-temporal methods fol-
low naturally (e.g., Craigmile and Guttorp (2011); Cressie and Wikle (2011); Lemos and Sansó
(2009); Paciorek and McLachlan (2009); Sampson et al. (2011); Waller et al. (1997); Wikle et al.
(2001)).

Assessing climatic trends in other contexts

Up to this point we have considered the trend to be smooth changes over a mean over time
and/or space. (Indeed the trend for a point process, as measured by the intensity function (e.g.,
Diggle (2013)), can also be considered to be a mean number of events occurring in a specific
time interval or spatial region.) More recently there has been an interest in modeling trends in
other features of the distribution of climate; for example, trends in the variance (e.g., Craigmile
and Guttorp (2011)), trends in the quantiles (e.g., Chandler and Scott (2011); Lee et al. (2013);
Reich (2012)), and trends in extremes.

In the latter case, there are countless examples of using spatio-temporal models to assess
trends in the extreme-value distribution of climate variables, usually in the location parameter
of the generalized extreme value distribution for block maxima. Some examples of extreme
value studies using different climate variables include: temperature (Brown and Katz, 1995;
Craigmile and Guttorp, 2013; Fuentes et al., 2013; Kottas et al., 2012), paleoclimate proxies of
temperature (Mannshardt et al., 2013), and precipitation (Cooley et al., 2007; Davison et al.,
2012; Schliep et al., 2009). The use of hierarchical Bayesian modeling has revolutionized our
ability to examine trends in extremes. For example, we can introduce a spatial process for the
spatially-varying location parameter of the extreme value distribution to introduce some (al-
beit limited) smoothness over space. See Davison et al. (2012) for a comprehensive review of
the issues underlying the modeling of spatial extremes.

Discussion

In this chapter we have discussed the many issues underlying the modeling and assessment of
climate trends. Defining trend to be smooth changes in time or space, we reviewed the idea that
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trend is ill-posed because we have not specified how smooth a trend we have. This requires
us to introduce some prior belief about the trend (relative to the noise), via a suitable model
or modeling framework for the climate variable of interest. For example, a Gaussian additive
model with a specified component capturing the trend as the mean of the process may be
reasonable for modeling long-term average temperatures, whereas for modeling precipitation
block monthly maxima, the location parameter of a generalized extreme value distribution is
more appropriate. We demonstrated that trends do not need to be linear, but once we allow for
nonlinear trends, we need to be wary of overfitting to the climate data at hand.

Some authors have argued that the increasing temperature trend observed in many climate
series is due to a long memory error structure, caused by the slow reaction to forcing in
oceans as compared to atmosphere. This has led to a rich literature in researchers trying to
purely describe the variation (and indeed the trends themselves) using only long memory
processes (for a review, see, e.g., Koutsoyiannis (2003)). Smith (1993) demonstrated that a lin-
ear trend, after accounting for long memory errors, was statistically significant when estim-
ated from the Hansen and Lebedeff (1987) global temperature series. (For other examples see
Craigmile and Guttorp (2011); Craigmile et al. (2004); Lemos and Sansó (2009); see Cohn and
Lins (2005) for further discussion of the long memory versus trend question.)

It is not possible to highlight all methods for assessing and modeling trend in this chapter.
For example, tests for trend based on Kendall’s tau statistics have some popularity in environ-
mental and climate science (e.g., Darken et al. (2000); El-Shaarawi and Niculescu (1992)). We
also note the popularity of principal components (also known as empirical orthogonal com-
ponents; see, e.g., Berliner et al. (2000); Thiebaux and Pedder (1987); von Storch and Zwiers
(2002)) as trend components in atmospheric and oceanic sciences.

There are numerous future directions for statistical research into trend estimation. Using stat-
istical learning methodologies, there is interest in applying different loss functions to the effi-
cient, while robust, estimation of trend (e.g., Kim et al. (2009)). Further development of spatio-
temporal methods for trend estimation is also needed in non-Gaussian and multivariate set-
tings; a thought-provoking example in climate is the joint estimation of trends in the occurrence
and intensity of precipitation amounts (e.g., Cowpertwait (1995); Guttorp (1988)).
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