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1 Introduction

Three stocks of harp seals (Pagophilus groenlandicus) and two (possibly three) stocks
of hooded seals (Cystophora cristata) inhabit the North Atlantic Ocean where they have
been harvested for centuries (Kovacs and Lavigne, 1986; Sergeant, 1974, 1991). Monitor-
ing the abundance of seals is vital for controlling the biodiversity in the region. State-
of-the-art seal population models are dynamically built based on historical catch data
(Qigard et al., 2014a,b). The main ingredient in these models is the total pup production
in a given year which needs to be quantified based on on-site observational data since
other quantification methods based on catch-at-age and mark-recapture data etc. are con-
sidered unreliable (ICES, 2014). The whelping regions in the North Atlantic typically
cover several thousand square kilometers so that the total pup production needs to be
estimated based on observations from a minor part of the region. The estimated total
pup production and the associated uncertainty then enter the dynamic population model
(Qigard et al., 2010).

The seal pup count data are typically obtained by manual counting based on photographs
stemming from an aerial photographic survey conducted by flying along transects sparsely
covering the whelping region. The survey methodology is discussed in more detail in
Section 2. The traditional method for estimating the total pup production based on such
count data is that of Kingsley et al. (1985) which assumes a homogeneous dispersion
of seals across the entire whelping region. Salberg et al. (2009) propose a generalized
additive modeling (GAM) approach (Hastie and Tibshirani, 1990), assuming the counts
follow a negative binomial distribution and taking the spatial location of the counts into
account. For data that is close to homogneous, the negative binomial GAM approach and
the Kingley method yield similar estimates. However, the Kingley method may possess
a positive bias when the spatial distribution of the pups is clustered (Jigard et al., 2010;
Salberg et al., 2008). Additionally, the GAM method produces much smaller uncertainty
bounds than the homogenous Kingley approach.

In this paper, we propose a new method for estimating the total seal pup production.
We view the seal pup appearances as a spatial point process (Moller and Waagepetersen,
2003) and model the point pattern of the seal pups as a log-Gaussian Cox process (LGCP;
Moller et al., 1998). with a spatial latent field which also allows additional covariate in-
formation to be accounted for. In a Bayesian formulation with priors on the model pa-
rameters, the seal pup abundance estimate is represented by the posterior predictive
distribution found by integrating the posterior distribution over the spatial domain of
the whelping region, instead of a single point estimate accompanied with a variance
estimate. This Bayesian hierarchical model can be fitted by utilizing the Spatial Partial
Differential Equation (SPDE) approach of the Integrated Nested Laplace Approximation
(INLA) (Lindgren et al., 2011; Rue et al., 2009). The final posterior predictive distribution
can subsequently be computed from this fitted model by a sampling approach.

To illustrate and test this methodology, we use seal pup photo counts from an aerial
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photographic survey in the Greenland Sea in March 2012 with two different types of
seals, harp and hooded seals. The data set contains the spatial location of each photo and
the corresponding pup count. To be more informative about the non-observed areas, we
include covariate information extracted from satellite imagery captured on the very same
date as the aerial photographic survey was conducted, to act as a proxy for ice thickness.
Compared to the two other procedures our method gives larger uncertainties, especially
for the harp seals. To validate these differences, we compare our proposed method with
the two reference methods in a comprehensive validation scheme. The scheme suggests
our method performs best on local level, and comparable on a more global scale. Further
investigations suggest that the larger uncertainty in our method is indeed more realistic.

The rest of the paper is organized as follows: Section 2 describes the surveying method
used to gather seal pup observational data, in addition to specific details related to our
particular seal pup data set. The satellite imagery and the covariate information extracted
therefrom, are also discussed. Section 3 is the main section of the paper. It starts by giving
some background to our modeling approach through brief introductions to the relevant
parts of point processes and the INLA framework, before going into detail about the
present modeling approach. Subsequently, we discuss the two reference approaches in
more detail, before we describe the validation scheme we use to verify our procedure
and compare it to the reference approaches. Section 4 contains the results from our study;,
including both specifics of the model fitted with our procedure, and the validation results.
Section 5 contains some concluding remarks and pointers to further work.

2 Data

In this section we describe the surveying method and additional modeling information
we have obtained through the satellite imagery.

2.1 Surveying method

Before conducting the aerial photographic survey with the purpose of monitoring the seal
pup abundance, the marine researchers typically perform a helicopter reconnaissance
survey. An important task when performing these reconnaissance surveys is to locate
the patches where the seals live. This is important in order to limit the survey area for
the more expensive airborne photographic survey. The actual photographic survey is
conducted by flying a survey aircraft equipped with advanced photographic equipment
and GPS along a number of fixed distanced transects sparsely covering the survey area.

In this particular survey in March 2012, the airplane flew at an altitude of about 330m,
and took totally 2792 photos along 27 transects, each covering 226 x 346m of ground
level. Due to fog, an exception was made for the two southernmost transects, which were
flown at altitude 250m, with photos covering 170 x 260m. In any case, along each transect,
the cameras were turned on when the first seal was spotted from the airplane, and kept
on taking photos continuously until the ice edge (which no seals can live outside) was
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reached on the eastern side, and when no seals were spotted for an extended period to
the west. A consequence of this survey setup is that even if no photos were taken to
the west and east of the transect lines, the survey method implies that there are no seals
there. The whelping region is approximately defined as the union of the 1.5Nm (=~ 2.8km)
bands around each transect. Thus, when computing the posterior predictive distributions
with the fitted models, we do only count predictions within the whelping region. More
details about this survey may be found in Qigard et al. (2014a,b).

2.2 Seal pup counts

Following the airborne survey described above, experienced marine researchers carefully
examine each captured photo and note how many seal pups of each species there are in
each photo. Quality checks with multiple examinations also limit the measurement error
introduced in this step (Jigdrd et al., 2014a,b). Our seal count data set contains the coor-
dinates and extent of each photo, in addition to the number of seal pups of each species
observed in them. These data are plotted in Figure 1 along with the flown transects and
extent of the whelping region. As seen from the figure, there tends to be more seal types
clustered towards the middle eastern boundary and southern corner of the whelping re-
gion.
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Figure 1. Harp and hooded seal pup data from the Greenland 2012 survey.

2.3 Satellite imagery

As seals cannot live where there are no large ice floes to lie on, information about which
areas are covered by ice floes and which areas are merely open water, is highly relevant
when estimating the seal pup abundance. In an attempt to account for this, we have col-
lected high resolution satellite imagery from the whelping region captured the very same
day as the airborne photographic survey was conducted. From this satellite imagery we
have extracted a variable which acts as a proxy for the ice thickness. This density variable
is displayed in Figure 2. Comparing the satellite data to the seal pup counts in Figure 1,
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we see that the seal pup counts appears to be higher in the areas with high ice density,
than in the areas with lower ice density.
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Figure 2. Satellite data used as covariates in the model fitting process.

3 Methods

This section starts with a brief introduction to point processes, and the key components of
INLA and the SPDE approach which makes our proposed method computational feasi-
ble. We then describe the details of our proposed modeling approach, the two references
methods we compare our method to, and finally the verification scheme used to validate
and compare the methods.

3.1 Background

3.1.1 Point processes

A spatial stochastic point process is a mathematical description of the random process at
which points or locations are distributed in space. The collection of such observations is
called a point pattern. In informal mathematical terms, which typically are sufficient for
practical purposes, a spatial point process Y is a random collection of points in a bounded
observation region A C R?. By random collection we mean that both the number of points
and their actual location are random. The most fundamental type of point process is the
Poisson point process. This process is specified by a single intensity function A : A — [0, c0)
which determines the density of points in any location in A, and has the property that
the number of points, say N(B), of any Borel set B is Poisson distributed with mean
w(B) = [5A(s)ds, ie. N(B) ~ Pois(u(B)), and independent of N(B*) for any other
non-overlapping Borel set B*.

The Cox process introduced by Cox (1955) is a generalization of the Poisson point pro-
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cess where the intensity function A is itself stochastic. A popular special case of this hier-
archical model is the Log-Gaussian Cox process (LGCP) (Moller et al., 1998), where the
intensity is assumed to be log-Gaussian; i.e. there is a Gaussian latent field Z, and given
A = exp(Z), Y is a Poisson point process with intensity A. This type of model is indeed
very flexible and ought to fit well with a great variety of natural processes.

The very nature of point processes, having a model dimensionality which changes with
the number of data points, make them difficult to work with both in theory and in
practice. Advances within computational statistics the last decades have however made
complicated spatial point process models more accessible to applied researchers, see
e.g. Moller and Waagepetersen (2003).

3.1.2 Integrated nested Laplace approximation

The integrated nested Laplace approximation (INLA) methodology by Rue et al. (2009),
and the accompanying R-package INLA allows for computationally feasible approximate
Bayesian inference for a class of models called latent Gaussian models. That is, hier-

archical models where n univariate observations gathered in y = (y1,...,y,) ", is as-
sumed to be conditionally independent given m latent Gaussian variables gathered in
z=(21,...,2m) ', and a set of hyperparameters 8. More precisely, the INLA implementa-
tion covers models of the form
n m
p(y|Z, 9) = Hp(yi|’l’]i, 0), Wlth n = Z Cl'ij fOI' fixed Cij,
i=1 j=1

p(z0) ~ N(u(6),Q(6)71),
0~ p(0),

where the latent variables in z may also depend on additional (fixed) covariates when
appropriate. For computationally fast inference it is essentially that (@) is sparse and
that the model parameter vector @ is of a fairly low dimension. This covers models where
the latent field is a Gaussian Markov random field (GMRF), which is often used within
spatial statistics. The basic principle of the INLA methodology is, as the name reveals, to
utilize several nested Laplace approximations. The posterior distribution of 8 is approx-
imated using the Laplace approximation

p(y,2,0)

— : (1)
pG(z|y7 0) z=z* (9)

p(0ly) ~ p(Oly)

where p;(z|y, 0) is a Gaussian approximation to the full likelihood of z, and z*(8) is the
mode of p(z|y, 6) for a given 0. The marginals of this low-dimensional posterior distribu-
tion are typically computed by direct numerical integration. The marginals for the latent
field, p(z;|y), are typically computed by first obtaining p(z;|0, y) with a Laplace approxi-
mation of p(z_;|z;, 8,y) similar to (1), or a Taylor approximation of that distribution; and
then to use the resulting approximation, along with p(8|y) to numerically integrate out
0. See Martins et al. (2013); Rue et al. (2009) for details.

The spatial partial differential equation (SPDE) approach of Lindgren et al. (2011) has
made it possible to perform computationally efficient Bayesian inference with INLA also
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for a class of continuous latent fields. This is made possible by (approximately) trans-
forming the continuous latent field to a certain GMREF, formulated through the solution
of a SPDE, when doing the computations. The key ingredient in this approach is to ap-
proximate the continuous field Zy(s) by a field Z(s) living on a triangular mesh. For a
triangular mesh with m triangle vertices, we write

m
Z(s) = zd;(s), (2)
j=1
where z = (z1,...,2,) " isa multivariate Gaussian random vector and {¢; (8)}jL,isaset

of deterministic linearly independent basis functions which are piecewise linear between
the vertices and chosen such that ¢;(s) is 1 at vertex j, and 0 at all other vertices. A
consequence of the representation in (2) is that Z(s) is fully determined by z: Z(s) takes
the value z; at vertex j while its values inside the triangles are determined by linear
interpolation. Let us further equip Z(s) with the Matern covariance function

2

Cov(Z(s), Z(t)) = 2”%1“(1/)

(It — s])” Ky (sl[t = s])), €
where v > 0 is a smoothing parameter, K, is the modified Bessel function of the sec-
ond kind, s > 0 is a scaling parameter and o2 is the marginal variance. Lending on this
type of latent field being a solution to a certain SPDE, the precision matrix @) of z takes
an analytical form which can be approximated by a sparse matrix Q. Since Z(s) is com-
pletely determined by the z, this allows continuous field computations to be carried out
approximately using this GMRF as for the discretely indexed latent Gaussian models,
using e.g. the INLA software. Note that following certain guidelines for constructing the
triangular mesh, the approximation error involved in using this GMRF representation, is
typically small (Lindgren et al., 2011; Simpson et al., 2012).

For a complete introduction and review of the INLA framework, including the SPDE
approach, see the reference book Blangiardo and Cameletti (2015) and the review paper
Rue et al. (2016).

3.2 The present modeling approach

Before any observations are made, both the number of seal pups and where they are lo-
cated within the whelping region, are truly random. Despite this being the precise nature
of a point process, such an approach has not, to the best of our knowledge, been used to
study abundance or other aspects of seal wildlife. With knowledge of the locations of the
seal mothers, and viewing the number of pups produced by each seal mother as a Poisson
distributed variable, the Poisson point process is the natural modeling approach. How-
ever, as the locations of the seal mothers is unknown to us, it is natural to consider the
intensity as a random component as well, i.e. introducing a latent field, brings us to the
very flexible Cox process (also known as the doubly stochastic Poisson point process).
Assuming a log-Gaussian distribution for the latent field gives the frequently applied
Log-Gaussian Cox process and enables us to take advantage of the computationally effi-
cient INLA framework.
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A complicating component of the present estimation problem is that the exact positions
of the counted seal pups are not available. Instead, the seal pup counts are provided as
aggregated counts per photo. Thus, our data are merely point process data aggregated to
an irregular lattice, as opposed to actual point patterns. This disallows us from directly
applying the approach of Simpson et al. (2016), which fits LGCPs using the SPDE-INLA
framework by directly approximating the likelihood function of the LGCP. A method
which is accessible for both actual point patterns and for aggregated data, is that of Rue
et al. (2009, Section 5.5), which suggests approximating the LGCP by fitting a Poisson
regression formulation to aggregated counts on a regular lattice constituting a GMRF.
However, as the photos do not compose a regular lattice, such an approach would call
for further, typically quite rough, approximations.

The modeling approach we have chosen for this situation is a Poisson regression formu-
lation based on aggregations from a log-Gaussian Cox process, exactly as in Rue et al.
(2009, Section 5.5). However, instead of requiring the lattice to be regular, we work with
a triangulated irregular lattice allowing us to apply the SPDE procedures of INLA. This
is preferable over the regular lattice approach of Rue et al. (2009, Section 5.5) for two
reasons. First, we may work directly with the data exactly as provided to us. Secondly,
contrary to the regular lattice approach, the latent field is continuous which gives a more
precise representation of the phenomenon.

The continuous domain latent field we use in the modeling takes the form

Z(s) = a+ B x(s) + f(s), 4)

where « is an intercept term, 3 is a coefficient vector corresponding to z(s) = (¢(s), s1, s2, 5152) ',

where ¢(s) contains the density variable from the satellite imagery, while the rest are com-
ponents modeling linear spatial effects. Finally f(s) is a SPDE based continuous Gaussian
field with the Matérn covariance function given in (3) taking care of the non-linear spa-
tial dependence. To make the intercept identifiable, we restrict f(s) to integrate to zero
over the modeling region. Due to poor identifiability, we fix the Matérn smoothing pa-
rameter v = 2. This is also the default in the INLA software. The other hyperparameters
related to the latent field are equipped with default priors specified by the INLA software.
For our mesh these are 6; ~ N(1.328,10), f2 ~ N(—2.594,10) and independent, where
01 = log(1),02 = log(x) and 0 = 1/(4nk*r?). In addition « is assigned the improper
prior a ~ N(0,00), while 8 ~ N(0,1000Z,), where Z, denotes the 4 x 4 dimensional
identity matrix. As all these priors are vague, they will in very limited degree influence
the final results.

The triangular mesh used in the modeling is displayed in Figure 3. Notice that the mesh
is detailed around the photos and wider elsewhere, where fine detail of the latent field is
anyway impossible to obtain. To overcome boundary effects, we extend the area that is
modeled quite a bit beyond the whelping region. This is common strategy working with
these, see Lindgren et al. (2011).

To pan out how we do the actual fitting of our data, and produce a posterior predictive
distribution for the seal pup abundances, let N(4;),i = 1,...,n denote the number of
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Figure 3. Mesh used in the modeling. The bottom right corner shows a zoomed in version of the
mesh for the grey area above.

seal pups in each of the n = 2792 photos with domains A4;,7 = ..., n. As per the LGCP
formulation, conditional on the latent field Z, the number of seal pups in photo i, N (4;),
is Poisson distributed with parameter A = [, exp(Z(s))ds, i.e.

N(Ai)|Z~Pois()\:/ exp(Z(s))ds),i=1,...,n 5)
As this is precisely the format of our data, we use the Poisson likelihood in (5) to fit our
model using the INLA R-package. Let now () denote the whelping region, i.e. the area
where we would like to estimate the abundance, N(€2). We shall use the posterior pre-
dictive distribution within (2 as the full Bayesian assessment of the seal pup abundance.
This quantity is defined as

P(N(QIN (A1), ..., N(Ay)) = / p(N(Q), ZIN(4y), ... N(A,)) dZ
6)
— [pV@IZp(ZIN (). N(4,)) 2.

Having fitted the model in (5), with the latent field in (4), its aforementioned priors, and
the mesh in (3), the INLA software produces posterior distributions for all individual
hyperparameters, and enables sampling from the posterior of the complete latent field
p(Z|N(A1),...,N(A,)). This allows us to use a Monte Carlo approximation to the inte-
gral in (6):

K
1 -
[ o @IZIZIN (), N (A) A2~ 1D N2,
k=1
where Zj, is the k-th sample of the posterior latent field. Further, by the point process

definition, p(N(Q)|Z = Z;,) ~ Pois(\ = Jo Z1(s) ds). The integral here can be solved by
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e.g. a simple Riemann midpoint rule by dividing € into J rectangles By, ..., B; centered
in s1,...,sy, and using [, Zy(s)ds ~ Z‘j]:l Z1,(s4)|Bj|. The final approximation to the
posterior predictive distribution is

<

p(N(Q)|N(A),..., ~ 7213013 :Z 1(57)|B;]), 7)

i.e. a Poisson mixture distribution.

3.3 Reference approaches
This subsection gives a brief outline of existing methodology for estimating the seal pup
abundance.

3.3.1 Kingsley’s method and the homogenous Poisson model

The conventional method used to estimate seal pup abundance based on aerial photo-
graphic transect surveys like those we have here, is what we shall refer to as Kingsley’s
method. This method, due to Kingsley et al. (1985), is fundamentally simple: For each
transect 11, . . ., Tp7 covering the space A7, = J {A; belongs to transect T} } A;, compute the seal
pup count Ny, = > Ayen, N (A;). Then the estimate of the total number of seal pups is

~ A
:uKingsley(N(Q)) Z ’ Qx|4Tk’ Z Ty (8)

Kingsley et al. (1985) also provide an estimate of the variance related the abundance es-
timate, based on serial differences between the transects, which Salberg et al. (2008) pro-

vides a modification to.

Since this non model based method does not provide predictive distribution, but only
a point estimate and variance estimate, it is hard to properly compare this method with
our suggested Bayesian procedure. We will therefore not perform validation tests, as de-
scribed in Section 3.4, against this method.

Kingsley’s method is built on the principle of homogeneity within the whelping re-
gion. As such, a Poisson likelihood model with a homogenous intensity \q is there-
fore quite similar to this approach. Using the photo area |A;| as offset, one then models
N(A;) ~ Pois(A = |A;|\g), which can be fitted with standard software for generalized
linear models. With this model, then the posterior predictive distribution for the seal pup
abundance becomes

Pom.Pois (N (Q)|N(A1), ..., N(Ay)) = Pois(A = [Q| o), )

where Xo is the Maximum Likelihood (ML) estimate of Ay based on the photos. (9) does
not take the uncertainty involved in estimating A\g. To account for this, we rely on the
asymptotic distribution of the ML estimator

N(Xg, Var(Xg)), (10)
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where Var(Xo) is the asymptotic variance of Xo, generally available as a closed from ex-
pression. Similar in spirit to (7), this yields

K
Prompais(N(Q)N(AL), ..., N(A,)) ~ % " Pois(A = [2/), (1)
k=1

where )y, is k-th sample from (10). In the verification process, we will use the predictive
distribution in (11) in place of Kingsley’s method.

3.3.2 Generalized Additive Model

The Kingsley and related methods described above are homogenous in the sense that
they implicitly assume that the seal pup intensity is constant in the whelping region.
Such an assumption is typically not valid. Salberg et al. (2009) tries to overcome this
weakness by modeling the seal pup abundance by a generalized additive model based
on a negative binomial likelihood. Denoting by NegBin(u, ) the parametrization of the
negative binomial distribution with mean ; and shape &, this method takes the form

N(A;j) ~ NegBin(u = [A;j|exp(5(s;)), %), (12)

where |A;| as before is the non-estimated offset, and with S(-) is a spatial smoothing
component. The spatial smoothing component S(-) is a so-called thin-plate smoothing re-
gression spline which fits overlapping cubic regression on a set of artificial knots in space,
producing a smooth, nonlinear spatial effect. A generalized cross validation (GCV) crite-
rion is used to select the right amount of smoothing. See Qigard et al. (2010); Salberg et al.
(2009) for details about the model. To compare this modeling procedure with our sugges-
tion under fair circumstances, we extend the GAM approach with a covariate effect 3,
for the satellite image density variable ¢(s). That is, we extend (12) to

N(A;) ~ NegBin(n = |A;| exp(S(s;) + Ba(s;)), k).

There is a wide range of software available for fitting such GAMs, we use the gam func-
tion in the mgcv R-package. In contrast to the Poisson distribution, the negative binomial
distribution is not closed under additivity. That is, the sum of two negative binomial dis-
tributions with different means does not possess a negative binomial distribution. Thus,
to arrive at a full posterior predictive distribution for the seal pup abundance, we need
to rely on an underlying conditional independence condition stating that conditional on
S(:),p and &, then N(A;) and N(Ay),k # j are independent. Using this property, the
posterior predictive distribution for the seal pup abundance with the GAM model can be
written

J
PoaM(N(Q)IN(Ay), .- N(4,)) = - >~ NegBin(s = Bl exp(S(s;) + Bas;)),7). (13)

j=1
where B;,j = 1,...,J is a gridding of (2 of size similar to the photos, centered in s;, j =
1,...,J. To account for the uncertainty in estimating 5(-) and %, we use the estimators’
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asymptotic normal distribution, as in (10) and (11) for the homogenous Poisson model,
to arrive at

K J
peam(N(Q)[N (A1), ..., JLKZZNegBm = |Bj| exp(Sk(s;) + Bra(s;)), k),
k=1 j=1

(14)

where S ()&, B and &y, are k-th samples of respectively the smooth spatial effect, the co-
variate effect, and the scaling parameter.

Salberg et al. (2009) relies on the negative binomial distribution instead of the Poisson
distribution for the GAM modeling by arguing that the latter is inappropriate due to
overdispersion. We believe this argument is only valid with a homogenous intensity, and
therefore add the same model, but with a Poisson distribution, to our list of models to
compare. That is, we also fit the following GAM Poisson model

N(Aj) ~ Poisson(A = [A;|exp(S(s;) + Bq(s;)))- (15)

3.4 Verification

To validate our suggested procedure and compare its performance to the reference meth-
ods outlined in Section 3.3.1 and 3.3.2, we go through a fairly comprehensive (cross) vali-
dation scheme. We rely on two procedures for subsetting the data. The former method is
a standard 10-fold cross validation setup, where we randomly remove 10% of the photos
each time, such that each photo is removed exactly once. In the latter we remove all pho-
tos in one full transect at a time, such that each transect is removed exactly once, leaving
us with 27 different subsets. For both methods we fit the complete model for every sub-
set and compute posterior predictive distributions for every photo that is removed along
with posterior predictive distributions for the sum of the removed transects (correspond-
ing to the full transect for the latter method). To measure the quality of the posterior
predictive distributions, we use two performance measures: the logarithmic score and
the Continuous Rank Probability Score (CRPS) (Matheson and Winkler, 1976). Denoting
a generic posterior predictive distribution by g(z) and its cumulative by G(z), while the
true value it ought to be compared to by yiryue, the two performance measures takes the
form

logScore = —¢(ywue) and CRPS = / — Tas g} (7 x))?dz,, (16)

where 1, () denotes the indicator function. For both measures, smaller values reflect a
better model. While the former rewards pointiness of the posterior predictive distribu-
tion by solely considering the point mass at yiue, the latter also considers the rest of the
distribution, by punishing mass stronger the further away from yire it is.

The above validation procedure enables us to readily compare our new suggested pro-
cedure to the references methods, and assess their strength and weaknesses as opposed
to each other. However, it is difficult to judge the quality of the uncertainty assessment
produced by a method using the performance measures in (16). To properly assess this,
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Figure 4. The mean and standard deviation of the latent field fitted for hooded seals with our
procedure.

we suggest looking at the frequentist coverage of the posterior predictive distributions.
That is, check how often the yirye lies within different credibility intervals, compared to
their intended coverage — small uncertainty is of no value if it is not reflecting the true
uncertainty of the model. To more closely mimic quantification of the complete whelping

region, we suggest doing such an exercise on transect level.

4 Results

This section contains the results obtained when applying our procedure to the per-photo
count data from the 2012 survey of the Greenland sea whelping region. As mentioned
we model the hooded and harp seals separately. We compare our approach with the
GAM-based procedure, both with a negative-binomial distribution for the counts and
with the simpler Poisson distribution. As a baseline model we use a homogenous Poisson
model with no covariates, spatial term, or other random effects. The models are compared
through the aforementioned verification procedure.

4.1 Hooded seals

Within the flight transect sparsely covering the whelping region, a total of 777 hooded
seal pups were counted. The blue dots in Figure 1 show how these are spread on the 2792
photos.

Figure 4 shows the mean and standard deviation of the latent field fitted using our pro-
cedure, as outlined in Section 3.2. As seen, the latent field captures the high intensity
of hooded seal pups in the middle-eastern part of the whelping region. This area has a
medium range ice-thickness, as seen from Figure 2. There is also an increased seal pup
intensity further south, in particular closer to the open water. In the north, the intensity
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Figure 5. The posterior predictive distributions for the total area hooded pup counts for the three
different competing models. For Kingsley’s method, we show the point estimate +/- 2 times the
estimated standard deviation, corresponding to an approximate 95% confidence interval under a
normal distribution assumption.

is rather low. Note however, as seen from the sd-plot, that the uncertainty is rather large
where the intensity is low, while it is smaller where the intensity is high. This means that
one is fairly certain that there are some seal pups in areas where seal pups are observed,
while there could very well be some seal pups even if none are observed in observation
sites in the neighborhood. The range of the latent field, defined as the distance where
the spatial correlation is approximately 0.1, has a posterior mean of 3.63km, that is about
2/3 of the distance between each transect. This means that the area of the latent field ly-
ing between transects essentially is determined by the neighboring transects. The fitted
model gives the following posterior means for the intercept () and the fixed effects (5):
= (0.07, —0.02, 3.63).

mean, = —1.37, meang , = 9.07, meang s, s, s,

Figure 5 shows the posterior predictive distribution for the total area pup counts using
our procedure, along with the corresponding results for the two GAM-based procedures
and the homogenous Poisson model. A simple summary of Kingsley’s method is also
given for reference. Table 1 summarizes these distributions. As seen from the figure and
read-off from the table, most of the mass coincide for the three methods, but our method
is more conservative. The various point estimates are in the same ballpark, but with a
tendency towards slightly higher estimates for our approach.

Table 2 shows the results from the validation scheme applied to the four methods we
compare here, as outlined in Section 3.4. Starting with the photo level, the only significant
result, defined as having non-overlapping 90% CI strictly below all others, is that our
method is the best in terms of CRPS when using the random 10-fold CV scheme. It is
also almost significant in terms of the logScore. When leaving out a full transect at a time,
our method and the GAM version with the underlying negative binomial distribution

Estimating seal pup production in the Greenland Sea using Bayesian hierarchical modeling

NRE-IERD



Table 1. Summary tables for the posterior predictive distributions for the total area counts of

hooded seals.

mean median mode IQR 0.025-quantile 0.975-quantile
Point Proc 11649 11503 11472 1699 9472 14741
GAM 11178 11157 11093 807 10075 12395
GAM Pois 11296 11292 11093 572 10467 12147
Hom Pois 11391 11384 11377 572 10586 12238

Table 2. Validation results on respectively photo and transect level. Values in parenthesis are
shows the lower and upper bounds of 90% bootstrapped confidence intervals for the performance
measure. Cells shown in italics are the best (smallest) per column. Those which are significantly
smaller than the others (defined as having non-overlapping confidence intervals) are also bolded.

HOODED SEALS: PHOTO LEVEL

Random 10-fold CV

Leave-out full transect

CRPS logScore CRPS logScore
Point Proc  0.18 (0.16, 0.19) 0.47(0.44,0.49)  0.22(0.20,0.25)  0.54 (0.51, 0.57)
GAM 0.21 (0.19,0.23) 0.51(0.47,0.53)  0.22(0.20,0.24)  0.53 (0.50, 0.56)
GAM Pois  0.22 (0.20,0.24) 0.54(0.51,0.58)  0.24(0.22,0.26)  0.58 (0.54, 0.62)
Hom Pois  0.26 (0.24,0.28) 0.69 (0.65,0.73)  0.26 (0.24,0.29)  0.70 (0.66, 0.74)

HOODED SEALS: AGGREGATE/TRANSECT LEVEL
Random 10-fold CV Leave-out full transect

CRPS logScore CRPS logScore
Point Proc  5.43 (4.04,6.99) 3.68(3.51,3.86) 9.91(5.99,14.80) 3.67(3.26,4.09)
GAM 5.93 (4.95,7.00) 3.79 (3.68,3.91) 9.37(5.66,13.63) 3.68 (3.11,4.27)
GAM Pois 590 (4.49,7.42) 3.72(3.50,3.96) 10.14 (5.86,15.09) 4.14(3.32,5.01)
Hom Pois  4.83 (3.27,6.66) 3.59(3.30,3.90) 15.57 (11.77,19.68) 6.71 (5.91,7.52)
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perform very similar, and somewhat better than the others.

Turning to the aggregate/transect level the baseline homogenous Poisson seems, perhaps
somewhat surprisingly, to perform very well with the random leave-out scheme. A rea-
sonable explanation for this is that since the photos are removed randomly, and what we
measure here is the average of these, the baseline model, which essentially uses the over-
all average as its prediction, will naturally come close, and its low uncertainty will boost
its performance in terms of these performance measures. The corresponding bad results
when leaving out a full transect, shows that this model is generally way too simplistic.

In general, the validation results show that our method performs very similar to the orig-
inal GAM-method, which are both clearly better than the other two alternatives. When
it comes to predicting the seal pup count in individual randomly removed photos, our
method is the clear winner. That is, our method is superior at predicting individual pho-
tos when it can use information about neighboring photo counts, which we think is an
important property.

Although the point process and GAM methods can only be distinguished in terms of
CRPS and logScore on photo level, their resulting posterior predictive distributions are
quite different. To get further insight into this phenomenon, let us take a look at the pos-
terior predictive distributions for the two methods per transect in the leave-out-transect
setup. Figure 6 contains these distributions, plotted against the true transect count. As
seen from the figure, the GAM method seems to have too narrow credibility intervals in
terms of their frequentist coverage, while this matches better for the point process ap-
proach. In fact, the 90% CI covers the true count in 26/27 ~ 96% of the transects for the
point process approach, and only 18/27 ~ 67% of the times for the GAM approach. The
50% Cl is covered in respectively 16/27 ~ 59% and 11/27 ~ 41% of the transects for the
point process and GAM approaches.

4.2 Harp seals

In total, 6034 harp seal pups where observed on the photos from the aerial photographic
survey. As illustrated by the red dots in Figure 1, there are much larger packs of harp seal
pups, than hooded seal pups. The maximal number of harp seals pups in a single photo
is 160.

Figure 7 shows the mean and standard deviation of the fitted latent field using our pro-
cedure. Compared to the latent field for the hooded seal pups in Figure 4, the mean field
has higher and steeper peaks. The places where the seal pups mainly appear are also sim-
ilar to those for the hooded seal pups, except for some additional colonies in the north
and north-west. Otherwise, the properties of the field are fairly similar to those for the
hooded seal pups. The range of the latent field, has a posterior mean of 2.89, slightly
smaller than for the Hooded seals. The fitted model gives the following posterior means
for intercept (a) and fixed effects (3): mean, = —2.77, meang , = 14.70, meang s, s, 5;, =
(0.03,0.01,—0.003). Note that the covariate effects are stronger for the harps than the
hooded seals.
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Figure 6. The posterior predictive distributions per transect for the point process and GAM meth-
ods plotted against the true count for hooded seals. For each method, the solid line shows the
median, the light colored box shows the 50% CI, while the transparent box shows the 90% CI.
The y-axis takes a log,,(z + 2)-scale to better show differences.
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Figure 7. The mean and standard deviation of the fitted latent field for harps with our procedure.
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Figure 8. The posterior predictive distributions for the total area harp pup counts for the three
different competing models. The x-axis is plotted on log-scale. For Kingsley’s method, we show
the point estimate +/- 2 times the estimated standard deviation, corresponding to an approximate
95% confidence interval under a normal distribution assumption.

Table 3. Summary tables for the posterior predictive distributions for the total area counts of harp
seals.

mean median mode IQR  0.025-quantile 0.975-quantile

Point Proc 147919 127965 110996 72347 69267 357185
GAM 98617 98035 91876 12895 81023 119349
GAM Pois 84852 84852 84910 1536 82681 87094
Hom Pois 88424 88419 88389 1581 86149 90742

Figure 8 shows the posterior predictive distribution for the total number of harp seal
pups in the whelping region using our procedure, along with the corresponding results
for the two GAM procedures and the homogenous Poisson model. A simple summary of
Kingsley’s method is also given for reference. Table 3 summarizes these distributions. As
seen from the figure and table, our point process is extremely vague about the harp seal
pup count, essentially saying that the total number of seal pups could very well be above
250 000, but also less than 100 000. In contrast, the GAM method’s upper tails ends at
about 130 000 seal pups, while the two simplest methods has upper tails below 100 000.

Table 4 shows the results from the validation procedure for the Harp seal. On photo level
the point process approach gives a significantly better CRPS and logScore with random
10-fold CV. Leaving out full transects gives no significantly best method although the
GAM Poisson model tends to generally do well here.

As for the hooded seals, we take a closer look at the point process and GAM methods
to better understand how well their different uncertainty estimates match the actual un-
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Table 4. Validation results on respectively photo and transect level. Values in parenthesis show the
lower and upper bounds of 90% bootstrapped confidence intervals for the performance measure.
Cells shown in italics are the best (smallest) per column. Those which are significantly smaller

than the others (defined as having non-overlapping confidence intervals) are also bolded.

HARP SEALS: PHOTO LEVEL

Random 10-fold CV

Leave-out full transect

CRPS logScore CRPS logScore
Point Proc 1.14 (1.01, 1.27) 0.95 (0.91, 1.00) 1.96 (1.72,2.20) 1.28 (1.22,1.33)
GAM 1.78 (1.58,2.00)  1.17(1.11,1.22) 1.90 (1.67, 2.13) 1.27(1.21,1.33)
GAM Pois 2.32(2.10, 2.55) 2.09 (2.00, 2.17) 2.46 (2.22,2.71) 2.17 (2.08, 2.26)
Hom Pois  2.68 (2.44,2.94)  2.50 (2.45,2.55) 2.69 (2.45, 2.95) 2.52 (2.46, 2.57)

HARP SEALS: AGGREGATE/TRANSECT LEVEL

Random 10-fold CV Leave-out full transect

CRPS logScore CRPS logScore
Point Proc  95.98 (51.20, 148.78)  6.57 (5.93,7.33) 152.95 (111.93,198.59) 6.49 (5.98, 6.94)
GAM 88.33 (70.94, 106.87) 6.45(6.31,6.62)  96.70 (61.05,139.91)  7.00 (6.24, 7.76)
GAM Pois  60.93 (42.57,79.87)  8.03 (6.83,9.22)  55.96 ( 39.62, 74.51)  8.42(7.34,9.39)
Hom Pois  69.67 (45.62,93.94) 7.69 (6.58,8.73) 91.19(61.09,124.17) 7.96 (7.32, 8.57)

certainty. As expected, the GAM method has a much more narrow credibility interval
which often does not cover the true seal pup count in the transect, while this matches
the assigned credibility interval better for the point process approach. Out of the 27 tran-
sects, the 90% credibility intervals for the point process and the GAM approaches covers
the true count in respectively 24/27 ~ 89% and 18/27 ~ 67% of the transects. The cor-
responding coverages for the 50% interval are 14/27 ~ 52% and 11/27 ~ 41%. Thus, it
is clear that from a frequentist perspective, the GAM method has too narrow credibility
intervals, while our procedure get the level quite right.

5 Concluding remarks

We have presented a point process based procedure for estimating seal pup abundances
based on observational data from an aerial photographic survey. Using the SPDE-INLA
framework, we fit a Bayesian hierarhical model with Poisson counts based on a log-
Gaussian Cox process formulation. As an additional contribution to seal pup abundance
estimation, we adopt the use of satellite imagery as covariates in the modeling process,
acting as a proxy for ice thickness. Our procedure is tested on data from a survey in
the Greenland Sea in 2012, with both harp and hooded seal pup counts, and compared to
three reference. Their performance is studied in a comprehensive (cross) validation study,
were our procedure generally comes out best locally, while no method stands out as the
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Figure 9. The posterior predictive distributions per transect for the point process and GAM meth-
ods plotted against the true count for harp seals. For each method, the solid line shows the
median, the light colored box shows the 50% CI, while the transparent box shows the 90% CI.
The y-axis takes a log,,(x + 2)-scale to better show differences.

best on a more global scale.

The most distinguishing character of our method is its larger uncertainty compared to
the other methods. Our analysis suggests that our method has accurate frequentist cov-
erage, while the reference methods are too optimistic in their uncertainty assessments.
A possible reason for this is that we build a full Bayesian model from the ground with
priors on parameters, while the other methods are merely pseudo-Bayesian procedures.

For the marine industry, this contribution gives both a new alternative for estimation
of seal pup abundance, and a complete reference study showing the local and global
properties of the different approaches. The frequentist coverage analysis also suggests to
what extent the uncertainty output of the methods can be trusted. All of this is expected
to contribute and guide the marine reseachers to better decision making in future, when
monitoring the North Atlantic seal pup abundance.
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