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Abstract. The adoption of sequence stratigraphy concepts to reservoir de-
scription involves correlation of bounding surfaces between wells to produce
a high resolution reservoir zonation. Where significant uncertainty is asso-
ciated with the geometry of these surfaces stochastic modelling provides a
correct basis for field development decisions.

2D Gaussian fields have been used to model the bounding surfaces, while
incised valleys in the expectation of the bounding surfaces are modelled by
a marked point process. In this process the marks are expected direction
of the valley and correlated Gaussian random fields defining size and shape
of the valley along the direction line.

A Bayesian approach has been used in the modelling. Prior distributions
describing general geologic knowledge and uncertainty associated with this
knowledge are combined with reservoir specific observations into posterior
distributions. The model is too complex to allow analytic calculations of
the posterior model, hence the parameters are implicitly estimated while
simulating from the model using the Sampling/Importance Resampling al-
gorithm.



2 HEKTOEN AND HOLDEN

1. Introduction

In recent years geological interpretation techniques known as sequence
stratigraphy techniques have been increasingly applied to provide high res-
olution reservoir descriptions (e.g. Van Wagoner, Mitchum, Campion &
Rahmanian (1990)). The techniques place emphasis on correlation of sur-
faces from well to well as opposed to traditional techniques which focus on
correlation of similar lithologies between wells.

A stochastic model has been developed to describe different types of se-
quence stratigraphic bounding surfaces. In particular we have focussed on
modelling surfaces with incised valleys. Such surfaces are typically complex
and their geometries between wells are generally associated with significant
uncertainties. In fluvial reservoirs the surface geometries are important as
they may control the lateral extent of shale barriers in high net/gross in-
tervals and the spatial distribution of reservoir sandstone in low net/gross
intervals.

2. The Sequence Stratigraphy Model

A sequential approach is used when defining the sequence stratigraphy
model. The reservoir is constructed by simulating a number of surfaces
from the base of the reservoir and upwards. Each surface is modelled as a

2D Gaussian field
Si(w) = pi(z) + ei(z) (1)

where p;(z) is the expectation of surface ¢ and ¢;(z) a Gaussian field with
zero expectation and a specified covariance function.

The surfaces are conditioned on observed depths in wells. Standard geo-
statistical techniques are used for simulation (Omre, Sglna & Tjelmeland
1993) and conditioning (Journel & Huijbregts 1978) of the Gaussian fields.
As a surface may be eroded by subsequent surfaces, conditioning on in-
equality constraints is included using standard multi-normal theory and
rejection sampling (Ripley 1987).

An example of a reservoir zonation is given in Figure 1. Here two surfaces
having a simple geometry with a constant expectation and two complex
surfaces having an expectation containing incised valleys are illustrated.

3. Model for Expected Surface Geometry

The expectation surface pu(z) is assumed to consist of a certain number of
valleys giving the depth of a 2D surface. A marked point process model
(Ripley 1981) has been used to model the valleys utilizing experience from
modelling of fluvial channel sand-stones (Skare, Skorstad, Hauge & Holden
1996). A realistic geometry of the valleys are emphasised in the model. It is
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Figure 1. Cross-section of sequence stratigraphy model with 4 bounding surfaces. Two
surfaces are containing incised valleys.

also important that it is possible to simulate from the model conditioned on
all available data like observed depths, well patterns and well correlations
(wells penetrating the same valley).

3.1. PRIOR MODEL

The expectation surface is completely described by direction lines /¢, shape
parameters p' and corresponding vectors V(s) describing the valley geom-
etry along the lines, ¢ = 1...n, where n is number of valleys. The direction
line I’ can be parametrized by i.e. a reference point and an angle with
specified distributions. V(s), defining position and size of the valley, is a
correlated Gaussian function with a one-dimensional reference along /'

Vi(s) = {Un(s), Uw(s), Ur(s), Upr(s)} (2)

with Up(s) being deviation from direction line, Uy (s) valley width, Ur(s)
valley erosion thickness and Upp(s) deviation of deepest point from center
of valley in position s along I*. The univariate properties are defined by an
expectation and a spatial covariance function. The cross-sectional form of
a valley is defined by cy7” + ¢; where r is measured normal to the line, with
r = 0 in the position of the deepest point. Two set of constants (¢y, ¢ ) and
(ct,ct), for r < 0 and r > 0 respectively, are computed from the vector
Vi(s) to define an asymmetric valley cross-section. The model is illustrated
in Figure 2 and 3.

To simplify notation in the following sections the parameters [*, V* and
p' describing a valley are denoted €', distributed according to (). The
prior model for an expectation surface u(z) containing n valleys is hence
given by

n

m(p(z)) = x(n) [ 7 (6") (3)

i=1
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Figure 2. Direction lines and valley margins for expectation surface with 2 valleys.

Figure 3. Cross-section of the reservoir perpendicular to the principal direction of the
valley. A parabolic shape parameter (p = 2) is used.

where 7(n) is the prior distribution for number of valleys in the expectation
surface.

In order to represent the uncertainty associated with the general geolog-
ical knowledge, prior distributions for the parameters in the distributions
in equation (3) is used, i.e.:

w(0) = | w(@lo)r(6)dg ()

with ¢ being distribution parameters in prior distribution for 6.

3.2. POSTERIOR MODEL

The posterior model for the expectation surface p(z) is conditioned on ob-
served locations and depths of the surface in wells and soft information
derived from i.e. well tests or geochemical analyses. With w being all avail-
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able information from M wells the posterior model is given by

=

s
I
-

r(u(@)w) = (n) [[=(#,Clw)

= 7w(n) [ 7(¢'|C,w)r(C|w) (5)

=

s
I
-

where C' is the actual well configuration and 7(C|w) a function modelling
the probability of C given soft information from pairs of wells (w;, wy,),
Ilm=1,...M:

Tr(cwzﬂ{ I e I <1—czm>} )

=1 \wi,wm€0° W€l wm, ¢6°

where 0 < ¢, < 1 is specified using other information than observed
depths. The parameter ¢;,,, = 0.5 corresponds to no knowledge about well
correlations.

4. Simulation from Posterior Model

Using the distribution 7(p(z)|w) in (5) in a simulation algorithm two prob-
lems arise. First, studying the function p(z), there are complicated nonlin-
ear relations between the variables in this function in order to satisfy the
well observations due to the nonuniform thickness of the valleys. Secondly,
the density is also highly multi-modal due to thin valley observations lo-
cated on either side of the valley and not in the middle of the valley, and
the many different combinations of same valley observed in different wells.
Hence traditional Markov Chain Monte Carlo (MCMC) algorithms with
small changes is not suited.

4.1. SAMPLING/IMPORTANCE RESAMPLING

Let 7(z) = m(p|w), and assume that a fast generation algorithm ¢(z) which
satisfies ¢(z) ~ m(z) can be made. This generation function could be used
in a MCMC algorithm, but the Sampling/Importance Resampling (SIR)
proposed by Rubin (1987) is preferred. The SIR algorithm Q(z) is

— Generate N independent realizations from ¢(z).
— Choose one or more of these realizations proportional with the impor-

tance ratio ™%,
q(z)

Both Rubin (1987) and Gelfand & Smith (1990) show that Q(z) — 7(z)
when N — oco. See also Rubin (1988). We will find the rate of convergence
and find out what is critical for the convergence.
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Let the generated realizations be z,,z,,...,2z5. The probability den-
sity for drawing these realizations and choosing one particular realization
(where we assume z = z,) is then

Il
e [t (7)
Ez 1 q((:c i=1
The probability distribution for Q(z) is hence given by
()
Qz) = / NQ(xv)ix_l Hq Vs .. .doy = 7( / [l qu gdes .. dey.
Ez 1 g(x;) =1 Zlq(:c)

(8)

Consider the integral in (8). The numerator A(y), y = (z3,...,Zn), has the

property [h(y)dy = 1. The denominator can be split into f(z) = ;58)

and g(y) = ~ Sy, ZE””; which satisfies F,g(y) = =+ and Var,{g(y)} =
N-—

o, where 02 = Varq{”(x)} Assume A > ”((x)) > B 1> 0 for all values
of z, and let R be the range of g(y) and R, be the area where g(y) > 0.5.
Using the law of large numbers it can easily be shown that the probability
for y € R — Ry is less than o(27)~%e~N/87" for large N. This gives

A = [ Mgy 9

m(2) r f(2) 4 9(y)
N
—(f(z)+g(y) -1 1
R f@) +9(y) N
N 1 1 2
< 2/ h(y) (f(z)+g(2)) - 1l|dy + — + o N~ Be /%
e "IN T N
N 1 N 2. 1 1 1 2
< SVsg N3 - N—z —N/8o
S Iy Ay PRy Qe N T Ay o N Be

< EV_%(QO' +14+3AN"7 & che_N/802)
which proves the following theorem:

Theorem For a fized 7(x) and q(z) which satisfies the inequalities

A > %%l > B~! > 0, we have for sufficient large N that

Q(z)
m(z)

This theorem clearly shows the importance of bounding the upper limit A
and o. The lower limit B has only minor importance.

|52 — 1] < NH(20 + 1+ 3AN "} + g Be V/37) (10)
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This can also be seen intuitively since if ¢(z) < 7(z) for z in an area
D, the probability that ¢(z) generates realizations in D is too small which
implies that Q(z) < 7(z) in the same area.

In some application it is only possible to estimate r(z) = c%(% for an

unknown constant ¢. A and ¢ may be estimated using EQ%(% — 1 when
N — oo. It is intuitively seen that EQ%% decreases when N increases.
N should be chosen such that the expected value of the ratio r(z) for the
chosen realization has reached a constant level.

In our application r(z) varies by many orders of magnitude between the
different realizations. We believe however that both A and ¢ are reasonable
small since the ratio r(z) for the chosen realization stops decreasing for N
moderate large.

4.2. SIMULATION ALGORITHM

The problem of sampling from 7(p(z)lw) in (5) is split into 1) finding a
well configuration C according to 7(C'|w), i.e. which wells are penetrating
the same valley and 2) sampling from 7(6|C, w). The SIR algorithm is used
for both.

N well configurations {C; }j»vzl is generated by the following algorithm:
1. While there are observations not conditioned on
(a) Draw distribution parameters ¢} ~ 7(¢).

(b) Draw an observation not yet conditioned on and a line I} close to
it.

(¢) Simulate 6} in all well positions along the line.
(d) Include new wells in the configuration if located inside the valley.

2. Compute importance ratio for configuration Cj
rj=q-m(Cjlw)

where q = 1if n; < n,, and 7(n;)/7(n,y,)if n; > n,,. Here n; is number
of generated valleys, and n,, the mode.
A configuration C}, with n, valleys is chosen proportional to r;. N realiza-
tions {6;}7_, consisting of valleys 8%, © = 1...ny is then generated from
q(8|Cy, w) by the following scheme:
1. Draw distribution parameters ¢; ~ ().
2. Draw the shape parameter p} and a direction line [} in the area of
interest.
3. Given pj», l;'»? {w,},, M being number of wells, and well configuration
Cy, draw Vi(s) in each well position s = s,, by sequential simulation.
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In each cross-section penetrated by a well K possible vectors V]Z(s) are
drawn and the 2 closest are interpolated to match the observed depth.

Y3

4. Calculate the importance ratio p} = 7(6|Cy, w)/q(8;|Cy, w).

A realization of one valley ° = €% is chosen proportional to p%. For this
realization the 1D Gaussian fields defining valley width, thickness, etc. are
drawn on a dense grid along [% conditioned on {V{(s,,)}#, using model
parameters ¢ .

5. Examples

The example is intended to illustrate 1) the combined influence of prior
distributions and well patterns on the posterior distribution of valley direc-
tions and valley correlations and 2) the number of realizations generated
in the SIR algorithm in order to define a stable posterior model.

5.1. UPDATING OF MODEL PARAMETERS

The sequence boundary is interpreted to consist of a single valley which
is observed in three of the six wells. The minimum distance between two
wells is approximately 1000 m. In the prior model the expected valley di-
rection is parallel to the z-axis with a moderate uncertainty in the angle
~ N(0,30°) and distance of line from z-axis ~ N(0,250). In the base case
Uw ~ N(500,100) and Up ~ N(0,250).

By varying valley width and well correlations, the ability of the simula-
tion algorithm to generate realizations from the posterior model is investi-
gated. Typical realizations are shown in Figure 4 and 5.

LI N I L I B L L L |
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Figure 4. Realization of valley with expected valley width uw = 500.
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Figure 5. Realization of valley with expected valley width pw = 1500.

Figure 6 shows the chosen direction lines for 10 different realizations
from 4 prior models. Where one narrow valley is assumed, the resultant
valley direction lines must be oriented approximately E-W in order to hon-
our the prior model and the well observations, whereas a prior model with
wider valleys changes the resultant orientation to more SE-NW and NE-
SW. In the case of unknown well correlations (a uniform prior for 1, 2 or
3 valleys) and narrow valleys, this allows, as expected, more SE-NW and
NE-SW orientation than in the base case. Also more valleys are generated
(20) than in the case of wide valleys (16) because wells are correlated easier
in the latter case.
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2000 2000
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Figure 6. The chosen direction lines for 10 realizations of the sequence boundary. Wells
within valleys are marked with an asterisk (), while wells outside with an open circle.
In a) the lines have been chosen based on a prior model where E{Uw} = 500 m and in
b) based on a prior model with E{Uw} = 1500 m. The models in c) and d) are the same
as above except that no well correlations and a uniform prior for 1 2 or 3 valleys was
specified.

The complex, but physical sensible, interdependence between parame-
ters and observations seen in the example above is an important aspect of

Norwegian Computing Center, Box 114 Blindern, N-0314 Oslo, Norway, Tel.: (+47) 22 85 25 00



10 HEKTOEN AND HOLDEN

the posterior model. It is not possible to estimate the model parameters
from observations except using simulation.

5.2. CONVERGENCE OF SIMULATION ALGORITHM

Recall from Section 4 that N realizations are generated in order simulate
one valley from the posterior model. To illustrate the convergence of the
algorithm the ratio p} for the chosen line has been inspected as a function
of N and with the same start seed for the random number generator. The
base case model from above has been used.

-140F

_220 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200

Number of lines

Figure 7. Logarithm of probability density for chosen realization as a function of number
of generated realizations N. 10 sequences with different start seeds.

Figure 7 shows the logarithm of the ratio pi of the chosen line as a
function of N for 10 different start seeds. The figure shows that the prob-
ability of the chosen line increases with increasing N up to a plateau for
N = 50. To assure convergence of the algorithm N should hence be set at
least equal to 50 in this example.

6. Closing remarks

In response to the increasing application of sequence stratigraphy as a geo-
logical interpretation technique, a stochastic model has been developed to
describe the geometry of sequence stratigraphic bounding surfaces. Gaus-
sian fields have appeared to be well suited for modelling of the complex
geometry in these surfaces because of the large degree of flexibility associ-
ated with the trend surfaces.

Using Bayesian updating, combining field specific observations and gen-
eral geological information and the Sampling/Importance Resampling tech-
nique, realizations from a posterior model have been produced. The model
meets the challenge of a complex conditioning scheme including well-to-
well correlation and non-linear conditioning. The use of prior distributions
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containing significant uncertainty in the model parameters are important
as the exact values of the parameters cannot be estimated.
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