Multichannel Blind Deconvolution
of Seismic Signals
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Abstract— A new algorithm for simultaneous wavelet es-
timation and deconvolution of seismic reflection signals is
given. To remove the inherent ambiguity in this blind
deconvolution problem, we introduce relevant a priori in-
formation. Our major assumption is sparseness of the
reflectivity, which corresponds to a layered earth model.
This allows non-minimum phase wavelets to be recovered
reliably and closely spaced reflectors to be resolved. To
combine a priori knowledge and data, we use a Bayesian
framework and derive a maximum a posteriori estimate.
Computing this estimate is a difficult optimization prob-
lem which is solved by a sub-optimal iterative procedure.
The procedure alternates steps of wavelet estimation and
reflectivity estimation. The first step only requires a sim-
ple least squares fit, while the second step is solved by
the iterated window maximization algorithm recently pro-
posed by Kaaresen. This enables better efficiency and op-
timality than established alternatives. The resulting op-
timization method can easily handle multichannel models
with only a moderate increase of the computational load.
Lateral continuity of the reflectors is achieved by model-
ing local dependencies between neighboring traces. Major
improvements in both wavelet and reflectivity estimates
are obtained by taking the wavelet to be invariant across
several traces. The practicality of the algorithm is demon-
strated on synthetic and real seismic data. An application
to multivariate well log segmentation is also given.

I. INTRODUCTION

In reflection seismology, a short duration acoustic wave
is transmitted into the ground and the reflected energy
due to impedance changes in the earth is measured. A
two or three dimensional section of the earth is mapped
by using a large number of different source and receiver
positions at the surface. For simplicity, we consider a
2-D (poststack) section, corresponding to a number of
roughly vertical and parallel 1-D traces. Under simpli-
fying assumptions, one such trace can be modeled as
a noise corrupted 1-D convolution between the verti-
cal reflectivity function of the earth and an unknown
wavelet [1]. To increase resolution and enable identifi-
cation of closely spaced reflectors, deconvolution is rou-
tinely used to (partially) remove the effect of the wavelet.
Due to various effects such as high frequency absorption,
receiver ghosting, etc., the effective wavelet is usually
unknown and must be estimated together with the re-
flectivity. Such blind deconvolution is considerably more
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difficult than simple deconvolution where the wavelet is
known a priori. The problem is highly ill-posed and a
priori knowledge must be introduced to achieve a unique
solution.

Conventional deconvolution procedures are often
based on the (implicit) assumption that both the reflec-
tivity and noise are stationary Gaussian processes. This
leads to computationally convenient linear solutions such
as Wiener filtering [1], [2] or minimum variance deconvo-
lution [3]. However, Gaussianity is not realistic for the
sparse nature of many actual reflectivities, and less than
optimal resolution improvement may result. Further-
more, a Gaussian reflectivity distribution does not allow
the phase of the wavelet to be estimated and a ques-
tionable minimum phase assumption is commonly used.
Homomorphic filtering techniques [4], [5] can estimate
the phase of the wavelet, but tend to be highly sensitive
to noise. Methods based on higher order statistics [6] can
identify an arbitrary wavelet, as long as the reflectivity is
a stationary, white, and non-Gaussian random process.
These have theoretically pleasing asymptotic properties,
but will often be computationally intensive and require
large amounts of data to give satisfactory estimates [7].
It is thus of interest to introduce more a priori informa-
tion in order to improve the estimates for finite amounts
of data.

In this paper, we formulate the problem in a Bayesian
framework. Pertinent a priori information is introduced
by considering the unknowns as realizations of stochas-
tic variables with certain prior distributions. Then, the
unknowns are estimated by the maximum a posteriori
(MAP) estimate, which is the maximizer of the posterior
(conditional) probability density of the unknowns given
the observed data. This will remove the inherent am-
biguity in the blind deconvolution problem by selecting
the (a priori) most probable estimate among all those ap-
proximately equally compatible with the observed data.
Our major a priori assumptions are:

(a) The reflectivities are sparse, i.e. only a lim-

ited number of randomly located coefficients are
In particular, we shall use the Ber-
noulli-Gaussian distribution [3], and generalizations
thereof. This corresponds to a layered earth model.
Provided the layers are sufficiently homogeneous,
the reflectivity will be approximately zero every-
where except at layer boundaries.

non-zero.
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(b) The reflectivities tend to be continuous in the hor-
izontal direction, i.e. we assume the layers of the
earth to be mainly horizontal and continuous.

(c) The wavelet is common to several traces.
Assumption (a) follows the pioneering works of Mendel
and coworkers [3], [8], [9], [10], [11]. Thus, our com-
putational solutions will also be related to theirs, but
with some important differences, as discussed below. As-
sumption (b) is related to those used by Lavielle [12] and
Idier and Goussard [13] for (simple) multichannel decon-
volution. It aims at improving the estimates by using
information from neighboring traces. Assumption (c) is
simple, but often realistic and leads to large improve-
ments when applicable.

The two last assumptions can be used in combination
or separately, whereas the first is essential to our ap-
proach. This sparsity assumption removes the ill-posed
nature of the problem, but the price to pay is a pos-
terior with a difficult shape and many local maxima.
Following Mendel [3], we attack the problem by a two-
stage procedure. First we fix the wavelet and maximize
with respect to the reflectivity. Then we fix the reflectiv-
ity and maximize with respect to the wavelet. Iterating
these two steps will at least lead to a local maximum of
the posterior. Although convergence to the truly global
maximum may depend on the starting point, the simula-
tions presented in this paper indicate that a satisfactory
estimate will usually be found. This iterative method
is commonly referred to as a block component method
(BCM) [3], but can also be considered as an instance of
the iterated conditional modes technique [14] with vector
valued variables.

The reflectivity estimation step is computationally
hard and must be solved by sub-optimal methods [9].
Here, we use the iterated window maximization (TWM)
algorithm recently proposed in [15]. TWM relies on lo-
cal updating and pre-storing of some key quantities to
achieve an efficient iterative search. Similar to iterated
conditional modes, the search increases the posterior at
each step, but instead of modifying only one variable at
each step, various sub-groups of variables are updated
simultaneously. This allows complicated “transitions”,
such as moving several reflectors, to take place in one
step. Thereby the problem of convergence to local max-
ima is greatly reduced. The resulting optimality is higher
than for the single most likely replacement (SMLR) de-
tector [9] which is the major component of Mendel’s
BCMs. Also, IWM uses a finite impulse response (FIR)
representation of the wavelet. This makes the wavelet
estimation step particularly simple. It is only necessary
to solve a certain linear system with a Toeplitz structure
and dimensions equal to the length of the wavelet. In
contrast, Mendel’s state-space solutions use an iterative
Marquardt-Levenberg optimization to estimate the pa-
rameters of the state-space model. The FIR solution of

IWM will also be faster in many cases. In particular,
for wavelets which can only be fitted by high-order mod-
els, Mendel’s state-space solutions may be too slow to be
practical.

In the following, the overall BCM is discussed first.
Then we focus on the separate solutions to reflectiv-
ity and wavelet estimation problems. The solutions are
given for the single-channel situation first. Then, we
consider multichannel extensions. Finally, synthetic and
real data results are presented and discussed. In addi-
tion to seismic results, an application of the method to
multivariate segmentation of filtered and noisy well log
data is also given.

II. MoDpEL AND BLock COMPONENT METHOD

Our outset i1s the convolutional model

z(n) =Y z(n—k)h(k) +e(n), n=1,2... N, (1)

where z 1s an observed seismic trace, z is the reflectiv-
ity of the earth, h is the seismic wavelet, and e is ad-
ditive noise. The FIR wavelet, h, is non-zero only for
k = 0,1,...K. To avoid separate treatment of some
border conditions, we also assume that observed record
contains no truncated reflections, i.e. z(n) = 0 for n <0
and for n > N — K. Due to the sparsity assumption,
z(n) can be represented more efficiently by two vectors;
t representing the (time) positions of the reflectors and
a representing their amplitudes. The relation between
z,aand tis

z(n) = Z a;id(n —1;), (2)

where M denotes the (stochastic) number of reflectors.
Inserting (2) in (1), gives

z(n) = Zh(n —t)ai+e(n), n=1,2... N (3)

The two equivalent convolutional models (1) and (3) are
central. The first will be used for wavelet estimation,
while the second is better suited for reflectivity estima-
tion. Model (3) can be written in matrix form as

z — Ha + e, (4)

with obvious interpretation of z and e and H,; = h(n —
t;) forn =1,2,...,Nand i =1,2,...,M. Let also h
be a vector consisting of the samples of h(k) for k =
0,1,...K.!

1To allow a common index range for the vector and sequence we
shall index h from zero. Similar conventions will be used for other
vectors and matrices with the same dimension as h.
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Compute an initial
estimate for h.

¥

Maximize p(a, t|h,z) with respect to
a and t, using the IWM algorithm.

¥

Maximize p(h|a, t, z)
with respect to h.

Convergence 7

Solution a, t, and h.

Fig. 1. The overall structure of the block component method.

We use the following distributional assumptions: The
noise e is zero mean Gaussian and white, independent
of a and t, and has variance ¢2. The conditional distri-
bution for a given t is also zero mean Gaussian, having
independent components with variance o2. The prior
for t is a geometric process, i.e. t;11 —1; is geometrically
distributed with parameter A and the increments are in-
dependent (modifications will be considered later). Note
that the distribution of (a, t) is equivalent to a Bernoulli-
Gaussian distribution for z. Finally, we take the prior
for h to be Gaussian, independent of a, t and e, and
having independent components with variance 7.

Together with the convolutional model (3) these dis-
tributional assumptions define the posterior density,
p(a,t,h|z). The purpose of the BCM is to maximize
this function with respect to a, t and h. To maximize
with respect to a and t for fixed h, we use elemen-
tary conditional probability and factor the posterior as
p(a,t,h|z) = p(a,t|h, z)p(h|z). Since h is fixed, the sec-
ond factor 1s constant and can be ignored. Maximization
of the first factor is precisely the simple deconvolution
problem solved in [15], and reviewed in the next section.
This is the first step of the BCM. The second step is to
maximize with respect to h for fixed a and t. In this case,
we factor the posterior p(a, t,h|z) = p(hla, t,z)p(a, t|z).
Again the second factor is constant, and we only need to
maximize the first factor. The problem thus reduces to
finding the MAP estimate of the wavelet in the simple
situations with known reflectivity. The solution is de-
rived in Section IV. Iterating these two steps gives the
overall solution as depicted in Fig. 1.

The structure of our BCM differs from Mendel’s in
that we only estimate the reflectivity sequence and the

wavelet. Other parameters are treated as inputs which
should be specified by the user or estimated from other
sources. In the simplest setting there is effectively only
one such parameter. This is a “sparseness” parameter
which will be discussed later. Conceivably, estimation
of this parameter could be included as a third step of
the BCM, but we prefer not to do so. In our opinion,
fixation of the sparseness parameter presents exactly the
necessary a priori input to regularize [16] the originally
highly ill-posed blind deconvolution problem. This is
supported by studies based on a simplified model [17]
which shows that Mendel’s approach may produce non-
meaningful parameter estimates at the border of the pa-
rameter space. Fixing the sparseness parameter avoids
such anomalies.

III. REFLECTIVITY ESTIMATION
A. Iterated Window Mazrimization

We now consider the wavelet as fixed and use the IWM
algorithm to maximize p(a,t|/h,z). The optimization
can be separated into two sub-problems: Detection of
the reflector positions t, and estimation of the reflector
amplitudes a for given t. Due to the Gaussian assump-
tions on a and e, the last problem is easy. Maximizing
the posterior with respect to a for given t only amounts
to a linear least squares fit. The optimal value deter-
mined by this fit, &, will depend on t. Inserting & into
p(a, t|h, z), results in a function of t only, p(&, t|h,z).
Unfortunately, this function is highly non-linear with nu-
merous local maxima. Exact maximization is beyond
reach for realistic signal sizes. Instead, IWM proceeds
iteratively through a series of small perturbations to t.
Only changes which increase p(&, t|h, z) are accepted.

Since each evaluation of p(&, t|h,z) requires refitting
of the amplitudes, the efficiency of this operation is vi-
tal. The solution is to constrain each update to a local
window. To compare two t values which are identical
outside the window, only the amplitudes within the win-
dow need to be recomputed. This reduces the dimension
of the least-squares fit to the number of reflectors within
the window. Fast inversion of the linear system would be
of no use, however, if compiling the coefficients was time
consuming. Fortunately, a simple relationship exists be-
tween the coefficients and two correlation functions. Pre-
computing and storing the correlation functions allows
repeated initialization to take place with minimal effort
during the iterations.

The necessary formulas are now stated, cf. [15] for
derivation. Assume a window w has been chosen. Parti-
tion t in the components inside the window, t*, and the
components outside the window, t¥. Partition a like-
wise and let H" be the columns of H corresponding to
reflectors inside the window and H" be the columns cor-
responding to reflectors outside the window. Define the
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inverse signal-to-noise ratio v, = ¢2/¢2 and introduce
the matrices
SY = (HY)H" + 7,1 (5)
and o
v¥ = (H")'z— (H”)H"a". (6)

The optimal value of a¥, given a¥, t and z is
av = (SY) v, (7)

The (t¥,a") pair corresponding to the largest value of
the posterior is the one which yields the larger value of
the criterion

[(t) = (v¥)'a" + g(t). (8)

Here, the first term measures the fit to the data, whereas
g(t) acts as a “penalty” term which favors configura-
tions that are compatible with the prior assumptions on
t. Under the Bernoulli-Gaussian assumption this term
assumes the particularly simple form

g(t) = —6M", (9)

where M™ is the number of reflectors inside the win-
dow and the “sparsity parameter” 6 is discussed in Sec-
tion ITI-C. Note also, for later use, that equation (8) is
valid for general p(t). In this case the penalty term is
determined by the prior for t by a relationship on the
form

g(t) = 01 I p(t) — 01", (10)

for suitable parameters 6 and 5.
The correlation functions which should be computed
and stored prior to the iterations are

can(n) =D h(k—n)h(k), n=0,1,....K (11)

k=n
and
min(N,n+K)
chz(n)= > h(k—n)z(k), n=12. N
k=max(1,n)
(12)
Using these the initialization is performed by
Sij = enn ([t =15 [) + 720 (1 — j) (13)
and _ _
v = en(t) = > al enn ([t — 7)), (14)

l

for 7,7 = 1,2,...M"Y. In the last sum only reflectors
producing “overlapping” reflections with those inside the
window need to be taken into account, i.e. the sum can be
confined to ! such that [t —¢| < K. In equation (13),
d(-) denotes the Dirac delta function which is one if its
argument is zero and zero elsewhere.

The major computational effort in comparing two
competing t*“ values is the inversion in equation (7). Pro-
vided the number of reflectors within the window, M"Y,
is not large, the comparison will thus be fast. The matrix
S% 1s symmetric positive definite, so it is only necessary
to initialize e.g. the upper triangle and Cholesky decom-
position [18] can be used to solve the linear system. Since
M"Y is typically very small, e.g. 1-3, it will be even faster
to treat each of the low-order cases separately and use
the simple symbolic solutions of the linear system.

B. The iterative search

Based on the formulas of the preceding section many
slightly different search procedures can be constructed.
The procedure used to process the data presented here is
as follows: The window positions are repeatedly scanned
systematically through all currently existing reflectors
(components of t). For each reflector a fixed size win-
dow is centered at that reflector. Within this window,
new “candidate” reflector configurations are obtained by
systematically trying all changes in pre-determined tran-
sition set. The transition set includes the following one-
reflector transitions: Insert a new reflector in the win-
dow, delete the center reflector, move the center reflec-
tor with one or more samples in either direction. The
criterion (8) is computed for the original reflector con-
figuration and for all new candidate configurations. If
a candidate configuration improves on the original one,
a replacement is made. In this case both t and a are
updated. If no improvements are found, a is still up-
dated with the refitted amplitudes corresponding to the
original value of t. The procedure is repeated until a
complete scan fails to change either t or a.

Since only some components of a are refitted in each
step, the vector as a whole will not be truly globally opti-
mal for the current value of t during the iterations. How-
ever, because refitting is performed with systematically
changing window positions, the global fit will improve
“concurrently” with the changing of t. And as soon as t
ceases to change, the fit will converge fast to the global
optimum given the final value of ¢ [15]. Note, however,
that this optimality of the amplitudes is relative to the
final t, which may still be sub-optimal.

The optimality of the algorithm depends on the rich-
ness of the transition set. A limited transition set in-
creases the risk that the algorithm will terminate in a
local maximum for t. On the other hand, if too many
transitions must be tried at each step, the algorithm
is slowed down. Choosing the transition set is thus a
cost/optimality trade-off. Though good results were ob-
tained with the one-reflector transitions above, the im-
plementation used here was also extended by a set of
two-reflector transitions for increased optimality. These
consisted of joining two reflectors into one, splitting one
into two, and moving two simultaneously.
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C. Parameter values and window size

In the Bernoulli-Gaussian case, the algorithm depend
on two parameters, v, and §. The MAP criterion deter-
mines both as functions of the distributional parameters:
02, o2, and X. However, even if the true values of the
distributional parameters were known, 1t is not obvious
that plugging in these gives the best performance. In
particular for 6, it is argued in [15] that the value deter-
mined by the MAP criterion generally can not be used.
Instead, we prefer to consider # as a “tuning parame-
ter”. From equation (9) it is clear that this parameter
determines the penalty connected with the number of re-
flectors. This penalty is of crucial importance since the
fit to the data [as measured by the first term of equa-
tion (8)] will always increase by adding another reflec-
tor. Setting § = 0 will therefore lead to a dense esti-
mate with reflectors at all positions. Increasing 6 leads
to sparser estimates. A simple solution is therefore to
adjust @ until the sparsity nature of the estimate is con-
sistent with a priori assumptions. (Other solutions are
to “train” the algorithm to maximize performance on a
large synthetic data set, as measured by a realistic loss
function [19], or to use “L-curve” analysis from regu-
larization theory [20].) As a rule of thumb it is argued
in [15] that # should be chosen proportional to the noise
variance, § = xoZ. The simulations given here (and nu-
merous others) show that selecting the proportionality
constant x in the range 20 — 50 usually works well for
blind deconvolution. Note that the argument depends
on correctness of the assumed model. In practice the
“effective” noise level must also include various forms of
model mismatch, such as a slightly time varying wavelet,
ete.

The inverse signal-to-noise ratio 4, appearing in equa-
tion (13), is less important. Tts effect is to penalize large
amplitudes [15]. If estimates or a priori knowledge about
the noise and amplitude variances are at hand, it can be
determined from its definition. Another simple solution
which usually works well, is to use v, = 0 which corre-
sponds to a non-informative prior [21] for the amplitudes
with infinite variance. This approach was taken in all ex-
amples presented here.

The window size primarily affects the execution speed.
Large windows will include many reflectors and make the
inversion in equation (7) costly. On the other hand, very
small windows may reduce the optimality of the algo-
rithm. Though convergence to globally optimal ampli-
tudes given the final t is still guaranteed, small windows
may reduce the ability of the algorithm to escape from
local maxima for t. Simulation experiments show that
a window size approximately equal to the length of the
wavelet (excluding small samples at each end), will usu-
ally give efficient execution combined with no significant
loss of optimality. This approximate rule was used for

all examples presented here.

IV. WAVELET ESTIMATION

We now determine the MAP estimator of the wavelet
for fixed reflectivity, i.e. the maximizer of p(h|a,t,z).
Rewriting the convolutional model (1) in matrix form
gives

z=Xh+e, (15)
where X, = z(n — k) for n = 1,2,...N and k =
0,1,...,K. Due to the Gaussian assumptions on h and

e, the MAP estimator in this linear model has the well
known form (see e.g. [22])

h=B'u (16)
where

B=X'X+vI and u=X'z. (17)

The parameter v, = 02/07 is an inverse signal-to-noise
ratio. All points from the discussion on ~, in the pre-
vious section apply. In particular, the non-informative
limit 4, = 0 usually works well, and was used for all
reconstructions presented here. Note that in this case
the solution (16) reduces to the standard least-squares
estimate.

Computing B by the matrix multiplication indicated
by equation (17) would be unnecessarily burdensome.
Instead we take advantage of the assumption that z(n) =
0 for n < 0 and for n > N — K. This implies that B
is Toeplitz, i.e. each diagonal band is constant. Using
equation (17) and the definition of X shows that the
k’th band, by, is given by

N

b= (n—k)z(n) + s (k),

n=1

(18)

for k = —K,...,0,..., K. Note that since B is sym-
metric, it is only necessary to compute the non-negative
bands. The components of u are immediately seen to be

N

up = Er(n—k)z(n), k=0,1,..

n=1

LK. (19)

The entire procedure for wavelet estimation is thus
to initialize B and u by equations (18) and (19) and
then perform the inversion in equation (16) by Levinson
recursion [18].

The simplicity of the above estimate depends on a
Gaussian prior for h, but the particular correlation struc-
ture is not crucial. With a completely general covariance
matrix, Xp, the necessary modification is to replace the
first part of equation (17) by B = X’X 4 ¢2%,!. This
would allow more sophisticated features of the wavelet
to be modeled. For example, one may encourage the es-
timate to be continuous and to have smaller samples at
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the end. Incorporating more a priori information in this
fashion is most important when the data is scarce. In
seismic applications the data available for wavelet esti-
mation is usually abundant. We therefore tend to favor
the simpler non-informative approach above. Using a
non-Toeplitz X; would also destroy the Toeplitz prop-
erty of B.

V. MULTICHANNEL REFLECTIVITY ESTIMATION

Consider now a seismic section consisting of many par-
allel (and vertical) traces. Due to horizontal continuity of
the reflecting surfaces of the earth, the traces will be de-
pendent. For simplicity, we assume that these inter-trace
dependencies can be modeled by the prior for the reflec-
tor positions, p(t). Arguably, some continuity should
also be expected for the amplitudes. However, as will be
seen, confining the dependencies to t leads to major sim-
plifications. Also, some simulation experiments indicate
that the difficult problem is to estimate t. If a correct
estimate of t is obtained, the required continuity of the
amplitudes will usually be enforced by the data.

The multichannel version of the convolutional
model (3) is
M.
ze(n) = he(n —tei)ac; + ec(n), (20)
i=1
where ¢ = 1,2,...,C indexes the different channels or

traces. The wavelet h, may or may not depend on ¢. We
assume, as before, independent Gaussian distributions
for the amplitudes and the noise, but the variances may

: 2 _ 2
depend on ¢, i.e. Var a.; = o . and Var ec(n) = 0o

A. Generalization of IWM

To adapt the IWM algorithm to this model, we take
advantage of the fact that the derivation of equations (5)-
(10) in [15] does not depend on the form of H. In or-
der to use previous results, we reduce the multichannel
model to the matrix form (4) but with a new definition
of H. To accomplish this, concatenate the data, reflector
positions, amplitudes, and noise for each trace into the
vectors: z., t., a., and e.. Define also the matrices H,
by Hecni = he(n —t.;). Finally, introduce the following
aggregate quantities:

1 1
Ue,lzl t oan 1
7 = : , t= , a= . ,
1 1
Z t a
Oe,C C ¢ Ta,C c
(21)
1 Ta,1
oe,lel Te,1 1 O
e = , H=
1 Ta,C
ae,cec O Oe,C c

Note that a and e are weighted such that all compo-
nents have equal (unit) variance. Thus, with the def-
initions (21), the distributional assumptions from the
single-channel situation are fulfilled. It is also easily seen
that with these definitions model (20) can be written in
the matrix form (4). Thus, equations (5)-(10) are valid
in terms of definitions (21). Using equations (5)-(7) and
the block diagonal form of H shows that computation of
a" reduces to a separate problem for each trace. The
solution can be written as

ay = (s¥)~'vy, (22)

where
S; = (H?)/H? + a1, (23)
vy = (HY)'z. — (HY)'HYay, (24)

and v, = 0570/0270. The superscript w should be in-
terpreted as before, i.e. HY is the columns of H. cor-
responding to reflectors inside the window, etc. Equa-
tions (22)-(24) are exactly as in the single-channel sit-
uation, except for the dependence on c¢. Initialization
of the matrices SY and v’ can thus be performed com-
pletely analogously to (13)-(14), but if h. depends on ¢,
one set of correlation functions on the form (11)-(12) will
be needed for each trace.

Inserting (21) in (5) and (6) also shows that the crite-
rion (8) for comparing two candidate values of t becomes

(25)

In conclusion, the multichannel case i1s handled by
computing the amplitudes separately for each trace ex-
actly as before. The competing t values are compared by
computing a sum consisting of one term for each trace.
Each term is on the form considered before, but weighted
by the inverse of the noise variance for that trace. The
dependencies across the traces are completely contained
in the term g(t), which is defined in terms of the prior
distribution for t by (10).

B. Window Selection

The above theory is valid for general windows, 1.e. a
window can be any selection of sample points from one or
more of the traces. The simplest possibility is to select
windows which cover an interval in only one trace. In
this case the sum in equation (25) reduces to one term.
(Equation (25) is still valid in the case when one or more
traces have no reflectors inside the window, provided an
empty vector is interpreted as zero.) For the seismic data
results presented here, this approach was used. The win-
dow positions were systematically scanned through the
first trace. Then, the second trace was scanned. When
all traces had been scanned once, another scan of the
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first trace was performed, and so on. Note that this
gives higher optimality than the recursive solution pro-
posed by Idier and Goussard [13]. Since the recursive
solution only process each trace once, it has the weak-
ness that data from the later traces will not influence the
estimate in the earlier traces. Additionally, the iterative
scan proposed here will be almost as fast as a recursive
strategy since all traces will converge “concurrently” to-
wards their solution.

If there are strong dependencies across the traces, win-
dows covering only one trace may not be sufficient. For
an extreme example, consider a prior which enforces the
deterministic relation t; = to = ... = t¢, 1.e. the re-
flector positions are the same for all traces. This prior
was used for processing the multivariate well log data
presented here. Since a fundamental assumption for
the IWM algorithm is that changes to t can only be
made within the window, the windows must in this case
cover an interval in all traces simultaneously. Thus, in
this case (25) will contain one term from each trace.
The transition sets from the single-channel situation can,
however, be used unchanged.

The most difficult situation is when the prior includes
strong but not deterministic inter-trace dependencies.
Determination of suitable strategies for selection of win-
dows and transitions in this situation is basically an open
problem. Note, however, that for the seismic data results
presented later, inclusion of some rather simple multi-
trace updates gave clear improvements compared to only
single-trace updates.

C. Priors

The derived optimization method gives large flexibil-
ity in modeling the prior for t. In theory, any prior
can be used, but to achieve efficient execution the pri-
ors must allow fast evaluation and also ensure a sparse
estimate. Markov random field priors have been consid-
ered by Lavielle [12] and Idier and Goussard [13]. Any
of these could be used in the present framework. The
actual prior used for the seismic data results presented
here is most closely related to those of Lavielle [12] and
is described next.

The relationship (10) could be used to model p(t)
and transfer to a value for g(t). However, we prefer
to model g(t) directly, thinking in terms of “penaliz-
ing” unwanted/unlikely configurations. (In Markov ran-
dom field terms, we model the associated energy func-
tion [23]). To encourage horizontal continuity of the es-
timated reflectors, we used the penalty function

g(t) = —0MY 4+~ M~ +0 \M\+ o/ M/ — M —Dlipll
(26)

where

M- = #{tc,i = tc+1,j}a
M\ #{te; =tepr1;— 1},
M/ #ltei =teprj + 1}, (27)

Ml = #{tes =to;+ 1},
MH = #{tcyi:tcyj—f-?}.

The first term in equation (26) penalizes the number of
reflectors and is on the form considered before. The sec-
ond term encourages horizontal continuity. The number
M~ counts how many times two reflectors in adjacent
traces are placed the same horizontal position, while the
parameter v~ determines the strength of the encourage-
ment. (The counts in equation (27) should be taken over
all ¢, i, and j that make sense.) Similarly, the third and
fourth term also encourage horizontal continuity, but for
dipping or raising layers. The parameters v~, v\, and v/
must not be chosen too large relative to #. To see why,
consider insertion of a reflector at a horizontal position
where one of the neighboring traces also has a reflector.
Inserting the reflector will add one to the count M* and
one to the count M~. The overall change to g(t) will
therefore be v~ —@. If this number is positive the reflec-
tor will certainly be inserted (since inserting a reflector
always improves the fit to the data). Choosing v~ > 6
will therefore “prohibit” blind ends in a line of reflec-
tors. Similarly, choosing v~ > 8/2 will prohibit single
holes. The same comments apply to v\ and v/. Note
also that if one trace has several vertically closely spaced
reflectors, inserting a reflector in a neighboring trace can
possibly add to all of M~, M\ and M/, i.e. the reflector
can similarly take part in both horizontal and dipping
and rising layers. This could lead to clustering of large
numbers of reflectors, and is the reason for including the
last two terms in the penalty function (26). These re-
move the problem by penalizing vertically close reflec-
tors. For the examples presented here, the parameters
were heuristically selected as v~ = v\ = v/ = 0.76, and
vl = vl = 26. (We thus allowed reflector chains with
blind ends, but not single holes).

Computation of the penalty function (26) presents no
problems. To compare two competing t values, it is only
necessary to compute the changes to the counts (27).
Since the algorithm only modifies a few reflector posi-
tions at each step, the changes can be determined by
examining a few neighboring positions.

VI. MULTICHANNEL WAVELET ESTIMATION

Assuming wavelet invariance across traces implies that
multichannel wavelet estimates can be obtained by sim-
ple averaging operations. To see this, define the aggre-
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gate quantities:

1 1 1
z e
Te,1 1 Te,1 1 Te,1 1
7Z = , e = s X =
1 1
z e X
Oe,C ¢ Oe,c c Oe,C c

(28)
Here z and e correspond to the definitions in the preced-
ing section and X, nr = z.(n — k). Since we assume h
to be common to all traces, model (15) is valid with def-
initions (28). Also, since the noise from different traces
is taken to be independent, e has the same distribution
as in the single-channel situation. Thus, equations (16)-
(17) still give the MAP estimate, now in terms of the
aggregate quantities (28). TInserting definitions (28) in
equation (17) gives

c
B=> o !X. X+l (29)
c=1
and
c
u=— Z O';gXézc. (30)
c=1

From equation (29) the k’th band of B is seen to be

(&)
b, = ZU;gbk’c + yhé(k),

c=1

(31)

where, in analogy with equation

S ze(n — k)ae(n).
gives
C
-2
we =3 o7 uk e,
c=1

where ug . = Z,szl zo(n — k)z.(n) is analogous to equa-
tion (19).

Thus, MAP estimation of h based on all traces takes
place as before, except that B and u must be initial-
ized by equations (31) and (32). These are on the form
considered previously, except that one term is added for
each trace. Note in particular that the dimension of the
Toeplitz system which must be inverted does not depend
on the number of traces. It is still determined by the
wavelet length. If the wavelet is slowly varying across
the traces the above sums could be modified in an ob-
vious way to (weighted) averages of only the few closest
traces.

(18), bx. =

Similarly, using equation (30)

(32)

VII. EXPERIMENTAL RESULTS
A. Implementation Issues

To apply the procedure in practice, the BCM it-
erations need a starting point. One possibility is to
start from some conventional, possibly minimum phase,

wavelet estimate. An even simpler solution, which made
the overall procedure self contained, was used here. The
BCM was started from an initial reflectivity estimate
formed by inserting reflectors at all local maxima of the
data record. (A point was considered as a local maxima
if it had larger absolute value than the 40 nearest sam-
ples.) In spite of the crudeness of this initial estimate,
all presented reconstructions converged fast to sensible
values.

Also, the length D of the wavelet must be decided.
In the computer simulations we used the true length
(51 samples) of the FIR wavelet used to generate the
data. In the real data examples we performed a trial run
with a large value, and then reduced the value to remove
small samples at each end which appeared to contain
only noise. (A suitable alignment of the wavelet within
its finite size record was obtained by shifting the initial
reflectivity estimate described above.)

Combining non-informative priors for h and a ex-
pose an inherent indeterminacy in the convolutional
model (1). The model is insensitive to increasing h with
a factor and decreasing a with the same factor. The
ambiguity was resolved by simply normalizing h to unit
energy after each step of wavelet estimation.

B. Computer Simulations

For the first example, we generated a single trace
consisting of 1000 samples (Fig. 2a). The true reflec-
tivity was sampled from a Bernoulli-Gaussian distribu-
tion with reflector density A = 0.05, and convolved
with a wavelet borrowed from the seismic data in the
next section. Finally, white Gaussian noise was added
to achieve signal-to-noise ratio 15 dB (as defined by
mean power of noiseless signal divided by noise vari-
ance, SNR = X023, h*(k)/o% ). The blind deconvo-
lution algorithm was tested on this data set using two
different values for the sparsity parameter; # = 2002 and
0 = 5002. In both cases all major reflectors were re-
covered correctly (Fig. 2c,e), though a few more small
reflectors were missed for the larger #-value. We con-
clude that the exact # value is not critical for these data.
The wavelet estimates (Fig. 2d,f) were highly accurate,
and almost identical in the two cases. This can be com-
pared to the much poorer estimate (Fig. 2b) obtained by
a homomorphic deconvolution method, using phase un-
wrapping as discussed in [24]. Inserting this estimate in
a Wiener filter as in [24] produced estimates which could
not resolve the individual reflectors.

In the next example, the data was made more difficult
by decreasing the SNR to 7 dB (Fig. 3a). The algorithm
was tested on two data sets, one consisting of only one
trace and one consisting of 10 traces. The different traces
were independent. Thus no continuity was assumed in
the reflectivity estimation step, but a common wavelet
estimate was used for all traces. The sparsity parameter
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Fig. 2. Deconvolution of synthetic low noise data: (a) Data with SNR = 15 dB. (b) Wavelet estimate obtained by a homomorphic

deconvolution method for comparison with the following estimates from the algorithm proposed here. (c) Reflectivity estimate

obtained with sparsity parameter § = 2002. (d) Wavelet estimate corresponding to (c).

(e) Reflectivity estimate obtained with

§ = 5002. (f) Wavelet estimate corresponding to (e). Estimated reflectors are shown with bars and true reflectors are shown with
circles. Estimated wavelets are shown with solid lines and true wavelets are shown with dots. The horizontal unit is digitizing

samples.

was fixed at § = 2002. In the reflectivity estimate based
on only one trace (Fig. 3c), most of the large reflectors
were correctly recovered, but the estimate also contained
several false detections and many small reflectors were
missed. The wavelet estimate (Fig. 3d) was also consid-
erably poorer than in the previous example. Using 10
traces, however, gave a much improved wavelet estimate
(Fig. 3f), which again was almost perfect. This improved
wavelet estimate also lead to a clear improvement in the
corresponding reflectivity estimate (Fig. 3e). This illus-
trates that using more traces in the wavelet estimation
step can improve both wavelet and reflectivity estimates.
Furthermore, it is interesting to note that the quite mod-
erate errors in the wavelet estimate in Fig. 3d worsen the
corresponding reflectivity estimate significantly. Again,

the estimate from the homomorphic method (Fig. 3b)
was much poorer, even though it was based on all 10
traces.

The final synthetic example is a data set which does
not meet our model assumptions exactly. Instead of
generating the data from equation (1), we include a
“backscatter” term to yield the more realistic model

z=xz*xh+bxh+e. (33)
The backscatter, b, models reflections due to small in-
homogenities within the major layers. The school rep-
resented by Mendel [3] models the backscatter term ex-
plicitly, and estimates the backscatter together with the
other components of their BCM’s. Tt is argued [10], [25]
that this is necessary in order to avoid too many false de-
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Fig. 3. Deconvolution of synthetic high noise data: (a) Data with SNR = 7 dB. (b) Wavelet estimate obtained by a homomorphic

deconvolution method (based on 10 traces) for comparison with the following estimates from the algorithm proposed here. (c)

Reflectivity estimate based on only one trace. (d) Wavelet estimate corresponding to (c).

(e) Reflectivity estimate based on 10

traces (only the first one shown). (f) Wavelet estimate corresponding to (e).

tections. In the present setup it is clear that the problem
of too many false reflections can be avoided by appropri-
ate choice of the sparsity parameter 8. We therefore pre-
fer to absorb the backscatter in the noise term instead.
As a consequence, the noise will be colored. If the power
spectrum of the noise is known (e.g. estimated from data
known to contain no major reflections), white noise could
be restored by a simple pre-filtering [26]. However, in the
following we examine the behavior of the algorithm in
colored noise conditions without attempting to “whiten”
the noise spectrum.

Two data sets were generated from the backscatter
model (33). For both, b was taken to be Gaussian, white,
and with variance o = o2. (Since we have normalized
the wavelet to unit energy, this made the power of the
backscatter term and the white noise term equal.) The
combined power of backscatter and white noise were then

adjusted to obtain a given noise level. The first data set
consisted of one trace with SNR 15 dB, while the other
had 10 independent traces with SNR 7 dB. Thus, except
for the fact that the noise was colored, the first data
set was identical to that in Fig. 2a, while the second
was identical to that in Fig. 3a. For both data sets the
sparsity parameter was set to # = 50(c% + 07). The esti-
mates from the low noise trace were excellent (Fig. 4a,b)
and comparable to those for white noise (Fig. 2e,f). For
the high noise data set only the largest reflectors were
recovered, and some false detections were also present
(Fig. 4c). This estimate appears inferior to the corre-
sponding white noise result (Fig. 3e). However, part of
the difference is due to the higher sparseness parame-
ter used in the colored noise case. Reducing § would
enable smaller reflectors to be detected, but might also
introduce more false detections. In spite of the reduced
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Fig. 4. Deconvolution of synthetic colored noise data: (a) Reflectivity estimate based on one trace with SNR = 15 dB. (b) Wavelet

estimate corresponding to (a). (c) Reflectivity estimate based on 10 independent traces with SNR = 7 dB (only the first one shown).

(d) Wavelet estimate corresponding to (c).

quality of the reflector estimate, the wavelet estimate
for high colored noise (Fig. 4d) was still almost perfect.
This illustrates that even when noise conditions are too
adverse for good reflector estimates, averaging over sev-
eral traces still enables excellent wavelet estimates. Note,
however, that neighboring traces of real seismic data will
often be strongly correlated. This reduces the effective
amount of independent information available for wavelet
estimation. It can thus be expected that more than 10
traces will be needed to achieve a similar improvement
as obtained here.

Processing the above examples on a 60 MHz Pentium
PC required from 0.9 to 7 seconds for one trace of 1000
samples (execution times for the multi-trace data sets
were divided by the number of traces). The differences
are mainly related to the density of the reflectivity esti-
mates. Denser estimates increase the average number of
reflectors in each window, and thereby slow down com-
putation of equations (7)-(8). As a result, the high noise
estimates were faster to compute since these had recov-
ered fewer small reflectors. Also, processing 10 traces
required less time per trace than processing one. This is
partly because the wavelet estimation step was common
to all traces, but also because more traces lead to faster
convergence. The two 10 trace examples above required
5 and 7 iterations of the outer BCM, while the one trace
examples ranged from 8 to 12.

C. Seismic Data Results

We now consider application to a seismic section
recorded in the Fram Strait west of Svalbard. A near-
stack section obtained by averaging the 10 smallest off-
sets was used, and a small subsection was selected for
illustrative purposes. To make the data comply bet-
ter with the white noise assumption, some low-frequency
noise was suppressed by a moderate high-pass filtration.
The pre-processed data are shown in Fig. 5a. The strong
reflection between 1500 and 1650 msec. is the seafloor re-
flection, while the compound reflection between 1700 and
1950 msec. i1s from a structure of interest. Four differ-
ent reflectivity estimates were computed. The first two
differ only in the value of the sparseness parameter, 8,
which were selected heuristically. Fig. 5c corresponds to
a relatively small value and includes many weak reflec-
tions, while Fig. 5d corresponds to a larger value and
show only major reflections. In both cases the reflectiv-
ities were taken to be independent. In the next recon-
struction (Fig. b5e) horizontal continuity was modeled
as described in Section V-C, while § was kept as in 5d.
As expected, this estimate shows better continuity be-
tween neighboring traces than the two preceding ones.
For this estimate only single-trace transitions were used.
Due to the strong dependencies introduced by the chosen
prior, this may not give sufficient optimality. To investi-
gate this, the single-trace transition set was extended by
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Fig. 5. Deconvolution of seismic data: (a) Seismic section. (b) Wavelet estimates corresponding to the reflectivity estimates in (c)-(f).
(c) Reflectivity estimate obtained with small sparsity parameter §. (d) Reflectivity estimate obtained with large 6. (¢) As (d), but
with horizontal continuity assumption. (f) As (e), but with multi-trace transitions.
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some multi-trace transitions. The idea of these were to
locate each connected line of reflectors and then examine
various moves of the entire line. This lead to further in-
crease of the posterior. The resulting estimate (Fig. 5f)
also appears more plausible geologically.

The wavelet estimates corresponding to each of the
four different reflectivity estimates are shown in Fig. 5b.
The differences are minute, and they correspond well
with the seafloor reflection.

All reconstructions in Fig. 5, were completed within
7 to 48 seconds on a 60 MHz Pentium PC. As with the
simulated data, the sparser estimates gave the faster ex-
ecution.

D. Application to Well Log Segmentation

In well logging, various variables, such as acoustic ve-
locity and level of gamma radiation, are measured at
regular intervals in an existing bore hole. Assuming a
layered earth model implies that one such variable can
be approximated by a step function. Since the mea-
surements usually do not represent exact point values,
but rather are weighted averages over a small area [27],
they can reasonably be modeled as filtered and noise-
corrupted versions of the true step function. This is the
model considered here, except that the sparse reflectivi-
ties, equation (2), must be substituted by a step function
of the form

M
z(n) = Z a; [u(n —ti—1) —u(n— tl)]

=1

(34)

Here u(n) denotes the unit step function which is 0 for
negative arguments and 1 otherwise. The basic IWM al-
gorithm can easily be adapted to deconvolution of step
functions [26]. (Tt is only necessary to modify correlation
functions (11)-(12) and equations (13)-(14) used for ini-
tialization of 8§ and v. Otherwise, the algorithm can be
used as before.) Incorporating this step function modi-
fication in the present framework for blind multichannel
deconvolution gives no further complications.

Since all variables (channels) relate to exactly the same
geologic structure, it is reasonable to require t to be the
same for all channels. Tt is thus necessary to perform
updates in all channels simultaneously, as discussed in
Section V-B. To determine the weighting of each log
variable in equation (25) we scaled the total variance
of all variables to unity and then assumed equal error
variance. For the segment lengths we used a geomet-
ric prior, giving a penalty function on the simple form
of equation (9) with M* now signifying the number of
segments. A selected part of a well log together with
the segmented solutions and recovered filter functions is
given in Fig. 6. The given segmentation was based on vi-
sual adjustment of the sparsity parameter f and appears
to have captured the major structures in the data well.
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Fig. 6. Segmentation of multivariate well log data: (a) Data. (b)
Segmented solutions. Note that the segment boundaries are
common to all variables. (c) Estimated filter functions.

Depending on the objective a finer segmentation could
be obtained with a smaller §. Multivariate segmentation
and estimation of the filter functions, based on the en-
tire log consisting of 4 variables with 3467 samples each,
required 13 sec. on a 60 MHz Pentium PC.

Other approaches to well log segmentation, c.f.
e.g. [28], [29], [30], [31], have mostly been concerned with
the simpler model without filtering. Failing to account
for filtering will systematically bias the amplitude of the
segments. In particular, short segments with large am-
plitudes will be estimated much too close to the neigh-
boring segments [26]. Optimization in the more realistic
model with filtering, has been considered by Goutsias
and Mendel [32]. However, their solution is quite dif-
ferent from ours and requires that the values of x are
restricted to a finite set. Furthermore, none of the above
references consider multivariate segmentation.
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VIII. DiscussiON
A. Optimality

The proposed method is not guaranteed to locate the
global maximum of the posterior. We have observed
in some simulations that the BCM apparently has con-
verged to a local maximum where both wavelet and re-
flectivity estimates are far off. Not surprisingly, the prob-
lem is related to the wavelet shape with narrow-band
wavelets being the most troublesome. Perhaps more
important, the problem only occurred for short record
lengths. Increasing the record length and, in particular,
using several traces, always lead to reliable wavelet esti-
mates. This suggest that the problem is not serious in
practice since typical seismic data sets consist of a large
number of traces.

Even though the true wavelet is basically recovered,
the estimated reflector positions may not correspond to
the their global optimum due to the sub-optimality of the
reflectivity estimation step. The approach given here is
clearly more optimal than established alternatives based
on the SMLR algorithm [3], [10], [11], since this algo-
rithm updates only one sample at each step. Specifically,
our optimization scheme gives higher optimality than the
multichannel SMLR solution of Idier and Goussard [13].
Improved optimality results from updating several reflec-
tors in one trace simultaneously, using iterative instead
of recursive scanning of the traces, and allowing multi-
trace updates.

A further increase in optimality is possible by us-
ing more advanced transitions than those employed here
(particularly multi-trace transitions). Alternatively, op-
timality may be increased by stochastic relaxation and
simulated annealing [12], [23], [33]. Although simulated
annealing is sometimes misleadingly referred to as a glob-
ally optimal method, this is only for an unrealizable
amount of computation [23]. In practice, the degree of
optimality is governed by the computing time allowed.
Since any level of optimality can also be attained by ex-
tending the transition set of IWM, the relevant question
is which method gives the highest optimality for a given
amount of computation. For a specific single-channel
problem we have found that the deterministic IWM algo-
rithm by far surpasses the stochastic approach [19], but
more research is needed to compare the two approaches
in the multichannel situation.

An intermediate solution is to apply stochastic relax-
ation to the IWM framework. Common stochastic solu-
tions only update one sample of the reflectivity at each
step. This is a likely reason for the slow convergence
experienced in [19]. Relaxing the TWM formulas would
allow stochastic updating of more than one sample at
each step, and thereby speed up convergence. To reduce
the sub-optimality related to the outer BCM, one might
also consider stochastic relaxation of the wavelet estima-

tion step as in [33].

Stochastic relaxation in the IWM framework or more
complicated multi-trace transitions are topics for future
research. We do, however, think that the procedure de-
scribed here is sufficiently optimal for most practical pur-
poses. An exception is when particularly strong cross-
trace continuity is assumed. On the other hand, one
should be careful about enforcing continuity too strongly.
Although this will generate aesthetically pleasing esti-
mates, the uncertainty may be concealed.

B. Swgnificance for Seismic Deconvolution

To our knowledge, the true reflectivity of the seismic
data presented here is not known. It is not clear whether
the increased continuity in Fig. be,f (with horizontal con-
tinuity modeling) is due to true reflectors or artifacts. Tt
i, for example, possible that the observed reflections do
not originate from distinct boundaries, but result from a
gradual increase of sound velocity instead. In this case
the layered earth model is not appropriate, and a non-
continuous chaotic estimate simply expresses the fact
that the model does not fit these data. Note, however,
the two reflecting surfaces at approximately 1720 and
1760 msec. in Fig. 5f. These show up consistently in all
four estimates. A possible explanation is that these cor-
respond to the upper and lower boundary of sediments
containing free gas which are trapped below sediments
containing gas hydrate. This interpretation is consistent
with the conclusions reached in [34] for these data (BGR
31-74, CMP 697-727). With careful interpretation, it
appears that the method arrived at here would be a use-
ful tool for analysis of these data. The clear difference
between Fig 5e and 5f indicates that the increased opti-
mality of the given method, as compared to SMLR based
alternatives [13], is significant for multichannel seismic
deconvolution.

The given method can also be used for wavelet esti-
mation only. A conventional (non-sparse) mixed-phase
deconvolution can be obtained by using the recovered
wavelets as input to, e.g., a Wiener filter. The simula-
tion results demonstrate that much better wavelet esti-
mates are produced by the given MAP method than by
a homomorphic method. (The latter represents a class
of mixed-phase wavelet estimation methods that have
received much attention.) Since the degree of wavelet
compression that can be obtained with Wiener filtering
is quite sensitive to the correctness of the input wavelet
[35], the experienced improvement is clearly significant.
Note, however, that the synthetic test data fulfilled the
distributional assumptions of the MAP method exactly.
If these assumptions are seriously violated, the homo-
morphic method (and other more general methods) can
be expected to compete more favorably.
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C. More advanced priors

An advantage of the presented optimization method,
is the large flexibility in choice of prior model for t.
Here, the prior was used to model sparsity and hori-
zontal continuity. More advanced priors are topics for
future research. For example, a model for multiple re-
flections could be built into the prior. One might also
consider working with pre-stack data. In this case, the
prior should express the fact that traces with a common
midpoint should have (almost) the same reflector posi-
tions. This aspect would resemble the prior used for well
log segmentation here.

IX. CONCLUSIONS

We have presented a practical and complete solution
for multichannel blind deconvolution based on a model
for sparse reflectivities. Unlike Gaussian based models
this allows the phase of the wavelet to be recovered. Ap-
plication to two-dimensional data was considered here,
and extension to three dimensions is straightforward.
The estimation problem was formulated in a maximum
a posteriori framework. This lead to a difficult optimiza-
tion problem which we solved by an iterative and sub-
optimal block component method. The computational
load depends on the degree of optimality required. For
practical purposes, sufficient optimality can normally be
achieved while still retaining fast execution.

The presented computer simulations show that excel-
lent estimates are obtained when the underlying model
is appropriate. Slight deviations such as a moderate
amount of colored noise are not detrimental. Violation of
wavelet invariance is likely to be more serious. Modifica-
tions for other model assumptions, such as a slightly time
variant wavelet or non-stationary noise, can be consid-
ered along the lines of [26], but sparseness of the reflectiv-
ity is essential. For estimation of non-sparse reflectivities
other methods should be used.
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